变换工艺
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
变换工艺总结一、变换工艺生产原理(一)一氧化碳变换反应得特点1.一氧化碳变换反应得化学方程式为CO+H 2O(g) C O2+H2 (1—1)可能发生得副反应:CO +H2 C+ H2O (1—2)CO+3H 2 CH 4+ H 2O (1-3)2。
一氧化碳变换反应具有如下特点1)就是可逆反应,即在一氧化碳与水蒸气反应生成二氧化碳与氢气得同时,二氧化碳与氢气也会生成一氧化碳与水。
2)就是放热反应,在生成二氧化碳与氢气得同时放出热量,反应热得大小与反应温度有关。
kJ/km ol T 104.0625-101.19111.2184T --418682-6-3R ⨯⨯+=H ∆T —温度,K3)该反应就是湿基气体体积不变、干基气体体积增加得反应、 4)反应需要在有催化剂存在得条件下进行,对反应1-1要有良好得选择性。
同时,在催化剂得作用下,一氧化碳变换反应进行所需要得能量大大降低,反应速度因此而加快。
(二)一氧化碳变换反应得化学平衡1.平衡常数:平衡常数用以衡量一定条件下可逆反应进行得限度、一氧化碳变换反应得平衡常数与反应体系中各组分得分压有关,具体计算方法如下:(1-4)由于一氧化碳变换反应就是放热,故平衡常数随温度得降低而增大。
因而降低温度有利于变换反应得进行,变换气中残余得一氧化碳含量降低。
一氧化碳变换反应就是等体积得反应,故压力低于5MPa 时,可不考虑压力对平衡常数得影响。
在变换温度范围内,平衡常数用下面简化式计算:(1-5)2.变换率与平衡变换率:变换率定义为已变换得一氧化碳得量与变换前一氧化碳得量之百分比、而反应达平衡时得变换率为平衡变换率,其值为一定操作条件下一氧化碳变换反应可能达到得最大得极限。
在工业生产中由于受到各种条件得制约,反应不可能达到平衡,故实际变换率不等于平衡变换率,通过测量反应前后气体中一氧化碳得体积百分数(干基)来计算变换率,具体表达式如下:(1-6)a—变换前气体中一氧化碳体积百分数(干基);a’—变换后气体中一氧化碳体积百分数(干基)。
变换工艺技术方案一、流程二、催化剂三、主要设备四、公用工程五、投资一、工艺流程简介1、宽温耐硫变换该工艺采用CO-Mo系催化剂,抗硫能力极强,对总硫没有上限要求 ,同时对水汽比也无要求,操作温度240-480°C,耐硫低温变换催化剂操作温度一般在180-240°C。
粗煤气经洗涤后直接进入变换炉进行变换反应,不需预先脱硫,根据变换出口组分含量要求,调整粗煤气中的水汽比。
如粗煤气中CO含量较高,而要求变换出口CO较低时,可分两段至三段进行变换,段间换热,便于温度控制,提高变换深度。
产生的余热用于生产中压蒸汽和预热锅炉给水。
小结:中温变换是最早的流程。
由于当时没有低变触媒,因此全用中变触媒。
此时的进口半水煤气温度约在300度左右,而热点温度在480〜500度。
这个流程几个流程中最耗能的。
该流程出口的CO大约在3%左右。
当低变触媒研发成功后,首次出现的是中串低工艺,该工艺前面是很大的中变炉,当作主要的变换场所,而后面连接的低变炉的最主要的作用就是将中变炉岀口CO由3〜5%降到1%左右。
中低低流程中变炉减小 ,而增大了低变炉的容积,因此就会更节能。
全低变就是全部采用低变触媒,因此进口温度就可降到180〜210度,而热点将达到240-280 度。
耐硫变采用耐硫触媒,使催化剂有较强的抗硫性能,变换出口CO <0.60%,满足后工序的生产要求。
目前,对于水煤浆气化工艺,一般配套使用宽温耐硫变换工艺,粗煤气经洗涤后直接进入变换炉进行变换反应,粗煤气被蒸汽饱和,变换系统生产氨合成所需的原料气,流程简图如下:280~310C 煤气过滤器280~310°C换热降温,去冷凝液分离器"但因反应都在高温、高压下进行,变换反应在催化剂表面也适于合成氨反应的进行,只是生成的NH3浓度较小,随着装置运行时间的增长,NH3在冷凝液中产生积累,使水显弱碱性,二氧化碳的溶解度增大,并产生钱盐,造成设备、阀门堵塞,影响装置的正常运行。
CO变换工艺发展过程及趋势摘要本文介绍了CO变换工艺的发展过程和趋势,论述了变换催化剂、反应器、节能工艺和数字模型的发展,论述了变换工艺的发展方向,指出了需要研究和解决的问题。
关键词 CO变换;催化剂;合成气;节能前言一氧化碳变换(也称水煤气变换,water gas shift)是指合成气中的一氧化碳借助于催化剂的作用,在一定温度下与水蒸气反应,生成二氧化碳和氢气的过程。
通过变换反应既降低了合成气中的一氧化碳含量,又得到了更多氢气,调节了碳氢比,满足不同的生产需要(例如合成甲醇等)。
其工业应用已有90多年历史。
在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO的去除,同时在环境科学甚至在民用化学方面所起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。
本文将从CO变换工艺的几个因素展开论述。
一、CO变换原理[1]一氧化碳变换反应是在催化剂存在的条件下进行的,是一个典型的气固相催化反应。
变换过程为含有C、H、O三种元素的CO和H2O共存的系统,在CO变换的催化反应过程中,主要反应为:CO+H2O=CO2+H2? ΔH= - mol在某种条件下会发生CO分解等其他副反应,分别如下:?2CO=C+CO2?2CO+2H2=CH4+CO2?CO+3H2=CH4+H2O?CO2+4H2=CH4+2H2O变换反应平衡受多种反应条件影响:(1)温度影响由于CO变换反应是个放热可逆反应,因此低温有利于平衡向右移。
(2)水碳比影响提高水碳比,可增加一氧化碳的转化率,有利于平衡向右移。
(3)原料气含CO2影响 CO2为反应产物,应尽量降低原料气中CO2的含量,确保平衡不向左移动。
变换反应速率受多种反应条件影响:(1)压力影响加压可提高反应物分压,在3MPa以下,反应速率与压力平方成正比。
(2)水碳比影响在水碳比低于4的情况下,提高水碳比可使变换反应速率加快。
(3)温度影响由于CO变换反应是个放热可逆反应,存在最佳反应温度。
变换工艺技术变换工艺技术是指通过一系列工艺方法和设备,将原始材料转化为更高附加值的成品的过程。
它在现代工业生产中起着重要的作用,可以提高生产效率、降低成本、改善产品品质等。
变换工艺技术主要包括物理变换、化学变换和结构变换三种类型。
物理变换是指通过改变原材料的形态、大小、密度等物理特性来实现转化的过程。
比如,将原材料加热至一定温度,使其改变形态,从而转化为其他物质。
化学变换是指通过化学反应将原材料转化为其他物质的过程。
比如,将原材料与其他物质反应生成化合物。
结构变换是指通过改变原材料的分子结构,使其性质发生变化的过程。
比如,通过加工原材料,使其分子结构发生断裂和重组。
变换工艺技术的应用范围非常广泛。
在冶金工业中,变换工艺技术可以将原矿石转化为金属,如将铁矿石经过冶炼熔炼得到铁。
在化工工业中,变换工艺技术可以将原材料转化为化学产品,如将石油通过精炼过程转化为汽油、柴油等。
在食品加工工业中,变换工艺技术可以将农产品转化为食品,如将小麦经过加工转化为面粉、面条等。
在纺织工业中,变换工艺技术可以将纤维转化为纺织品,如将棉花经过纺纱、织造过程转化为棉织物等。
变换工艺技术的实现需要依靠各种工艺流程和设备。
比如,物理变换工艺通常包括物理处理、物理分离等过程,需要使用研磨机、过滤机、离心机等设备。
化学变换工艺通常包括化学反应、溶剂提取等过程,需要使用反应釜、提取器等设备。
结构变换工艺通常包括加工、改变分子结构等过程,需要使用破碎机、扩散炉等设备。
变换工艺技术的发展可以提高生产效率和产品质量,并且可以降低生产成本。
通过将原材料转化为高附加值的成品,可以获得更多的经济效益。
同时,变换工艺技术还可以实现资源的有效利用和环境的保护。
通过合理设计工艺流程和设备,可以减少原材料和能源的消耗,并且减少废弃物和污染物的产生,达到可持续发展的目标。
总之,变换工艺技术是现代工业生产中不可或缺的技术之一。
它通过一系列工艺方法和设备,将原材料变换为更高附加值的成品,提高生产效率、降低成本、改善产品品质,实现资源的有效利用和环境的保护。
变换工段操作规程一、工艺概述经过脱硫、除尘后的水煤气中,除含有双氧水生产时所需要的氢气外,还含有26~30%的一氧化碳及其它气体。
直接分离一氧化碳是比较困难的,但在一定的温度条件下,借助低变催化剂的催化作用,可使水煤气中一氧化碳与水蒸汽发生反应,生成二氧化碳和氢气。
二、化学反应原理变换的主要反应是在一定的温度条件下,气体中的一氧化碳与水蒸汽反应生成氢气和二氧化碳,反应方程式如下:CO+H 2O (g 2+H 2+41KJ/mol这个反应的特点是:(1)反应前后体积没有变化;(2)反应前后是放热的;(3)是完全可逆的反应,当正反两个方面进行的速度相等时,反应达到平衡。
1、影响化学平衡的因素(1)温度的影响,变换反应是放热反应,温度降低、平衡向生成氢气和二氧化碳的方面移动。
(2)反应物浓度的影响,增加反应物浓度或减少生成物浓度,反应向有利于生成二氧化碳和氢气的方向进行,可采用增加蒸汽量来实现。
2、影响反应速度的因素,变换反应在有催化剂存在时,才能大大加快反应 速度,另外提高温度和增加蒸汽用量对加快变换反应的速度也有很大作用。
三、工艺流程1、水煤气气体流程:压缩机 → 冷却器 → 除油器 → 热交换器 → 电加热器 → 变换炉一 、二段 → 变换炉三段 → 热交换器 →冷却器 →气水分离器 → 精脱硫塔(A ) →精脱硫塔(B ) → PSA 提氢装置。
2、软化水流程:由电厂送的软化水 →加压水泵 →变换炉二、三段。
3、蒸汽流程:由电厂送的蒸汽 →汽水分离器 → 电加热器 →变换炉一段。
4、循环水流程:凉水泵→冷却器→热水池→热水泵→冷却塔→凉水池→凉水泵。
四、主要设备及性能1、水煤气压缩机:L—40/0.2—8型往复式压缩机,Q:40m3/min,N:280KW,压缩机的任务是把水煤气输送到后工段,并提供过程进行所必要的压力条件。
2、变换炉φ1600×7000,变换一段上层装填抗氧剂和抗毒剂,变换二、三段上层均装填耐火球,下部装填低变催化剂,是完成一氧化碳和水蒸汽反应生成二氧化碳和氢气的主要设备。
1、变换反应:CO+H2O≒CO2+H2+Q △H=41.19KJ/mol
变换反应的特点:CO变换反应是一种可逆、放热、等体积反应,所用的催化剂是宽温耐硫Co-Mo系催化剂。
2、影响变换反应的主要因素有:温度、压力、水汽比。
3、水汽比的定义:水汽比也就是汽/气比,是指原料气中的水蒸汽组分与原料气中的干气组分的摩尔比或标准状况下的体积比。
4、中压蒸汽(MS)的参数:4.2MP,400℃。
5、宽温耐硫Co-Mo 系催化剂的组成:Co-Mo 系耐硫变换催化剂以Al2O3为载体,主要成分由CoO、MoO3和K2CO3、TiO2、MgO 等助剂组成。
6、Co-Mo 系催化剂中各组分的作用?
7、变换催化剂的硫化原理?以及硫化过程中主要影响因素有哪些?
8、变换工艺的主要作用:a、调节氢碳比,b、余热回收,副产蒸汽,
c、回收冷凝液。
9、变换工段分为三大系统分别是:主变换系统、汽提系统、升温还原系统。
10、变换工艺的特点:
a、采用三段耐硫变换,合理分配变换反应负荷,控制热点温度;
b、煤气中的有机硫及氰化物得以充分分解,降低低温甲醇洗的处
理难度;
c、分等级回收反应热量,优化各等级蒸汽产量,高温余热用于副
产中压蒸汽和低压蒸汽、低温余热用于预热进除氧器的除盐水;
d、低温冷凝液通过汽提净化并回收,无工艺冷凝液废液的排放。
11、变换工艺流程中有哪些主要的设备,以及工艺参数,进一步熟悉工艺流程。
(考试重点)。
变换中低低工艺的特点1) 操作稳定:该工艺催化剂不容易失活,在中变催化剂选择合适的情况下整体催化剂可正常使用三年周期以上;由于入口H2S浓度要求不高,设备的腐蚀情况要比全低变工艺下降,对造气的氧高有适应性,低变催化剂不易出现反硫化2)能耗较稳定:该工艺能耗与全低变略高,初期在中变催化剂活性较高时也可低至200~250kg/t·NH3蒸汽,全周期运行一般为300~400 kg/t·NH3,如果是**增湿流程,蒸汽消耗就会低一些。
3)阻力降低:中低低工艺与全低变工艺催化剂的装填量可以大致相当,相比中串低工艺催化剂装填量大为减少,阻力相应下降,由于中变反应温区较高及汽气比的原因,所以阻力较全低变工艺仍然高一些,大致在0.6kg/cm2左右, 段间煤气冷激的厂家阻力相对低一些,有的厂家可以到只有0.4 kg/cm2。
4)操作弹性大:中低低工艺中变出口CO在整个应用周期中可从4~15%范围调节,初期可低至4%,后期可高至15%,低变出口CO可从0.3~13%变化满足不同后续工艺的要求。
**流程一般为中变出口CO 8~10%,一低变出口CO 3~5%,二低变出口CO<1.5%。
5)技改可操作性好:中串低工艺厂家改中低低,一般厂家只需十几万元的设备投资,全低变工艺厂家技改设备还有富余,流程也有缩短,低变催化剂亦可继续利用。
技改时间也较短,工艺上只需调整管线,增加1~2台调温水加或增湿器,3~7天的技改时间即可。
1.2 中低低工艺缺点与运行影响因素:1)能耗较全低变工艺略高。
2)阻力较全低变工艺高,同等设备条件下,增产效果不如全低变。
3)低变段催化剂无论采取水调温器降温还是增湿降温都存在带水结块的可能性。
在设计时要尽量注意增湿器的结构和水调温器的换热面积。
4)当工艺设计采取煤气冷激或一段中变方案时,中变段存在除氧不彻底,低变段催化剂存在活性缓慢衰退的情况。
5)H2S浓度略高,装置运行中造成中变催化剂活性衰退。
CO变换工艺发展过程及趋势摘要本文介绍了CO变换工艺的发展过程和趋势,论述了变换催化剂、反应器、节能工艺和数字模型的发展,论述了变换工艺的发展方向,指出了需要研究和解决的问题。
关键词 CO变换;催化剂;合成气;节能前言一氧化碳变换(也称水煤气变换,water gas shift)是指合成气中的一氧化碳借助于催化剂的作用,在一定温度下与水蒸气反应,生成二氧化碳和氢气的过程。
通过变换反应既降低了合成气中的一氧化碳含量,又得到了更多氢气,调节了碳氢比,满足不同的生产需要(例如合成甲醇等)。
其工业应用已有90多年历史。
在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO的去除,同时在环境科学甚至在民用化学方面所起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。
本文将从CO 变换工艺的几个因素展开论述。
一、CO变换原理[1]一氧化碳变换反应是在催化剂存在的条件下进行的,是一个典型的气固相催化反应。
变换过程为含有C、H、O三种元素的CO和H2O共存的系统,在CO变换的催化反应过程中,主要反应为:CO+H2O=CO2+H2ΔH= - 41.2kJ/mol在某种条件下会发生CO分解等其他副反应,分别如下:2CO=C+CO22CO+2H2=CH4+CO2CO+3H2=CH4+H2OCO2+4H2=CH4+2H2O1.CO变换反应平衡受多种反应条件影响:(1)温度影响由于CO变换反应是个放热可逆反应,因此低温有利于平衡向右移。
(2)水碳比影响提高水碳比,可增加一氧化碳的转化率,有利于平衡向右移。
(3)原料气含CO2影响 CO2为反应产物,应尽量降低原料气中CO2的含量,确保平衡不向左移动。
2.CO变换反应速率受多种反应条件影响:(1)压力影响加压可提高反应物分压,在3MPa以下,反应速率与压力平方成正比。
(2)水碳比影响在水碳比低于4的情况下,提高水碳比可使变换反应速率加快。
一氧化碳变换反响工艺流程一氧化碳变换流程有很多种,包含常压、加压变换工艺,两段中温变换(亦称高变)、三段中温变换(高变)、高 -低变串连变换工艺等等。
一氧化碳变换工艺流程的设计和选择,第一应依照原料气中的一氧化碳含量高低来加以确立。
一氧化碳含量很高,宜采纳中温变换工艺,这是因为中变催化剂操作温度范围较宽,使用寿命长并且价廉易得。
当一氧化碳含量大于 15%时,应试虑将变换炉分为二段或多段,以使操作温度靠近最正确温度。
其次是依照进入变换系统的原料气温度和湿度,考虑气体的预热和增湿,合理利用余热。
最后还要将一氧化碳变换和剩余一氧化碳的脱除方法联合考虑,若后工序要求剩余一氧化碳含量低,则需采纳中变串低变的工艺。
一、高变串低变工艺当以天然气或石脑油为原料制造合成气时,水煤气中CO含量仅为 10%~13%(体积分数),只要采纳一段高变和一段低变的串连流程,就能将 CO含量降低至0.3%,图 2-1是该流程表示图。
图 2-1一氧化碳高变 -低变工艺流程图1-废热锅炉2-高变炉3-高变废热锅炉4-预热器5-低变炉6-饱和器7-贫液再沸器来自天然气蒸气转变工序含有一氧化碳约为13%~15%的原料气经废热锅炉1降温至 370℃左右进入高变炉 2,经高变炉变换后的气体中一氧化碳含量可降至3%左右,温度为 420~440℃,高变气进入高变废热锅炉3及甲烷化进气预热器 4 回收热量后进入低变炉 5。
低变炉绝热温升为 15~20℃,此时出低变炉的低变气中一氧化碳含量在 0.3%~0.5%。
为了提升传热成效,在饱和器6中喷入少许软水,使低变气达到饱和状态,提升在贫液再沸器7中的传热系数。
二、多段中变工艺以煤为原料的中小型合成氨厂制得的半水煤气中含有许多的一氧化碳气体,需采纳多段中变流程。
并且因为来自脱硫系统的半水煤气温度较低,水蒸气含量较少。
气体在进入中变炉以前设有原料气预热及增湿装置。
此外,因为中温变换的反响放热多,应充足考虑反响热的转移和余热回收利用等问题。
做设计的时候,查资料抄书得出的一小个对比
以下为典型变换工艺流程做一简介及对比。
中串低
简介
工艺与传统的中温变换工艺主要不同之处是在原中变炉之后,又串联了一个装有钴钼系列耐硫宽温催化剂的低变炉,形成中变串低变的工艺流程。
耐硫宽温变换催化剂在“中串低”工艺中被用作低变催化剂。
低变炉入口气体温度一般可控制在210~230℃
特点
1. 可以减少进入中变炉的蒸汽添加量,达到节能的效果
2. 为调节低变炉入口气体温度,课因地制宜地设置调节水加热器或第二热水塔等回收低位余热。
3. 低变后气体中一氧化碳含量比传统的搞变工艺可降低2个百分点,减轻了铜洗工段净化负荷,铜液循环量,再生能耗相应有较大幅度下降。
另外,由于变换率的提高,碳铵的产量可相应增加
4.
与中变流程相比,蒸汽消耗下降,饱和塔负减轻。
催化剂
中串低为铁铬系催化剂串钴钼系催化剂
全低变
简介
是全部采用低温活性钴-钼系变换催化剂进行一氧化碳变换的工艺过程
特点
1. 节能降耗的效果显著。
低变炉各段进口温度均在200℃左右,床层温度比传统的床层温度下降100-300℃,有利于变换反应平衡。
汽气比降低,蒸汽消耗大幅度下降,在集中变换流程中蒸汽消耗最低。
2. 热回收效率高,有效能损失少,热交换设备换热面积可减少1/2左右
3. 对半水煤气中硫化氢含量的要求相应降低,没气总硫须大于
150mg/m3(标),因此原料煤的含硫量可以适当放宽。
4. 与原中温催化剂比较,催化剂用量可减少一半以上,降低了变换炉床层阻力,降低了压缩功耗
5. 有机硫转化炉高,可达98-99%,有利于铜洗操作,降低铜耗,稳定生产
6. 变换率高,变换气中一氧化碳含量可降至1%以下
7. 余热回收效果好。
催化剂段间换热等用水加热器逐级回收、逐级加热饱和热水塔循环热水,出饱和塔半水煤气的温度及饱和度高,出热水塔变化气温度可降至100℃以下
8.
缺点:设备腐蚀明显加剧,特别是露点温度区应采用不锈钢。
变脱负荷明显加重,要提前做好变脱的扩能改造。
催化剂
全低变为耐硫变换催化剂
中低低
简介
此工艺是介于中串低工艺与全低变之间的一种工艺流程。
其流程兼有中串低和全低变两种工艺的部分有点,为不少老厂改造和净化能力偏弱的小氮肥企业所采用。
特点
1. 由中串低改为中低低流程,工艺和设备改动幅度较小,技术容易掌握,而且投资省
2. 中变炉上段(或上、中段)仍是装填中变催化剂,因其抗毒性较强,对进入低变催化剂床层的气体起到了净化、去除毒物的作用,因而保护了低变催化剂,延长了其使用寿命
3. 蒸汽集中由中变炉上段加入,其他各段床层温度调节采用热交换器,调握水加、近路,副线等手段进行(一般不喷水)、汽气比从上到下依次降低,分别满足了中低变对水蒸汽的需要,并可有效得阻止低变催化剂的反硫化。
整个系统热量回收效率高,节气节能效果明显
4. 催化剂装填总量比中串低流程减少,系统阻力下降
5. 有机硫转化率高,有利于铜洗操作,降低铜耗,稳定生产
6. 催化剂段间换热采用水加热器逐级加热饱和热水塔循环热水,余热回收效果好。
出饱和塔半水煤气温度、饱和度高,出热水塔变化气温度可降至100℃以下。
7. 变换率高,变换气中一氧化碳可降至1%以下
8. 与中串低变流程相比,中低低流程的蒸汽消耗继续下降,饱和塔负进一步减轻,其主要缺点由于反应汽气比下降,中变催化剂发生过度还原,引起中变催化剂失活、硫中毒及阻力增大,中变催化剂使用寿命短。
催化剂
中低低为铁铬系催化剂串钴钼系催化剂。