井周应力与井壁失稳
- 格式:ppt
- 大小:5.19 MB
- 文档页数:61
谈谈定向井井壁稳定问题从岩石力学、地球物理测井、工程录井、环空水力学和钻井液化学等方面分析定向井井壁稳定问题,以实现对钻井液性能、井身结构及其它工程参数的优化设计。
标签:定向井岩石应力;地层压力;地层破裂压力液柱压力数学模型引言导致井眼出现失稳问题的因素包括天然的原因和人为的原因。
在天然的原因方面包括:地质构造类型和原地应力,孔隙度渗透性及孔除中的流体压力等;在人为的原因方面包括:钻井液的性能,泥页岩化学作用的强弱,钻柱对井壁的摩擦和碰撞等。
导致井眼失稳的最根本因素就是在形成井眼的过程中,井眼四周的应力场、化学力出现了变化,导致井壁应力集中的问题,致使井内钻液的压强不可以和底层的地应力重新建立起平衡的关系。
如果井内的钻井液液柱比坍塌的压力还要低的时候,井壁的岩石就会被破坏,这时候的塑性岩石会对井中产生塑性的流动,最后出现缩径的问题,而脆性的岩石就可能会发生坍塌的问题,导致井径的增大,如果当钻井液的液柱压力要比破裂时压力还要高的情况下,井壁内四周的岩石就会被拉伸导致出现井漏的问题。
此外,钻井液的密度最好是让井内的液柱和地层孔隙的压力能够互相平衡。
一、井壁应力分布因为上覆岩层的压力不能很好的和井轴重合,原来的水平地应力也就不能和井轴正交,所以井眼四周的岩石在切向正应力与法相正应力的共同作用之下处在三维应力的情况之下。
不仅正压力作用在井轴垂直平面井壁四周的岩石,剪应力也作用在井轴垂直平面与岩石之上,它们都严重的影响着井壁岩石的形态,对井壁岩石有破坏作用。
二、井壁岩石破坏准则当前许多人为拉伸断裂的机制操纵着地层的压裂情况,也就是说,如果当一个有效的主应力的大小能够与岩石拉伸的强度值相同时就会发生底层破裂的情况。
三、岩石强度参数的确定为了能够对全井段进行连续预测,仅凭室内岩心试验是不够的。
而要充分利用相关的间接资料,其中最完整的莫过于测井资料。
因此,将测井资料的处理与岩心试验结合起来,确定所需要的地层参数。
浅析钻井井壁失稳的原因及预防措施长期以来,井壁失稳一直是困扰钻完井施工的一个主要难题。
特别是近年来,钻井面临的地质条件越来越复杂,且水平井、大位移井、分支井等复杂结构井越开越多,这使得钻完井过程中的井壁失稳问题更为突出。
本文是从井壁失稳的原因出发,探讨相关预防措施。
1 井壁失稳的原因从理论上,产生井眼失稳的根本原因,在于井眼形成过程中井眼周围的应力场(包括化学力)发生了改变,引起井壁应力集中,井内钻井液柱压力未能与地层中的地应力建立起新的平衡。
1.1 地质方面的原因除了高压油气层的影响外,地层的构造状态的影响是造成井壁失稳坍塌卡钻的最重要的地质方面的原因。
原始地应力,地壳是在不断运动之中,于是在不同的部位形成不同的构造应力(挤压、拉伸、剪切)。
当这些构造应力超过岩石本身的强度时,便产生断裂而释放能量。
但当这些构造应力的聚集尚未达到足以使岩石破裂的强度时,它是以潜能的形式储存在岩石之中,待机而发,当遇到适当的条件时,就会表现出来。
岩石本身的性质,由于沉积环境、矿物组分、埋藏时间、胶结程度、压实程度不同而各具特性。
泥页岩孔隙压力异常,泥页岩是有孔隙的,在成岩过程中,由于温度、压力的影响,使粘土表面的强结合水脱离成为自由水,如果处于封闭的环境内,多余的水排不出去,就在孔隙内形成高压。
钻井时,如果钻井液的液柱压力小于地层孔隙压力,孔隙压力就要释放。
如果孔隙和裂缝足够大且有一定的连通性,这些流体就会涌入井内。
1.2 物理化学方面的原因井壁失稳坍塌卡钻的物理化学方面的原因表现在岩石的水化膨胀、毛细管作用和流体静压力等,即与水的存在密切相关。
只要使用水基钻井液,只要有水的存在,就有泥页岩的水化膨胀和坍塌问题。
经过大量研究发现,泥页岩中的粘土含量、粘土成分、含水量及水分中的含盐骨对泥页岩的吸水及吸水后的表观有密切关系,泥页岩粘土含量越高,含盐量越高、含水量越少则越易吸水水化。
蒙脱石含量高的泥页岩易吸水膨胀,绿泥石含量高的泥页岩易吸水裂解、剥落。
[收稿日期]2009208216 [作者简介]于玲玲(19762),女,2000年大学毕业,硕士,工程师,现主要从事钻井设计及岩石力学研究工作。
川东北地区高陡构造井壁失稳原因及对策 于玲玲,孙连环,鲍洪志 (中国石化石油工程技术研究院,北京100101)[摘要]川东北地区是中国石化的重点区域,由于高陡构造带地层岩石破碎、地层倾角大、地层各向异性强,井身质量差和机械钻速低是该地区钻井工程突出的问题;从理论上探讨了高陡构造井壁失稳、井下复杂的机理,针对川东北地区高陡构造的地质特征,分析研究了防止井壁失稳的各种措施,对该地区井身质量和钻井机械效率的提高具有一定的指导作用。
[关键词]井壁稳定;大倾角;高陡构造;川东北[中图分类号]TE242[文献标识码]A [文章编号]100029752(2010)0120281203川东北地区油气勘探潜力巨大,目前中石化已在该区的普光、毛坝、河坝、双庙、清溪等构造钻探了30余口井。
该地区上部陆相地层以砂泥岩互层为主,钻井过程中井壁坍塌严重。
地质研究表明,川东北地区地质构造经历了强烈挤压造山运动,形成了现今高陡构造带[1~3]。
该区的褶皱断裂带强烈,地质情况十分复杂,地应力强烈,地层岩石破碎,地层倾角大,局部小褶皱多。
在川东北地区,陆相地层的高陡构造钻井井壁稳定性问题是突出,表现为井下复杂、机械钻速低,井身质量差,起下钻阻卡严重,憋钻现象时有发生。
这些问题一直是制约勘探开发的“瓶颈”问题,而如何采取有效措施进行井身质量控制是直接影响钻井质量、钻井效率的关键所在。
为此,笔者开展高陡构造井壁失稳的机理及对策研究。
1 高陡构造井壁失稳的机理产生井眼失稳的根本原因在于井眼形成过程中周围的应力场发生了改变,引起井壁应力集中,井内钻井液未能与地层中应力建立新的平衡。
当井内钻井液液柱压力低于坍塌压力时,井壁岩石将产生剪切破坏,脆性岩石将会产生坍塌掉块造成井径扩大,塑性岩石将向井内产生塑性流动而产生缩径;当井内钻井液液柱压力高于破裂压力时,井壁岩石则会发生拉伸破裂而造成井漏。
探讨油田深井井壁稳定问题[摘要]随着我国油气勘探开发不断向深部地层发展,深井、超深井的钻探规模日益扩大,深井、超深井的快速钻井技术已被列入技术攻关范围。
本文探讨了某油田深井失稳的形式和失稳的原因,对提高钻井速度有重要意义。
[关键词] 深井井壁失稳石油钻井的对象是地壳岩石,钻井过程中所面临的主要技术难题是岩石的可钻性和井壁稳定性。
两者决定着钻井工程的成败或效益。
某油田自1964年建厂至今钻井过程中始终面临这两大问题的困扰。
目前,油田发展逐渐向深层和滩海区域转移,深井和大位移井数量随之增多,而在深井钻井中由于其钻遇的地质层系多,岩性变化频繁,地层可钻性差,裸眼浸泡时间长,因此深层井壁稳定问题更显得突出。
据不完全统计,在已完成的深井中70%~80%的事故是由于井壁失稳所致。
井壁失稳不仅在大港油田深井钻井中存在,在中国其他各油田乃至世界许多油田都存在,并且一直没有得到很好解决。
据美国资料统计,全世界石油钻井工程每年仅井壁失稳一项就损失费用8~10亿美元,约占钻井总成本的10%。
所以世界上各大公司都把控制井壁稳定技术作为重点课题进行研究。
1井壁失稳的形式井壁失稳问题,从广义上讲包括脆性泥页岩、低强度砂岩的井壁坍塌、塑性泥页岩井壁的缩径和粘弹性变形以及一些岩层在钻井液压力作用下的破裂。
井壁失稳一般表现为坍塌(扩径)、缩径、破裂。
井壁坍塌是井壁失稳中最为常见的形式。
某油田曾对各区块钻井事故进行统计说明,约有70%的区块井壁失稳是岩层坍塌和掉块。
最为典型的是Fa井,在3440~3650m东营底和沙一上段地层,因事故连续5次注水泥浆打塞,共注99.2m水泥浆,经计算该井段平均井径为888mm,约是钻头直径的4倍,最大井径处达到1.5m。
缩径经常发生在易水化膨胀的泥页岩地层,在钻井过程中其主要表现形式为:起钻遇卡拔活塞、下钻遇阻划眼。
如某油田700~2000m明化镇地层。
井壁破裂常出现在裂缝或胶结差甚至无胶结物的破碎性地层。
钻井过程中井壁失稳的原因分析及预防探讨作者:唐伦帅方曦来源:《中国化工贸易·中旬刊》2017年第09期摘要:钻井施工过程中,井壁失稳的原因是错综复杂的,有力学的原因,有化学的原因,还有工程方面的原因。
本文主要是从这个三个方面入手对井壁失稳的原因展开分析,探讨从合理选择钻井液密度、优选防塌剂和完善工程措施三个方面保障井壁稳定,提升钻井施工效率和安全性。
关键词:钻井;井壁失稳;钻井液钻井过程中井壁失稳易造成井壁垮塌、缩径、漏失、卡钻及储层污染等井下事故,严重制约了油气田勘探开发的发展。
在油气勘探开发中钻井费用占了勘探开发总费用的50%~80%。
井壁失稳的原因是错综复杂的,有力学的原因,有化学的原因,还有工程方面的原因,总之是地层原地应力状态、井筒液柱压力、地层岩石力学特性、钻井液性能以及工程施工等多因素综合作用的结果。
1 井壁失稳的原因井壁失稳问题的诱因很多,概括起来可分为天然和人为两个方面:天然因素主要有地层岩性、地层强度、粘土矿物的类型、地层倾角、孔隙度以及孔隙流体压力等;人为可控因素主要有钻井液的性能、地层裸眼时间、钻井液的对井壁的冲刷作用、激动压力、井眼轨迹等。
1.1 力学因素井内钻井液液柱压力起到了一定的支撑所钻岩层原本提供的支撑作用,井壁处原本的三向应力平衡被破坏,使得井眼周围应力重新分布。
当井内液柱压力小于地层孔隙压力时,可能使井壁岩石产生剪切破坏,对于塑性岩石这个时候通常会导致缩径问题,而脆性岩石则会产生坍塌掉块,造成复杂情况。
地层强度对浅井井壁稳定性有着显著的影响,大幅度提高钻井液密度可以解决如浅部地层强度太低的问题。
但是对于深部泥页岩地层,由于其具有极强的粘土矿物的水敏性,简单依靠增大钻井液密度来平衡地层压力是不可取的,甚至会造成井漏或者垮塌。
1.2 化学因素泥页岩主要由水敏性粘土矿物组成,其与钻井液中的水的相互作用是必然的。
由于泥页岩结构和组分上的特点,采用不同的钻井液体系,这种作用的差别也是很大的,离子交换作用、渗透作用、水沿泥页岩的微裂隙的侵人以及毛管力作用产生的渗析强度都有明显影响。
钻井中井壁不稳定因素浅析摘要:钻进生产中井壁失稳最为常见,机理复杂,难于预防。
对井壁失稳机理重新认识,为井壁稳定技术对策提供依据。
关键词:井壁不稳定;水化膨胀;坍塌压力井壁不稳定是指钻井或完井过程中的井壁坍塌、缩径、地层压裂三种基本类型,是影响井下安全的主要因素之一。
一、井壁不稳定地层的特征钻井过程中所钻遇的地层,如泥页岩、砂质或粉砂质泥岩、流砂、砂岩、泥质砂岩或粉砂岩、砾岩、煤层、岩浆岩、灰岩等均可能发生井壁不稳定。
但井塌大多发生在泥页岩地层中,约占90%以上。
缩径大多发生在蒙皂石含量高含水量大的浅层泥岩、盐膏层、含盐膏软泥岩、高渗透性砂岩或粉砂岩、沥青等类地层中。
二、坍塌地层的特征井塌可能发生在各种岩性、不同粘土矿物种类及含量的地层中;但严重井塌往往发生在具有下述特征的地层中:(1)层理裂隙发育或破碎的各种岩性地层;(2)孔隙压力异常泥页岩;(3)处于强地应力作用地区;(4)厚度大的泥岩层;(5)生油层;(6)成岩第一或第二脱水带;(7)倾角大易发生井斜的地层;(8)含水量高的泥岩或砂岩、粉砂岩等。
三、井壁不稳定实质是力学不稳定问题井壁不稳定根本原因是钻井液作用在地层的压力地层破裂压力,从而造成井壁岩石所受的应力超过岩石本身强度,引起井壁不稳定。
钻井液与地层所发生物理化学作用,最终均因造成地层坍塌压力增高和破裂压力降低,而引起井壁不稳定。
四、井壁失稳原因探讨1.力学因素地层被钻开之前,地下的岩石受到上覆压力、水平方向地应力和孔隙压力的作用下,处于应力平衡状态。
当井眼被钻开后,井内钻井液作用于井壁的压力取代了所钻岩层原先对井壁岩石的支撑,破坏了地层和原有应力平衡,引起井壁周围应力的重新分布;如井壁周围岩石所受应力超过岩石本身的强度而产生剪切破坏,对于脆性地层就会发生坍塌,井径扩大;而对于塑性地层,则发生塑性变形,造成缩径。
我们把井壁发生剪切破坏的临界井眼压力称为坍塌压力,此时的钻井液密度称为坍塌压力当量钻井液密度。
1411 井壁失稳的原因对井眼失稳的原因进行理论分析,主要是因为在形成过程中发生了应力场的改变,出现井壁应力集中,地层的地应力无法与井内钻井液柱压力平衡。
井壁失稳的原因主要包括地质、物理化学以及钻井工艺3个方面。
地质方面的原因主要包括原始地应力、岩石本身性质、泥页岩孔隙压力异常等。
在地壳运动作用下,剪切、拉伸和挤压等构造力会随着部位不同而不同,在超过岩石强度的情况下就会出现断裂,在未达到断裂极限值时,就会在岩石内储存,形成潜能。
沉积岩包括玄武岩、凝灰岩、石灰岩、泥页岩、砾岩和砂岩等,在不同的压实程度、胶结程度、埋藏时间、矿物成分以及沉积环境下会呈现不同的特性。
泥页岩成岩过程中,在压力和温度影响下,黏土表面的强结合水会因脱离而形成自由水,在封闭环境中无法排出而形成高压。
在地层空隙压力超过液柱压力的情况下就会释放空隙压力,在足够大的裂缝和孔隙下就会形成连通而将液体流入井内。
分析井壁失稳坍塌卡钻的原因,在物理化学方面主要与水相关,因流体静压力、毛细管作用和水化膨胀等,在使用水基钻井液的情况下就会导致坍塌和水化膨胀等问题。
泥页岩的吸水和吸水表现与其含水量、黏土成分和黏土含量相关,越少的含水量、预告的含盐量和黏土含量就会越易于吸水水化。
蒙脱石含量越高越易吸水膨胀,绿泥石含量越高越易吸水剥落和裂解。
泥页岩的强度在吸水后会急剧下降,更容易引发坍塌。
钻井施工中无法改变地应力和地层性质,防止地层坍塌只能从工艺层面入手。
压力激动控制效果不佳、不当的钻具组合、方位和井斜的影响估计不足都可能引发坍塌。
防止坍塌最主要的是对液柱压力进行控制。
在应力集中地层、破碎地层和薄弱地层中,通过合理的钻井液密度来调整液柱压力。
提升钻井液密度加强井壁支撑力的同时还需要考虑其朝地层渗透,降低内部结构力。
在确定钻井液浓度前还要保证钻井液液柱压力小于产层孔隙压力。
钻井施工过程中,要对钻井液的流变性和性能实时关注。
过大循环排量和高返速会对井壁地层形成冲蚀而导致坍塌。
一、井壁不稳定地层的类型与井壁不稳定现象1.井壁不稳定地层的类型钻井过程中所钻遇的地层,如泥页岩、砂质或粉砂质泥岩、流砂、砂岩、泥质砂岩或粉砂岩、砾岩、煤层、岩浆岩、碳酸盐岩等均可能发生井壁不稳定。
但井塌大多发生在泥页岩地层中,约占90%以上。
缩径大多发生在蒙脱石含量高、含水量大的浅层泥岩、盐膏层、含盐膏软泥岩、高渗透性砂岩或粉砂岩、沥青等类地层中。
压裂则可发生在任何一类地层中。
井塌可能发生在各种岩性、不同粘土矿物种类及含量的地层中;但严重井塌往往发生在下述地层中:(1)层理裂隙发育或破碎的各种岩性地层。
(2)孔隙压力异常的泥页岩。
(3)处于强地应力作用的地区。
(4)厚度大的泥岩层。
(5)生油层。
(6)倾角大易发生井斜的地层等。
2.井壁不稳定现象(1)井塌的现象钻井或完井过程中如发生井塌会出现以下现象:①返出钻屑尺寸增大,数量增多并混杂。
②泵压增高且不稳定,严重时会出现憋泵现象,并可憋漏地层③扭矩增大,蹩钻严重,停转盘打倒车。
④上提钻具遇卡,下放钻具遇阻;接单根、下钻下不到井底时会发生卡钻或无法划至井底。
⑤井径扩大,出现糖葫芦井眼,测井遇阻卡。
(2)缩径的现象当钻井过程中地层发生缩径时,由于井径小于钻头直径,会出现扭矩增大,蹩钻等现象,严重时转盘无法转动,甚至被卡死;上提钻具或起钻遇卡,严重时发生卡钻;下放钻具或下钻遇阻,如地层缩径严重,可使井眼闭合,如胜利油田和南疆钻含盐软泥时均出现过此现象。
(3)压裂的现象当钻井液的循环压力大于地层的破裂压力时,就会压裂地层,使地层出现裂缝,从而导致泵压下降,钻井液漏入地层,井筒中液柱压力下降。
如液柱压力降至上部易塌地层的坍塌压力或孔隙压力之下,就可能发生井塌或井喷等井下复杂情况。
二、地层组构特性、理化性能和井壁稳定性的室内评价方法返回1.地层组构特性和理化性能的分析方法研究井壁失稳的原因及技术对策必须搞清井壁不稳定地层的组构特性和理化性能,常用的分析方法有以下几种:(1)肉眼观察通过肉眼观察可以掌握地层的层理、裂隙和镜面擦痕发育情况,地层倾角大小,地层软硬程度及遇水后膨胀、分散和强度定性变化情况。
专 家 论 坛24井壁稳定性研究的主要进展井壁失稳问题是石油钻井工程重大技术难题之一。
据统计,平均每年世界范围内用于处理井眼失稳的费用高达10亿美元,浪费的时间约占钻井总时间的5%~6%。
井壁稳定问题十分复杂。
井眼是否稳定,取决于井内流体与井壁之间的力学作用和化学作用。
统计表明,井壁失稳多发生在泥页岩层段。
因为泥页岩地层是由片状粘土颗粒经沉积压实、脱水而形成的岩体,层理发育,富含天然裂缝、节理,遇水极易水化膨胀,强度低,各向异性强,是钻井过程中主要的不稳定地层。
各国专家对井壁稳定问题进行了深入研究。
著名岩石力学专家Jaeger教授在研究层理对岩石强度的影响时发现,岩石强度主要决定于最大主应力与层理面之间的夹角。
挪威岩石力学专家Bernt S. Aadony研究了水平层理及各向异性对斜井井壁坍塌压力的影响,当井斜角在某一范围内,这种影响异常显著。
加拿大岩石力学专家P.J.Mclellan研究微裂缝及层理发育的水平泥页岩地层斜井井壁稳定性时发现,井壁沿井眼上倾方向坍塌,并且钻井液及其滤液沿微裂缝及层理面渗透,逐步使岩石强度降低。
在这种情况下,往往造成整个泥页岩井段的坍塌,形成严重的井下问题,甚至卡死钻具。
此时,提高钻井液密度也不能防止地层垮□中国地质大学(北京)地球科学与资源学院魏春光万天丰接维强塌,甚至还会恶化井壁的稳定。
著名岩石力学家Dusseault 研究富含节理地层井壁稳定性时发现,井壁是否稳定与井眼直径有关,井眼直径越大井壁越不稳定。
在研究层理发育的各向异性地层井壁稳定性时,发现井壁稳定性与井眼轴线和地层层理面的夹角有关,认为应尽可能以垂直于层理面的方式进入地层,才能保持井壁的稳定性。
多年来,我国陆上及海洋石油工作者针对井壁稳定问题做了大量工作。
如在渤海QHD32-6油田、BZ34油田、东海平湖油田及西湖油田、胜利油田埕北32A平台、新疆塔里木油田、青海油田及大港油田等,取得了好的成绩。
国内石油院校及科研院所针对井壁稳定问题做了长期研究,为生产单位降低风险、节省经费提供了很大帮助。
《现代钻井液技术》简答题1、泥浆井壁失稳主要类型及其机理分析答:井眼由于地质因素、泥页岩与泥浆相互作用和钻井作业等因素而出现不稳定的问题,即井壁失稳问题,这是钻井系统工程中所遇到的一个十分复杂的世界性难题。
失稳类型:造成井壁失稳的原因是错综复杂的,一般可主要归结为两方面的因素:地层力学因素和物理化学因素.不论是地层力学因素还是物理化学因素,最终均可归结为井壁力学不稳定所致.从化学角度来说,主要可分为两个方面:泥浆密度过低,泥浆液柱压力难于支撑力学不稳定的地层;泥浆液柱压力高于地层孔隙应力,驱使泥浆进入泥页岩孔隙,产生压力穿透效应,使井眼附近的泥页岩含水量增加,孔隙压力增大,泥页岩强度降低。
在整个生产过程中,井壁失稳的类型主要有以下五个方面:(1)钻遇微裂缝发育的地层;(2)当钻遇脆性地层时,钻具震动就会引起碎裂;(3)泥浆密度过高产生张应力,使上述两种地层结构稳定性降低;(4)泥浆密度过低使泥页岩承受过大的挤压应力;(5)孔隙压力穿透作用使孔隙压力增大,泥浆液柱压力对井壁的有效支撑力减少,泥页岩承受过大的拉伸应力。
机理分析:(1)泥浆的浸入使泥页岩含水量增加,密度下降,沿井眼周围产生微裂缝,因而泥页岩强度降低。
密度过低时泥浆侵入造成的微裂缝发育更为严重。
在泥浆中加入氯化钾能够有效地抑制泥页岩膨胀和微裂缝的发展,但当泥浆密度过低、不足以平衡地层压力时,井眼周围仍会有大量的微裂缝产生。
水基泥浆侵入泥页岩和泥浆密度使用不当的共同作用将产生严重的井眼不稳定问题。
(2)井眼周围压应力过高会产生微裂缝。
这些微裂缝起初很靠近井眼,随后不断发育而向深部发展。
与井眼垂直和水平的两种裂缝的不断发展并相互结合就引起了井塌和井眼扩大。
裂纹的产生促进了泥浆水的进一步渗入,裂纹变深变宽,到一定程度后裂纹发生转向而形成周向裂纹,其过程是随时间的延长而逐渐发展扩大。
泥页岩不稳定的决定性机理是保持泥页岩颗粒间接触点的氢键联结的稳定性被破坏。
2019年第7期西部探矿工程*收稿日期:2018-10-31作者简介:商洪义(1983-),男(汉族),黑龙江讷河人,工程师,现从事钻井工程工作。
井壁失稳的原因及预防措施探讨商洪义*(大庆钻探工程公司钻井四公司,吉林松原138000)摘要:钻井施工中,井壁失稳会造成较大的影响和经济损失。
主要是从井壁失稳的研究情况出发,从地质、物理化学和工艺3个方面分析,探讨井壁失稳的预防和处理措施。
关键词:井壁失稳;钻井;坍塌中图分类号:TE2文献标识码:A 文章编号:1004-5716(2019)07-0028-02井壁失稳是钻井施工过程中普遍存在的问题,对钻井工程有着很大影响。
相关资料显示,世界石油工业每年因井壁失稳带来的损失超过6亿美元。
钻井施工过程中有着十分复杂多变的地质结构,井壁失稳还可能诱发各类井下事故,严重危害到钻井工程的安全性和效率,这也是钻井行业中面临的世界性难题,国内外在此方面进行了大量攻关,取得了一定的效果。
1井壁失稳的研究状况从20世纪40年代开始,相关学者从岩石力学方面加大研究来分析井壁稳定问题,最初的研究是从化学和力学2个方面独立进行,主要是停留在理论定性分析层面。
随后的研究主要是在现场测井资料基础上分析井壁稳定问题,斯伦贝谢测井公司提出了井眼力学问题以及岩石力学性质测井力学稳定性测井。
随着大位移井和水平井的迅速发展,井壁失稳稳定得到了更大重视,更多的公司和研究机构加大投入,使其处于定量化阶段,在现场有着较好的应用。
国内从20世纪80年代开始进行井壁稳定相关研究,起步较晚,最初只是研究地层蠕变对套管的破坏作用,20世纪90年代的研究取得了一定进展,深入研究水平井和大斜度井的井壁力学稳定问题,分析井壁渗透性与坍塌压力和破裂压力之间的关系,在泥页岩井壁坍塌的化学耦合和力学方面也加大研究。
此外,还在损伤力学理论基础上,从实验数据出发,通过固体力学方法建立方程和有限元计算模型,探讨新的方法来确定井壁稳定需要的钻井液密度值。
本科毕业设计(论文)题目煤层气水平井井壁失稳机理及预防措施研究学生姓名学号教学院系石油工程学院专业年级石油工程2007级指导教师职称教授单位辅导教师职称单位完成日期2011 年 6 月Southwest Petroleum University Graduation ThesisMechanics of Wellbore Instability and Preventing Measures of Horizontal Well for Coalbed MethaneGrade: 2007Name:Speciality:Petroleum EngineeringInstructor: LI QianPetroleum Engineering College2011-6摘要井壁失稳问题是限制水平井在煤层气开发中大规模应用的最主要因素之一。
煤层割理和裂缝非常发育,机械强度低,因此在煤层中钻进时风险极高。
当使用清水做钻井液时井壁极易坍塌并造成井下钻具组合被埋。
特别是水平井,据报道截止2008年1月,沁水地区的水平井有32.65%发生了井壁坍塌。
井壁最容易发生破裂的位置在井壁被面割理和端割理切割处,本文依据已有的井壁应力分布模型推导出井壁任意位置的三向主应力以及最大主应力方向向量,再根据面割理和端割理的空间位置关系得出面割理和端割理的法向向量,计算出割理面法向与最大主应力的夹角,根据摩尔-库伦圆计算出井壁任意位置出现的面割理和端割理的有效正应力和切应力,进而判断面割理和端割理是否会发生剪切破坏。
依据面割理和端割理的有效正应力是否大于零判断其是否会张开即发生井壁破裂。
使用常规大位移井井壁稳定评价方法评价了煤岩基质的稳定性。
根据建立的煤层气水平井井壁稳定性评价模型编制出相应的计算机程序,用数值分析的方法分析各个地质因素以及工程因素对井壁稳定性的影响。
煤层气水平井井壁稳定性受多个因素的影响,要做好井壁稳定工作必须从地质选区、优化井身结构设计、使用合适的钻井液、选用合适的井下工具等方面共同努力。
立井井筒施工容易出现的问题以及预防措施引言立井井筒施工是矿井建设中的一项重要工作,其影响着矿井的安全稳定运行。
在实际施工中,由于施工方式、原材料等差异,很容易出现一些问题,例如井壁失稳、井衬损坏等。
为了保障立井井筒施工安全,本文将针对井壁失稳、井衬损坏等问题进行分析,并提供对应的预防措施。
井壁失稳问题及预防措施井壁失稳是在立井井筒施工中经常出现的问题,一旦发生,将危及工人的安全以及后续开采的稳定性。
发生井壁失稳的原因一般由于地质构造复杂或者井筒施工质量差,具体表现为以下几个方面:井壁崩落井壁崩落是井壁失稳的主要表现之一,主要原因是由于井壁支护不当或者采取不合理的方法等。
为了避免井壁崩落,我们可以采取如下预防措施:•检查井壁构造,避免开采质量差的矿区;•采用有效的支护方法,例如采用钢筋网片支护法、岩爆地压木梢支护法等;•加强检查,对于井壁出现裂纹或者变形的情况,应当立即进行处理。
井壁松动井壁松动一般出现在井壁结构不稳定且地质情况复杂的地区。
井壁松动的导致的主要原因是井壁支护不力,或者采取不合适的开采方法等。
避免井壁松动,我们需要采取以下措施:•对采矿区地质条件进行认真研究,避免选择地质情况复杂的矿区进行开采;•加强井壁的支护,采用合适的支护方法,例如固结晾层支护法、现浇钢筋支护法等;•定期进行井壁的检查化验,一旦发现松动现象,要立即进行处置。
井衬损坏问题及预防措施井衬损坏同样是立井井筒施工中经常出现的问题,井衬损坏会导致井筒不稳定,影响后续开采运行。
井衬损坏的原因往往和井衬材料质量、施工质量、井洞结构等有关。
具体表现如下:井筒内侧压力过大井筒内侧压力过大是井衬损坏的主要原因之一,主要原因来自于井区水文地质条件复杂、井口地形陡峭等。
为了避免井筒内侧压力过大产生的井衬损坏,我们应采取如下预防措施:•对于井区地质构造情况,我们要进行仔细的研究,选择合适的井筒材料;•采用有效的支护措施,例如支架系统和石灰混凝土井壁支护体系;•定期检查井衬的损坏状况,及时进行检修维护。
井壁失稳的机理及原因分析(文献综述)一、井眼不稳定性分析井壁失稳的原因是错综复杂的,一般可归结为两方面的因素:地层力学因素和物理化学因素。
不论是地层力学因素还是物理化学因素,最终均可归结为井壁力学不稳定所致。
地应力的大小、方向和各项异性对井壁的稳定性具有不可忽视的重要影响,尤其是3个主应力的比值(表征地应力的各向异性程度)对坍塌压力和破裂压力有显著影响。
比值越大,坍塌压力和破裂压力的差值就越小(即钻井液密度窗就越小),钻井作业就越困难,甚至出现既涌又塌的恶性事故。
不仅如此,不同地区地应力的分布规律不同。
例如,对于陆上多数油田和渤海湾地区,eH>ev>eh;对于南海、辽河和苏北油田,ev>eH>eh;对于大庆油田长恒构造,eH>eh>ev。
因此,各地区的地应力数据还应具体测定。
同时我们也知:对于不同地应力分布规律,钻井方向(即井眼轨迹)对井壁稳定性的影响规律也不同,而且,无论地应力的分布规律如何,总是沿中间地应力的方向钻进相对最不稳定。
二、对井壁失稳原因和机理的认识对于井壁失稳的原因和机理,我们小组调研了相关文献得出井壁失稳主要由两方面的原因引起:泥浆密度过低,泥浆液柱压力难于支撑力学不稳定的地层;泥浆液柱压力高于地层孔隙应力,驱使泥浆进入泥页岩孔隙,产生压力穿透效应,使井眼附近的泥页岩含水量增加,孔隙压力增大,泥页岩强度降低。
但同时对于不同的地层,不同的情况其失稳的原因各有不同。
黄维安等人就煤层气钻井井壁失稳机理进行研究得出:泥页岩地层井壁失稳原因是入井流体沿微裂缝侵入泥页岩后引起局部水化,导致剥落掉快;煤岩体中含有一定的粘土矿物,同时煤岩体的割理和微裂缝发育,井壁失稳原因一方面是入井流体沿割理或微裂缝侵入煤岩体后引起局的粘土矿物水化,消弱了颗粒间联接力,另一方面是煤岩体性脆、易破碎,钻具碰撞引起井下垮塌。
谢水祥等人对塔里木盆地群库恰克地区井壁失稳机理进行分析。