1.1建立二元一次方程组.1二元一次方程组教案
- 格式:doc
- 大小:75.00 KB
- 文档页数:3
2024年七年级下册《二元一次方程组》教案2024年七年级下册《二元一次方程组》教案1(约913字)教学目标1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
教学重点把方程组变形后用加减法消元。
教学难点根据方程组特点对方程组变形。
教学过程一、复习引入用加减消元法解方程组。
二、新课。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。
或互为相反数?能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?三、练习。
1.P40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
四、小结。
解二元一次方程组的加减法,代入法有何异同?五、作业。
P33.习题2.2A组第2题(3)~(6)。
B组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:2.3二元一次方程组的应用(1)2024年七年级下册《二元一次方程组》教案2(约900字)教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
七年级二元一次方程组教案(必备6篇)七年级二元一次方程组教案第1篇【教学目标】知识目标:①使学生初步理解二元一次方程与一次函数的关系。
②能根据一次函数的图象求二元一次方程组的近似解。
能力目标:通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。
情感目标:通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。
重点要求:1、二元一次方程和一次函数的关系。
2、根据一次函数的图象求二元一次方程组的近似解。
难点突破:经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。
【教学过程】一、学前先思师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?生:代入消元法、加减消元法。
师:请你猜测还有其他的解法吗?生:(小声议论,有人提出图象解法)师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?生:二元一次方程组怎么会有图象?它的图象应该怎样画?生:二元一次方程组的图象解法怎么做?师:同学们都问得很好!那你有喜欢的二元一次方程组吗?生:(比较害羞)师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。
让我们带着同学们提出的问题从二元一次方程开始今天的学习。
二、探究导学题目:判断上面几组解中哪些是二元一次方程的解?生:和不是,其余各组均是方程的解。
师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。
二元一次方程组教案对于二元一次方程组的学习有一定的难度,这对于老师教学来说也是一个重点问题,小编整理了关于二元一次方程组教案,希望老师可以参考,制定相应的教学计划!教学建议一、重点、难点分析本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.二、知识结构本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念.三、教法建议1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如和矛盾方程组如等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数的系数为0,方程(1)也看作一个二元一次方程.教学设计示例一、素质教育目标(-)知识教学点1.了解二元一次方程、二元一次方程组和它的解的概念.2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.3.会检验一对数值是不是某个二元一次方程组的解.(二)能力训练点培养学生分析问题、解决问题的能力和计算能力.(三)德育渗透点培养学生严格认真的学习态度.(四)美育渗透点通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.二、学法引导1.教学方法:讨论法、练习法、尝试指导法.2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.三、重点难点疑点及解决办法(-)重点使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.(二)难点了解二元一次方程组的解的含义.(三)疑点及解决办法检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.【注】二元一次方程组教案,仅供老师参考,具体情况应根据实际情况制定!初一数学一元一次方程相关链接》》》》一元一次方程教案一元一次方程的概念一元一次方程的解法一元一次方程应用题一元一次方程练习题。
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
教学目标:1.知识技能(1)会用代入消元法解二元一次方程组;(2)了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.2.数学思考通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:3.问题解决通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。
4.情感目标:通过研究探讨解决问题的方法,培养学生会作交流意识与探究精神。
教学重点:用代入消元法解二元一次方程组.教学难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.教学过程:第一环节:情境引入教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x 个成人,y 个儿童,我们得到了方程组⎩⎨⎧=+=+.3435,8y x y x 成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验⎩⎨⎧==3,5y x 是不是方程8x y +=和方程5334x y +=的解,从而得知这个解既是8x y +=的解,也是5334x y +=的解,根据二元一次方程组的解的定义,得出⎩⎨⎧==3,5y x 是方程组⎩⎨⎧=+=+3435,8y x y x 的解.所以成人和儿童分别去了5人和3人. 提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?第二环节:探索新知问:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?解:设去了x 个成人,则去了(8)x -个儿童,根据题意,得:()53834x x +-= 解得:5x =将5x =代入8x -, 解得:8-5=3.答:去了5个成人, 3个儿童.(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)1.列二元一次方程组设有两个未知数:x 个成人,y 个儿童.列一元一次方程只设了一个未知数:x 个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8)x -个.因此y 应该等于(8)x -.而由二元一次方程组的一个方程8x y +=,根据等式的性质可以推出8y x =-.2.发现一元一次方程中53(8)34x x +-=与方程组中的第二个方程5334x y +=相类似,只需把5334x y +=中的“y ”用“()8x -”代替就转化成了一元一次方程.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将⎩⎨⎧=+=+②y x ①y x 3435,8中的①变形,得8y x =-③,我们把8y x =-代入方程②,即将②中的y 用()8x -代替,这样就有()53834x x +-=.“二元”化成“一元”.教师总结:这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成) 解:8,5334.x y x y +=⎧⎨+=⎩由①得:8y x =-. ③ 将③代入②得:()53834x x +-=.解得:5x =.把5x =代入③得:3y =.所以原方程组的解为:⎩⎨⎧==.3,5y x(提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.第三环节:巩固新知内容:1.例:解下列方程组:(1) ⎩⎨⎧+==+;3,1423y x y x (2)⎩⎨⎧=+=+.134,1632y x y x(根据学生的情况可以选择学生自己完成或教师指导完成) (1)解:将②代入①,得:()14233=++y y .解得:1=y .把1y =代入②,得:4=x .所以原方程组的解为:⎩⎨⎧==.1,4y x(2)由②,得:y x 413-=. ③ 将③代入①,得:()1634132=+-y y . 解得:2=y .将y=2代入③,得:5=x .所以原方程组的解是⎩⎨⎧==.2,5y x2.思考总结:⑴给这种解方程组的方法取个什么名字好? ⑵上面解方程组的基本思路是什么? ⑶主要步骤有哪些?⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.3.解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.第四环节:练习提高1.教材随堂练习2.补充练习:用代入消元法解下列方程组:(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x ⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x第五环节:课堂小结总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.第六环节:布置作业1.课本习题2.解答习题第3题板书:用代入消元法解二元一次方程组 思路: 消元,把“二元”变为“一元”.解二元一次方程组的步骤: 1.变形 2.代入 3.求解教学反思:补充练习:用代入消元法解二元一次方程组(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x (4)用代入消元法解二元一次方程组(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x (4)。
第一课时二元一次方程及二元一次方程的解教学目标:1、理解二元一次方程和二元一次方程的解的概念,会解决相关问题;2、会把二元一次方程转化成用含一个未知数的的代数式表示另一个未知数的形式,体会转化思想的应用3、体会数学的应用价值教学重点:1、二元一次方程和它的解的概念2、将二元一次方程变形成汗一个未知数的代数式表示另一个未知数的形式教学难点:将二元一次方程变形成汗一个未知数的代数式表示另一个未知数的形式教学方法:观察法讨论法教学过程:一、问题引入:根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少场?输了多少场?这可以转化为数学上的问题,设该队赢了x场,输了y场,那么你能说出输赢的所有可能情况吗?x 5 …y 10 …根据以上数据,能列出一些方程吗?二、新授1、观察:前边所列的方程有哪些共同得特点?2、概括:像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。
适合二元一次方程的一对未知数的值称为这个二元一次方程的一个解。
三、知识运用例1 甲种物品每个4kg,乙种物品每个7kg.现有甲种物品x个,乙种物品y个,共76kg .(1) 列出关于x、y的二元一次方程;(2) 如果x=12,求y的值;(3) 请将关于x、y的二元一次方程写成用含x的代数式表示y的形式例2 写出一个二元一次方程,使x=-1 ,y=3为它的一个解,该二元一次方程可以是_______________四、巩固练习(1)判断下列方程哪些是二元一次方程,哪些不是?① 6x+3y=4z ②7xy+y =9 ③2x+y+1 ④ 2(x+y)= 8-x(2)把下列方程写成用含x的代数式表示y的形式① 2x+y=10 ② x+y=20 ③2x+3y=12五、当堂反馈1、方程mx-2y=x+5是二元一次方程时,m的取值为()A、m≠0B、m≠1C、m≠-1D、m≠22、下列各组数,既是方程2x-y=3的解,同时又是方程3x+4y=10的解的是( )A x=1B x=2C x=4D x=-2y=-1 y=1 y=5y=43、已知 x=2 是方程2x+ay=5的解,则a=_______y=14、二元一次方程2x+y = 5中,当x=2时,y= ;第一课时二元一次方程组教案一、学习内容:教材P 93——94内容二、教学目标:1、认识二元一次方程组;2、了解二元一次方程组的解,会求二元一次方程的正整数解.教学重点:二元一次方程组的解的概念,教学难点:求二元一次方程组的正整数解三:教学过程:一、自学探究1、例题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.观察上面两个方程可看出,每个方程都含有___ 个未知数(x和y),并且未知数的______ 都是1,像这样的方程叫做二元一次方程. (P 93)把两个方程合在一起,写成x+y=22 ①2x+y=40 ②像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组. (P 94)2、探究讨论:满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 思考:上表中哪对x、y的值还满足方程②x=18y=4既满足方程①,又满足方程②,也就是说它们是方程①与方程②的公共解。
二元一次方程组教学设计教学设计思路由于学生对一元一次方程已基本掌握,其思想和方法就为二元一次方程的学习搭好了阶梯。
因此本课教学中要抓好两者之间的联系和区别。
首先教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念。
然后学生通过练习学会正确的判断二元一次方程及二元一次方程组。
对于二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题。
教学目标知识与技能能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解。
通过实例认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型,能设两个未知数并列方程组表示实际问题中的两种相关的等量关系。
通过对以上知识点的学习,提高分析问题、解决问题的能力和逻辑思维能力。
过程与方法通过问题情境得出二元一次方程,通过探究代入数值检验来学习二元一次方程的解。
情感态度价值观体会实际问题中常会遇到的有关多个未知量间互相依赖、影响的问题,懂得二元一次方程组是反映现实世界多个量之间相等关系得一种有效的数学模型,能感受方程的作用。
教学方法讨论法、练习法、尝试指导法。
学生学法理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础。
重点难点重点:二元一次方程、二元一次方程组、二元一次方程组的解,以及检验一对数值是不是某个二元一次方程组的解;难点:二元一次方程组的解的概念,弄清对于一个二元一次方程,只要给出其中任一个未知数的取值,就必定能找到适合这个方程的另一个未知数的值,进一步理解二元一次方程有无数个解。
以及二元一次方程组(未知数的个数与独立等量关系个数相等)有唯一确定的解。
解决办法:启发学生理解概念,多举一系列的反例来说明。
课时安排1课时。
1.1二元一次方程组
教学目标:
1. 了解二元一次方程的概念,了解二元一次方程的解的含义.
2. 会检验一对数是不是二元一次方程的解,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
3. 通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型.同时培养学生探究、创新的精神和合作交流的意识.
教学重点、难点
重点是二元一次方程的意义和二元一次方程的解的意义.
难点是二元一次方程的解的不确定性和相关性.即二元一次方程的解有无数个,但不是任意的两个数是它的解.
教学方法:探索方法,合作交流.
教学过程:
一、动脑筋
我们家今年1月份的水费和天然气费共60元,其中天然气费比水费多20元.,你知道天然气费和水费各是多少吗?
学生读题,理解题意
1. 如果设1月份的天然气费x 元,那么水费应为(x-20)元?可列出一元一次方程:x+(x-20)=60 (学生算出水费和天然气费各是多少)
2. 还有其他的解法吗?启发引导学生设两个未知数,然后列出二元一次方程组 设1月份的天然气费x 元,水费y 元,根据题意,列两个方程得:
x +y =60 ①
x -y =20 ②
3. 观察以上两个方程与以前所学方程的区别.
4. 教师归纳:像x +y =60,x -y =20这样,含有两个未知数(二元),并且含有未知数每一项都是一次的,这样的方程叫做二元一次方程.象方程
5x -7=3,2320a b =+都是二元一次方程.
5. 思考,如果只考虑一个方程,那么x 和y 可以取什么值?
6. 本题中的两个方程要同时满足才能求得水费和天然气费,即满足方程组
x +y =60 ①
x -y =20 ②
像这样,把两个含有相同未知数的二元一次方程(或者一个二元一次方程和一个一元一次方程)联立起来,组成方程组,叫二元一次方程组.
二、做一做
1. 检查:把x=40,y=20代入上述方程组中,左、右两边的值相等吗?
2. 使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解.
3. 二元一次方程组的解的表示方法: x=40
Y=20
4. 怎样判断一组数值是不是方程组的解?讨论得到结论.
三、学生练习
1. 下列各式是二元一次方程的是( )
(A )20x y +=(B )21x y =
+(C )203x y y +-=(D )12
y x + 2. 想一想:
(1)方程3210x y +=的解有多少个?
(2)它的正整数解呢?
3. 方程3210x y +=.用关于x 的代数式表示y ;
4、. 下列属二元一次方程组的是( ) (A )⎩⎨⎧-=-=+121y x y x ;(B )⎩
⎨⎧=+=21y x xy ; (C )331x y z +=⎧⎨+=⎩;(D )⎩
⎨⎧=-=+0152y y x 四、小结
二元一次方程,二元一次方程组,二元一次方程组的解,解方程组各表示什么意义?
五、例题教学
例 小玲在文具店买了3本练习本,2支圆珠笔,共花去8元,其中购买的练习本比圆珠笔多花4元。
⑴ 为了知道练习本、圆珠笔的单价是多少元,你能列出相应的方程组吗?
⑵ x=2,是列出的二元一次方程组的解吗?
Y=1
教师引导学生解答。
六、作业
课本P4练习
教学反思。