毛细管电泳检测DNA的方法建立和其应用
- 格式:pdf
- 大小:1.34 MB
- 文档页数:57
刑事技术·论 著·2021年 第46卷 第3期基金项目:北京市自然科学基金资助项目(7182022);河北省法医学重点实验室开放课题(KF201606)第一作者简介:张庆霞,女,河南淮阳人,硕士,主任法医师,研究方向为法医物证检验与研究。
E -mail:********************** 通信作者简介:马万山,男,北京人,学士,主任法医师,研究方向为法医物证检验与研究。
E -mail:136****************网络出版时间:2020-12-29;网络出版地址:https:///10.16467/j.1008-3650.2020.0006DOI :10.16467/j.1008-3650.2020.0006毛细管电泳联合二代测序技术用于亲子鉴定突变分析张庆霞1,刘金杰1,付丽红1,任 贺2,刘小芳1,陈 冲1,贾 丽1,石 妍1,赵 怡1,焦章平1,刘雅诚1,马万山1,*,李 健2(1. 北京市公安司法鉴定中心,北京100192;2. 北京警察学院,北京102202)摘 要: 目的 联合应用毛细管电泳与二代测序技术,探索肯定亲权案件中的STR 基因座的突变率和突变方式。
方法 2600例肯定亲权关系的案件材料采用PowerPlex21试剂盒进行STR 检验,发现67例存在基因座突变,对该67例亲子关系(62例三联体,5例二联体)的196个样本用SeqTyper ®24构建文库,使用Ion PGM TM 平台进行二代测序。
结果 12个STR 基因座共发现71个突变,父源突变与母源突变的比例为3.13‥1。
其中64例亲子关系观察到1个基因座突变,2例观察到2个基因座突变,1例观察到3个基因座突变,有些突变从毛细管电泳所得STR 基因座结果无法判断是增加还是减少了一步,二代测序则可以明晰等位基因的遗传方式及突变情况。
结论 对于复杂核心序列、含不完全重复单位的基因座,有些突变可以通过二代测序明确突变的来源和方式,更直观地从微观碱基序列的角度观察等位基因的遗传。
毛细管电泳仪核酸分离分析毛细管电泳仪核酸分离分析是一种广泛应用于生物技术和生物医学研究领域的分析方法。
它通过将DNA、RNA或其他核酸样品注入到毛细管中,利用电场的作用使核酸在毛细管内迁移,在电泳分离过程中根据核酸分子的大小、电荷和构象差异,实现对核酸样品的分离和定量分析。
本文将从毛细管电泳仪的原理、实验操作和应用领域三个方面展开介绍。
一、毛细管电泳仪的原理毛细管电泳仪是以电泳为基础的仪器设备,主要由高压电源、注射器、分离柱、检测器和数据处理系统等组成。
核酸样品首先通过注射器被导入到毛细管内,然后通过电场力将核酸分子在毛细管内迁移。
毛细管内的分离柱起到了筛选和分离核酸的作用,不同长度或不同带电性质的核酸分子将被分离开来。
分离完成后,检测器会检测样品,根据检测信号进行数据处理和分析。
二、毛细管电泳仪的实验操作1. 样品制备:将待测核酸样品提取并纯化,测定浓度和纯度。
2. 缓冲液的配制:根据实验需要选择合适的缓冲液,调节缓冲液的pH值和离子强度,以优化分离效果。
3. 毛细管的选择:根据样品特性和分离目标,选择合适的毛细管材料、内径和长度。
4. 样品注入:使用专用注射器将核酸样品注入到毛细管中。
5. 分离条件设置:根据样品的性质和实验需要,设置适当的分离电压、电流和温度等条件。
6. 分析与结果解读:根据检测器所得到的信号,进行数据处理和结果解读。
三、毛细管电泳仪的应用领域毛细管电泳仪核酸分离分析广泛应用于生命科学研究、医药领域以及法医学等领域。
具体应用包括但不限于以下几个方面:1. 生物医学研究:在基因工程、遗传学、分子生物学等领域中,毛细管电泳仪被广泛应用于核酸样品的分离、纯化和测序等方面。
2. 临床诊断:毛细管电泳仪可用于检测和分析人体内的基因突变、染色体异常等,对临床疾病的诊断、预测和治疗具有重要意义。
3. 食品安全监测:毛细管电泳仪可以对食品中的转基因成分、有害物质和添加剂等进行快速准确的分析,为食品安全监测提供科学依据。
说明毛细管电泳特点及应用
毛细管电泳是一种高效液相色谱技术,其基本原理是利用电场将带电粒子在毛细管中的移动速率和荷电量的差异进行分离和富集。
毛细管电泳具有高分离效率、快速分离、小量样品、自动化程度高等特点,已经成为了化学、生物、环境学等领域的一个重要分析工具。
其主要应用领域和特点如下:
1.分离生化分子
毛细管电泳可以用于分离和富集DNA、RNA、蛋白质、糖类和小分子有机物等生物分子。
这些生物分子在酸碱性、水解、氧化还原等条件下有不同的化学性质和电荷性质,可以被毛细管电泳技术精确分离和定量。
例如在DNA分离和定量方面,毛细管电泳已经成为PCR扩增产物检测、基因测序、DNA指纹鉴定等分子生物学技术中的重要手段。
2.分析环境污染物
毛细管电泳可以用于环境监测和食品安全检测等领域,可以对水、空气、土壤和食品中的有机和无机污染物进行快速准确定量分析。
例如利用毛细管电泳技术可以分析环境中的氨、硝酸盐、荧光增白剂、PESTICIDE 等有害物质含量,以及酒类中的苯甲酸、乙酸等有害物质。
3.分析药品和代谢产物
毛细管电泳可以快速、灵敏地分离和鉴定药品和代谢产物,具有药动学和毒理学研究的重要意义。
毛细管电泳技术节省反应时间,减少实验操作时间,可对液-液、液-固、固-液等反应进行分离和分析,得到精确的数据和结果。
如利用毛细管电泳技术,可以分析身体内的有机酸、氨基酸、代谢产物等物质。
总之,毛细管电泳技术在化学分析和生物分析中均有广泛应用,且已成为学术研究和工业生产的一种重要分离分析手段。
毛细管电泳测序原理毛细管电泳测序是一种基于DNA片段长度差异的测序技术,其原理是利用毛细管电泳分离DNA片段,并根据片段移动速度的差异确定序列信息。
首先,需要通过PCR扩增得到目标DNA片段。
PCR是一种体外DNA扩增技术,通过DNA聚合酶的作用,将目标DNA序列扩增至足够数量,以便进行下一步的测序分析。
接下来,将PCR产物加入到含有聚合物的毛细管内,并施加电场。
在电场的作用下,DNA片段会被吸附在毛细管内壁上,并形成一个移动带。
然后,施加电场,并在毛细管两端连接电源,使得电场通过毛细管内的DNA移动带。
不同长度的DNA片段根据其分子量不同,会以不同的速度移动,分离出DNA片段。
在这个过程中,由于DNA片段的质荷比不同,所以在电泳过程中会出现DNA 片段的离子机流效应。
DNA片段的离子机流速度与其质量成反比,因此,越长的DNA片段离子机流速度越慢。
当DNA片段离子机流速度相等时,移动速度以及移动距离的大小就取决于DNA 片段的长度。
因此,通过观察移动带的长度,可以确定DNA片段的长度信息。
为了准确测序,通常还需要将目标DNA分成四份,并分别加入四种带有荧光标记的特异性引物。
这些引物会与目标DNA片段互补配对,并在DNA扩增过程中,序列确定位置为反应产物的末端,引物上的荧光标记用于定位。
接下来,将四种标记的引物混合加入PCR反应混合液中,并进行PCR扩增。
在扩增过程中,引物会进行无模板扩增,因此会得到四种不同长度的扩增产物。
随后,将PCR产物经过毛细管电泳分离,根据DNA片段长度的差异,可以将这些扩增产物分离开来,并观察每一带的荧光信号的顺序。
通过分析荧光信号的顺序,可以得到DNA序列的信息。
由于每一个碱基都分别用不同的荧光色标标记,因此可以通过观察荧光信号的顺序获取DNA序列。
毛细管电泳测序的优点是测序速度快、准确度高,可以同时进行多个样品的测序。
毛细管电泳测序仪器相对简单,操作方便,适用于中小型实验室。
毛细管电泳法简介毛细管电泳法是一种常用于分离和检测化学物质的分析技术。
它基于样品在电场作用下在毛细管中的迁移速度的差异,利用电泳现象进行分离。
该方法具有分离效果好、分析速度快、样品消耗少等优点,被广泛应用于生物、环境、食品等领域的分析研究。
原理毛细管电泳法的基本原理是利用电场作用下带电粒子在毛细管中的迁移速度差异分离物质。
当样品通过直径较小的毛细管时,由于电场的作用,带电物质会在毛细管中产生电泳迁移。
迁移速度快的物质会较早到达检测器位置,而迁移速度慢的物质则会滞留在毛细管中,从而实现了物质的分离。
毛细管电泳法主要利用了物质在电场、毛细管中的迁移速度与其电荷、粒径、溶剂性质等因素之间的关系。
其中,电荷是最重要的因素之一。
毛细管电泳法可分为两种类型:正交电泳和非正交电泳。
正交电泳主要用于带电物质的分离,而非正交电泳则用于非带电物质的分离。
操作步骤1. 准备工作在进行毛细管电泳实验之前,需要准备好以下实验器材和试剂:•毛细管电泳仪•毛细管•电解质缓冲液•样品溶液2. 设置电泳条件根据实验需要,设置好合适的电场强度、电解液pH值和缓冲液浓度等参数。
这些参数的选择对于实验结果的准确性和分离效果的好坏至关重要。
3. 毛细管填充将毛细管浸入缓冲液中,通过电力作用使缓冲液进入毛细管,直至毛细管完全填充。
4. 样品进样通过微量注射器将样品溶液缓慢注入毛细管,注意避免气泡的产生。
5. 开始电泳将毛细管两端插入正、负电极中,开启电源,开始电泳过程。
6. 结果分析根据实验需要,可以选择不同的检测方法进行结果分析,如紫外检测、荧光检测等。
应用领域毛细管电泳法广泛应用于生物、环境、食品等领域的分析研究。
具体的应用包括:1.蛋白质分析:毛细管电泳法可用于蛋白质的分离和定量分析,对于药物研发、生物学研究等具有重要意义。
2.DNA分析:毛细管电泳法可以用于DNA序列分析、基因突变检测、DNA测序等领域,对于遗传学研究、法医学等具有重要意义。
2011-12-31 毛细管电泳技术及其在检测分析中的应用分析化学毛细管电泳技术及其在检测分析中的应用摘要:毛细管电泳技术(CE)作为现今一种主要的分析技术,凭借其高效、灵敏、快速、设备简单、广泛适用性等特点,广泛应用于各个领域。
本文简要概述了CE技术的原理及特点,并简述了它在环境分析、食品分析、药物分析、生物大分子分析等各个领域的应用。
关键词:毛细管电泳;分析;应用1.毛细管电泳技术简介1.1 产生与发展毛细管电泳技术(Capillary Electrophoresis, CE)是一种在电泳技术的基础上发展的一种现代分离技术。
电泳技术作为一种分离技术已有近百年历史,1937 年A.Tiselius首先提出:传统电泳最大的局限是难以克服由高电压引起的焦耳热。
1967年,Hjerten最先提出了毛细管电泳的雏形,即在直径为3mm的毛细管中做自由溶液的区带电泳。
但他并没有完全克服传统电泳的弊端。
直至1981年Jorgenson和Lukacs提出在75μm内径毛细管柱内用高电压进行分离, 这时现代毛细管电泳技术真正产生。
1984 年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支:胶束电动毛细管色谱(MEKC)。
1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。
同年,Cohen 发表了毛细管凝胶电泳的工作。
近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。
毛细管电泳技术兼有高压电泳及高效液相色谱等优点,其突出特点是:(1)所需样品量少、仪器简单、操作简便。
(2)分析速度快,分离效率高,分辨率高,灵敏度高。
(3)操作模式多,开发分析方法容易。
(4)实验成本低,消耗少。
(5)应用范围极广。
自1988年出现了第一批毛细管电泳商品仪器,短短几年内, 由于CE符合了以生物工程为代表的生命科学各领域中对多肽、蛋白质(包括酶,抗体)、核苷酸乃至脱氧核糖核酸(DNA)的分离分析要求,得到了迅速的发展。
毛细管电泳实验:分离DNA片段毛细管电泳是一种基于电场作用下溶液内带电粒子迁移的分离技术。
在生物学领域中,毛细管电泳广泛应用于分离和分析DNA、RNA和蛋白质等生物大分子。
下面是利用毛细管电泳进行DNA片段分离的实验步骤:1.DNA片段制备:将需要分离的DNA样品按一定比例混合加入一定量的缓冲液,再加入一定浓度的酶切剂,在恒温下酶切一段时间,得到所需长度的DNA片段。
2.毛细管电泳仪预备:将毛细管电泳仪加入合适的缓冲液,调节电泳仪温度,预热至所需的电泳电场。
同时在电泳仪中放置一定量的聚丙烯酰胺凝胶。
3.样品注入:在毛细管电泳仪的样品孔中加入所需的DNA片段样品。
4.电泳运行:将电泳仪的电场开启,样品在电场作用下逐渐分离。
DNA片段按照长度和电荷进行分离,较短的片段在电泳仪中运行得更快,较长的片段则运行得更慢。
5.结果分析:根据电泳仪中的标尺和样品在凝胶上的分布,判断所得到的DNA片段的长度和含量等信息。
需要注意的是,DNA片段的制备和实验操作需要遵守一定的生物安全规范和操作流程。
同时,在进行毛细管电泳实验中需要准确控制电泳电场、电泳时间和缓冲液组成等参数,以保证实验结果的可靠性。
通过合理的实验设计和数据分析,可以得到所需的DNA片段的分离和分析结果,为后续的研究提供重要的参考数据。
再写一个磁共振成像实验:脑部结构成像磁共振成像(Magnetic Resonance Imaging,MRI)是一种通过使用强磁场和无线电波来生成人体内部图像的无创性医学影像技术。
MRI可以用于对人体内部的各种组织、器官以及生物分子等进行成像和检测。
其中,MRI脑部结构成像可以用于观察脑部各种组织结构的形态和位置,为临床医学提供重要的诊断信息。
以下是MRI脑部结构成像的实验步骤:1.患者准备:患者需要脱掉身上的金属物品,如手表、钥匙、银饰、眼镜等,以避免金属物品对磁场的干扰。
2.患者安置:患者被安置在一个圆筒形的磁共振仪中,并保持安静不动。