初三数学(2)
- 格式:docx
- 大小:156.17 KB
- 文档页数:4
初三第二学期数学教学工作计划3篇初三第二学期数学教学工作计划篇1本学期我担任九年级三、六班的数学教学工作,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自知能力较差,特别是到了最后一学期,有些学生对自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。
本学期学生将面临中考,所以本学期我将尽自己的全力提高教学成绩,力求班级均分提高一定的分值,做好培优补差工作,提高学优生的成绩的同时关注学困生。
初三数学总复习,通常分三个阶段。
第一阶段:全面复习基础知识,夯实“三基”。
通过第一阶段的复习,使学生系统的掌握基础知识,基本技能和基本方法,形成清晰的知识网络和稳定的知识框架。
第二阶段:综合运用知识,强化能力培养。
第二阶段的复习既不是知识的复习,更不是知识的压缩,而是一个知识总综合、巩固、完善、提高的过程。
即注重知识的整合,又注重查缺补漏,力求使各部分知识成为一个有机的整体。
实现基础知识重点化、重点知识网络化、网络知识题型化、题型设计生活化。
在这一阶段要以数学思想方法为主线,学生的综合训练为主题,克服重复,突出重点。
在数学应用方面,注意数学知识与生活的联系,穿插专题复习,培养学生渗透题型生活化的意识,以此提高学生对阅读理解题的审题能力。
第三阶段:考前模拟,建立自信。
此阶段注重提高学生的整体能力,包括知识的深化巩固,能力的培养提高,解体的技巧和方法,运算速度和准确率等方法,要注意及时评价,及时反馈。
复习的整体策略和方法整体策略为以课本为主,紧扣教材,注重基础知识,基本技能和基本方法的训练和落实,决不放弃课本。
整体方法为:以小题组训练为主,强化落实,力求一课一练,一张一测,注重反馈和评价,不断总结。
复习措施及要求1、注重基础,很注落实,必须面批面改,纠错纠偏。
2、紧扣教材,查缺补漏,强化训练。
3、以训练为主线,做到一课一练,一章一练,及时评价,全面反馈。
2020年上海虹口区初三数学一模试卷及答案(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2020年上海虹口区初三数学一模试卷及答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2020年上海虹口区初三数学一模试卷及答案(2)(word版可编辑修改)的全部内容。
虹口区2019学年度第一学期期终学生学习能力诊断测试初三数学试卷(满分150分,考试时间100分钟) 2020.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.如果 ,那么锐角的度数为1cos =2ααA .30°;B .45°;C .60°;D .90°.2.在Rt△ABC 中,∠C =90°,如果BC =2,tan B =2,那么AC 长为A .1;B .4; C;D ..3.抛物线的顶点所在象限是23(1)+1y x =+A .第一象限;B .第二象限;C .第三象限;D 。
第四象限.4.已知抛物线经过 、两点,在下列关系式中,正确的是2y x =1(2,)A y -2(1,)B y A .; B .;C .; D ..120y y >>210y y >>120y y >>210y y >>5.已知和都是非零向量,在下列选项中,不能判定∥的是b a 、c a bA .;B .∥,∥;=a b a c b c C .; D .,.+0a b = +2a b c = 3a b c -= 6.如图1,点D 是△ABC 的边BC 上一点,∠BAD=∠C ,AC =2AD ,如果△ACD 的面积为15,那么△ABD 的面积为A .;B .;C .7。
初三数学圆相关知识点及试题七.切线长定理考点速览: 考点1切线长概念:经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长和切线的区别切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 考点2 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 考点3 两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA 、PB 、DE 分别切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝, 求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例2 如图,⊙O 分别切ABC ∆的三边AB 、BC 、CA 于点D 、E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当90C ∠=︒,求内切圆半径r .例3.如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为?例4 如图甲,直线343+-=x y 与x 轴相交于点A ,与y 轴相交于点B ,点C ()n m ,是第二象限内任意一点,以点C 为圆心与圆与x 轴相切于点E ,与直线AB 相切于点F.(1)当四边形OBCE 是矩形时,求点C 的坐标;(2)如图乙,若⊙C 与y 轴相切于点D ,求⊙C 的半径r ; (3)求m 与n 之间的函数关系式;(4)在⊙C 的移动过程中,能否使OEF ∆是等边三角形(只回答“能”或“不能”)?· FDOAB· EFDCOAB考点速练1:1.如图,⊙O 是ABC ∆的内切圆,D 、E 、F 为切点,::4:3:2A B C ∠∠∠=,则DEF ∠= . FEC ∠= .2.直角三角形的两条直角边为5㎝、12㎝,则此直角三角形的外接圆半径为 ㎝,内切圆半径为 ㎝.3.如图,直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,且AB ∥CD ,若OB=6㎝,OC=8㎝,则BOC ∠= ,⊙O 的半径= ㎝,BE+CG= ㎝.4.如图,PA 、PB 是⊙O 的切线,AB 交OP 于点M ,若2,OM cm AB PB ==,则⊙O 的半径是 ㎝.·A O CDBEF· AO C D B E FG· AOPBM考点速练(2)1.如图,在Rt ABC ∆中,90,3,4C AC BC ∠=︒==,以BC 边上一点O 为圆心作⊙O 与AB 相切于E ,与AC 相切于C ,又⊙O 与BC 的另一个交点D ,则线段BD 的长 . 2.如图,ABC ∆内接于⊙O ,AB 为⊙O 直径,过C 点的切线交直径AB 的延长线于P ,25BAC ∠=︒,则P ∠= .4、(广西)PA 、PB 是⊙O 切线,A 、B 切点,∠APB =780,点C 是⊙O 上异于A 、B 任一点,那么∠ACB =_____。
初三数学知识点总结归纳1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
初三数学复习五大方法一、回归课本,夯实基础,做好预习。
数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。
回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。
复习课的内容多、时间紧。
要提高复习效率,必须使自己的思维与老师的思维同步。
而预习则是达到这一目的的重要途径。
没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。
二、抓住关键,突出重点,不以题量论英雄学好数学要做大量的题,但反过来做了大量的题,数学不一定好。
“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。
做题的目的在于检查你学的知识,方法是否掌握得很好。
如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。
2021重庆年中考23阅读理解题材料题专题(2)1(巴蜀2021级初三上第一次月考)对于各位数字都不为0 的两位数m 和三位数n ,将m 中的任意一个数字作为一个新的两位数的十位数字,将n 的任意一个数字作为新的两位数的个位数字,按照这个方式产生的所有新的两位数的和几位F (m,n ),例如:F (12,345)=13+14+15+23+24+25=114.(1)填空:F (13,579)=(2)求证:当n 能被3整除,F (m ,n )一定能被6整除;2(重庆两江育才2021级九上第一次月考)对任意一个四位数n ,将这个四位数n 千位数字与十位数字对调,百位上数字与个位上数字对调后可以得到新的四位数m ,记F (n )=99n m -,例如n=1423,对调千位数字与十位数字及百位上数字与个位数字得到2314,所以F (n )=14232314=-999-,如果四位数n 满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“平衡数”,例如:1423,因为1+4=2+3,多以1423是一个平衡数.(1)请计算F (8062),并证明:对于任意一个四位数n ,都有F (n )为整数;(2)若一个“平衡数”N 的十位数比百位数字的2倍少1,且这个“平衡数”能被同时被3和11整除,求F (N )的最小值。
3(重庆育才2021级九上第二次定时训练)中国古贤常说万物皆自然,而古希腊学者说万物皆数,小学我们就接触了自然数,在数得学习过程中,我们会对其中一些具有某些特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另外一种特殊的自然数——“欢喜数”定义:对于一个各位不为0的自然数,如果它正好等于各个数为数字的和的整数倍,我们就说这个自然数是一个“欢喜数”,例如:24是一个欢喜数,因为24=4×(2+4);125不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各位数数字之和的4倍,求所有这种“欢喜数”。
初三年级数学随堂练习2(树状图)时间:30分钟姓名:1.一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率。
2.不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)3.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样就确定了点M 的坐标(x,y).(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图像上的概率。
4.我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.5.张老师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出全是B类学生的概率。
6. 将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(第23题)(1)搅均后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅均后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).。
数学基础过关(2)1.图1所示的是一个上下两个面都为正方形的长方体,现将图1的一个角切掉,得到图2所示的几何体,则图2的俯视图是()A.B.C.D.2.图①是五棱柱形状的几何体,则它的三视图为()A.B.C.D.3.如图是从三个方向看一个几何体所得到的形状图,则这个几何体是()A.B.C.D.4.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A.B.C.D.5.如图,下列图形从正面看是三角形的是()A.B.C.D.6.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为.7.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为.8.为了配合新型冠状病毒的防控工作,某社区欲购进一批酒精对社区进行消毒,现有A、B 两种酒精可供选择,B种酒精比A种酒精每瓶贵2元,用600元购买A种酒精和用800元购买B种酒精的数量相同,现要求出A、B两种酒精每瓶的价格.设A种酒精每瓶的价格为x元,则可列方程为.9.随着市民环保意识的日渐增强,文明、绿色的环保祭扫方式(鲜花祭奠、网络祭奠等)正成为一种趋势,清明节期间,我区某花店用4000元购买了若干花束,很快就售完了,接着又用4500元购买了第二批花束.已知第二次购买的花束的数量是第一批所购花束的数量的1.5倍,且每束花的进价比第一批的进价少5元.若设第一批所购花束的数量为x 束,则可列方程为.10.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米.第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程.11.方程x2﹣2x﹣4=0的两根为x1、x2,则x1+x2的值为.12.若x1,x2是关于x的一元二次方程x2+bx﹣4=0的两个根,x1x2﹣x1﹣x2=﹣7,则b的值为.13.设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;14.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=.15.若a、b是关于一元二次方程x2+x﹣3=0的两实数根,则的值为.16.在一次投篮比赛中,某小组8名同学的成绩(单位:分)分别是:6,10,7,7,8,6,9,6,则这组数据的中位数是.17.疫情期间小隆和爸爸、妈妈、爷爷、奶奶测量体温(单位:℃),结果分别为36.2、37.1、36.5、37.1、36.6,其中中位数是.18.某班统一为学生采购校服60件,收集尺码如下表:尺码/cm165170175180185190数量/件37201875则这组数据的中位数是.19.若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为.20.初三(1)班的五个学习小组的人数分别是:9,5,7,x,5.已知这组数据的平均数是6,则这组数据的中位数是.21.疫情当前,根据上级要求学生在校期间每天都要检测体温,小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3,那么这组体温的众数是.22.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为,.23.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是,众数是,中位数是.24.已知一组从小到大排列的数据:1,x,y,2x,6,10的平均数与中位数都是5,则这组数据的众数是.25.下图是某小组美术作业得分情况,则该小组美术作业得分的众数为分.编号12345678910得分(分)343554355426.如图,已知∠1=∠2,∠B=35°,则∠3=.27.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=°.28.如图,直线a,b分别与直线c,d相交,且∠1+∠3=135°,∠2﹣∠3=45°,若∠3=α,则∠4的度数为.29.直线a、b、c、d的位置如图所示,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于度.30.如图,若∠1=∠2=∠3=48°,则∠4=°.31.如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.32.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为19cm,则△ABD的周长为.33.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.34.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是cm.35.如图,在△ABC中,BE是边AC上的中线,已知AB=4cm,AC=3cm,BE=5cm,则△ABC的周长是cm.三.解答题(共15小题)36.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元.(1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?37.义安中学工会“三八妇女节”共筹集会费1800元,工会决定拿出不少于270元,但不超过300元的资金为“优秀女职工”购买纪念品,其余的钱用于给50位女职工每人买一瓶洗发液或护发素,已知每瓶洗发液比每瓶护发素贵9元,用200元恰好可以买到2瓶洗发液和5瓶护发素.(1)求每瓶洗发液和每瓶护发素价格各是多少元?(2)有几种购买洗发液和护发素的方案?哪种方案用于为“优秀女职工”购买纪念品的资金更充足?38.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.39.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种.40.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.A种产品B种产品成本(万元/件)25利润(万元/件)13(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,求工厂的最大利润?41.解分式方程:+=1.42.解方程:.43.①;②.44.解方程:.45.解方程:.46.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和不小于4的概率.47.九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率是.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.48.某校计划从各班各抽出1名学生作为代表参加学校组织的海外游学计划,明明和华华都是本班的候选人,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:取M、N两个不透明的布袋,分别放入黄色和白色两种除颜色外均相同的乒乓球,其中M布袋中放置3个黄色的乒乓球和2个白色的乒乓球;N布袋中放置1个黄色的乒乓球,3个白色的乒乓球.明明从M布袋摸一个乒乓球,华华从N布袋摸一个乒乓球进行试验,若两人摸出的两个乒乓球都是黄色,则明明去;若两人摸出的两个乒乓球都是白色,则华华去;若两人摸出乒乓球颜色不一样,则放回重复以上动作,直到分出胜负为止.根据以上规则回答下列问题:(1)求一次性摸出一个黄色乒乓球和一个白色乒乓球的概率;(2)判断该游戏是否公平?并说明理由.49.某游乐场设计了一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的,并且规定:①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值6元小兔玩具,否则应付费4元.(1)问游玩者得到小兔玩具的机会有多大;(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?50.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.。
九年级数学第二学期的教学计划一、第一轮复习1、第一轮复习的形式第一轮复习的目的是要“过三关”:(1)过记忆关。
必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。
(3)过基本技能关。
如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
基本宗旨:知识系统化,练习专题化,专题规律化。
在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将其分为以下几个单元:实数、代数式、方程、不等式、函数、统计与概率,交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。
复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应该注意的几个问题(1)必须扎扎实实地夯实基础。
使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。
(3)不搞题海战术,精讲精练,举一反三、触类旁通。
“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。
而是有针对性的、典型性、层次性、切中要害的强化练习。
(4)注意气候。
第一轮复习是冬、春两季,大家都知道,冬春季是学习的黄金季节,____月份之后,天气酷热,会一定程度影响学习。
(5)定期检查学生完成的作业,及时反馈。
教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等手办法进行反馈、矫正和强化,有利于大面积提高教学质量。
(6)实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。
课堂复习教学实行“低起点、多归纳、快反馈”的方法。
(8)应注重对尖子的培养。
在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美,以提高中考优秀率。
对于接受能力好的同学,课外适当开展兴趣小组,培养解题技巧,提高灵活度,使其冒“尖”。
一、选择题1.如图,已知⊙O 的半径为5,弦,AB CD ⊥垂足为E ,且8AB CD ==,则OE 的长为( )A .3B .32C .4D .422.如图,已知E 是ABC 的外心,P ,Q 分别是AB ,AC 的中点,连接EP ,EQ ,分别交BC 于点F ,D .若10BF =,6DF =,8CD =,则ABC 的面积为( )A .72B .96C .120D .1443.已知O 的半径为8cm ,如果一点P 和圆心O 的距离为8cm ,那么点P 与O 的位置关系是( ) A .点P 在O 内B .点P 在O 上C .点P 在O 外 D .不能确定4.如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的个数有( )①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PCB ∽△△;⑤CF CP ⋅为定值 A .2个B .3个C .4个D .5个5.已知y 是x 的二次函数,y 与x 的部分对应值如表所示,若该二次函数图象向左平移后通过原点,则应平移( )x … 1-0 1 2 … y…343…A .1个单位B .2个单位C .3个单位D .4个单位6.已知二次函数2y x bx c =-+与x 轴只有一个交点,且图象经过两点A (1,n ),B (m +2,n ),则m 、n 满足的关系为( )A .24m n =B .22m n =C .()214m n +=D .()212m n +=7.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x ﹣1 0 1 3 y ﹣1353则代数式﹣2a(4a +2b +c )的值为( ) A .92 B .152C .9D .158.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<< 9.在Rt ABC △中,如果各边长度都扩大为原来的2倍,那么锐角A 的余弦值( ) A .扩大2倍B .缩小2倍C .扩大4倍D .没有变化10.如图,ABC ∆是等边三角形,点,D E 分别在边,BC AC 上,且,BD CE AD =与BE 相交于点F .若7,1AF DF ==,则ABC ∆的边长等于( )A 572B 582C 582D 57211.如图,边长为3AOB 的顶点B 在x 轴的正半轴上,点C 为AOB 的中心,将AOB 绕点O 以每秒60︒的速度逆时针旋转,则第2021秒,AOB 的中心C 的对应点2021C 的坐标为( )A .()0,2-B .()3,1-C .()1,3D .()1,3-12.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为( )A .2B .5C .3D .6二、填空题13.如图,已知AC 为⊙O 的直径,BC 为⊙O 的切线,且BC=AC ,连接线段AB ,与⊙O 交于点D ,若AC=4cm ,则阴影部分的面积为=_________14.如图平面直角坐标系中,⊙O 的半径55,弦AB 的长为4,过点O 做OC ⊥AB 于点C ,⊙O 内一点D 的坐标为(﹣4,3),当弦AB 绕点O 顺时针旋转时,点D 到AB 的距离的最小值是_____.15.若A (m-2,n ),B (m+2,n )为抛物线2()2020y x h =--+上两点,则n=_______.16.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b的取值范围是______.17.已知抛物线为21()y a x m k =++与()22()0y a x m k m =---≠关于原点对称,我们称1y 为与2y 互为“和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线”________.18.如图,在Rt ABC 中,C 90∠=︒,25AC =,2cos 3B =,则AB =______.19.江堤的横断面如图,堤高BC 10=米,迎水坡AB 的坡比是1:3,则堤脚AC 的长是______.20.如图,矩形OABC 的顶点,A C 分别在x 轴、y 轴上,顶点B 在第二象限,3,AB =将线段OA 绕点О按顺时针方向旋转60︒得到线段,OD 连接,AD 反比例函数()0ky k x=≠的图象经过,D B 两点,则k 的值为____.21.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.22.直角三角形ABC 中,∠B =90°,若cosA =35,AB =12,则直角边BC 长为___. 三、解答题23.在如图所示的网格中,每个小正方形的边长为1,将ABC ∆绕着点C 顺时针旋转90︒,得到11A B C ∆.(1)画出11A B C ∆;(2)求点A 在旋转过程中的路径长;(3)DEF ∆可以看作是由11A B C ∆旋转得到,在点,,,P Q M N 中,点 是旋转中心.24.如图,在平面直角坐标系xOy 中,方格纸的每个小方格都是边长为1个单位的正方形,Rt ABC △的顶点均在格点(小正方形的顶点)上.(1)将ABC 绕着点A 顺时针旋转90︒得到11AB C △,试在图上画出11AB C △; (2)并求出点C 到点1C 所经过的路径的长; (3)ABC 的外心坐标为__________;(4)ABC 的内切圆半径为_______________.(直接写出答案)25.如图,在平面直角坐标系中,已知AOB ,90AOB ∠=︒,AO BO =,点A 的坐标为()3,1-.(1)求点B 的坐标.(2)求过点A ,O ,B 的二次函数的表达式.(3)设点B 关于二次函数的对称轴l 的对称点为1B ,求1AB B 的面积.26.如图,已知抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C 且AB =6,抛物线的对称轴为直线x =1(1)抛物线的解析式;(2)x 轴上A 点的左侧有一点E ,满足S △ECO =4S △ACO ,求直线EC 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】连接OB ,作OP ⊥AB 于E ,OF ⊥CD 于F ,根据弦、弧、圆心角、弦心距的关系定理得到OP=OF ,得到矩形PEFO 为正方形,根据正方形的性质得到OP=PC ,根据垂径定理和勾股定理求出OP ,根据勾股定理计算即可.【详解】解:连接OB,作OP⊥AB于E,OF⊥CD于F,则BP=12AB=4,四边形PEFO为矩形,∵AB=CD,OP⊥AB,OF⊥CD,∴OP=OF,∴矩形PEFO为正方形,∴OP=PC,在Rt△OPB中,OP=222254OB BP-=-=3,∴OE=22OP PC+=32,故选:B.【点睛】本题考查了垂径定理以及勾股定理、矩形的判定与性质等知识,正确得出O到AB,CD的距离是解题关键.2.B解析:B【分析】连接AF,AD,AE,BE,CE,根据三角形外心的定义,可得PE垂直平分AB,QE垂直平分AC,进而求得AF,DF,AD的长度,可知△ADF是直角三角形,即可求出△ABC的面积.【详解】如图,连接AF,AD,AE,BE,CE,∵点E是△ABC的外心,∴AE=BE=CE,∴△ABE,△ACE是等腰三角形,∵点P 、Q 分别是AB 、AC 的中点, ∴PE ⊥AB ,QE ⊥AC ,∴PE 垂直平分AB ,QE 垂直平分AC , ∴AF=BF=10, AD=CD=8,在△ADF 中,∵2222286=100=AD DF AF +=+, ∴△ADF 是直角三角形,∠ADF=90°, ∴S △ABC =()()1122=1068896BF DF CD AD ⨯++⨯++=, 故选:B . 【点睛】本题考查三角形外心的定义,勾股定理逆定理等知识点,解题的关键是得到△ADF 是直角三角形.3.B解析:B 【分析】根据点与圆的位置关系进行判断即可; 【详解】∵圆的半径为8cm ,P 到圆心O 的距离为8cm , 即OP=8, ∴点P 在圆上 故选:B . 【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种:设OO 的半径为r ,点P 到圆心的距离OP=d ,则有:点P 在圆外→d>r ;点P 在圆上→d=r ;点P 在圆内→d<r ;4.B解析:B 【分析】①连接AC ,并延长AC ,与BD 的延长线交于点H ,若PD=PB ,得出P 为AM 的中点,与实际不符,即可判定正误;②先求出∠BOC ,再由弧长公式求得BC 的长度,进而判断正误;③由∠BOC=60°,得△OBC 为等边三角形,再根据三线合一性质得∠OBE ,再由角的和差关系得∠DBE ,便可判断正误;④证明∠CPB=∠CBF=30°,∠PCB=∠BCF ,可得△BCF ∽△PCB 相似; ⑤由等边△OBC 得BC=OB=4,再由相似三角形得CF•CP=BC 2,便可判断正误. 【详解】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,∵M ,C 是半圆上的三等分点, ∴∠BAH=30°,∵BD 与半圆O 相切于点B . ∴∠ABD=90°, ∴∠H=60°,∵∠ACP=∠ABP ,∠ACP=∠DCH , ∴∠PDB=∠H+∠DCH=∠ABP+60°, ∵∠PBD=90°-∠ABP ,若∠PDB=∠PBD ,则∠ABP+60°=90°-∠ABP , ∴∠ABP=15°,∴P 点为AM 的中点,这与P 为AM 上的一动点不完全吻合, ∴∠PDB 不一定等于∠ABD , ∴PB 不一定等于PD , 故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC=13×180°=60°, ∵直径AB=8, ∴OB=OC=4,∴BC 的长度=41806043ππ⨯=, 故②正确;③∵∠BOC=60°,OB=OC , ∴∠ABC=60°,OB=OC=BC , ∵BE ⊥OC , ∴∠OBE=∠CBE=30°, ∵∠ABD=90°, ∴∠DBE=60°, 故③错误;④∵M 、C 是AB 的三等分点, ∴∠BPC=30°, ∵∠CBF=30°, ∠PCB=∠BCF ,∴△BCF ∽△PCB 故④正确;⑤∵∠CBF=∠CPB=30°,∠BCF=∠PCB , ∴△BCF ∽△PCB ,∴CB CFCP CB =, ∴CF•CP=CB 2,∵CB =OB =OC =12AB =4, ∴CF•CP=16, 故⑤正确. 故选:B . 【点睛】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用.5.C解析:C 【分析】由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==,进而可得点()1,4是二次函数的顶点,故设二次函数解析式为()214y a x =-+,然后代入点()1,0-可得二次函数解析式,最后问题可求解.【详解】解:由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==, ∴点()1,4是二次函数的顶点,设二次函数解析式为()214y a x =-+,代入点()1,0-可得:1a =-,∴二次函数解析式为()214y x =--+,∵该二次函数图象向左平移后通过原点, ∴设平移后的解析式为()214y x b =--++,代入原点可得:()2014b =--++,解得:123,1b b ==-(舍去), ∴该二次函数的图象向左平移3个单位长度; 故选C . 【点睛】本题主要考查二次函数的图象与性质及平移,熟练掌握二次函数的图象与性质及平移是解题的关键.6.C解析:C【分析】设解析式为()()12y x x m n =---+,得对称轴为32m x +=,由抛物线与x 轴只有一个交点得顶点为3,02m +⎛⎫ ⎪⎝⎭,代入()()12y x x m n =---+整理后即可得出结论. 【详解】解:设解析式为()()12y x x m n =---+∵A ,B 两点关于对称轴对称∴对称轴为直线12322m m x +++== ∵二次函数与x 轴只有一个交点∴顶点为3,02m +⎛⎫ ⎪⎝⎭把3,02m +⎛⎫ ⎪⎝⎭代入()()12y x x m n =---+ ∴3312022m m m n ++⎛⎫⎛⎫---+= ⎪⎪⎝⎭⎝⎭∴1102222m m n ⎛⎫⎛⎫+--+= ⎪⎪⎝⎭⎝⎭∴()214m n += 故选:C【点睛】本题考查的是抛物线与x 轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.7.B解析:B【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2b a-(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等,∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5. ∴2b a -(4a +2b +c )=32×5=152. 故选:B .【点睛】 本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2b a-和(4a+2b+c )的值是解题的关键. 8.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 9.D解析:D【分析】根据三角函数的定义和分数的基本性质联手解答即可.【详解】如图,cosA=BCAB , 根据分数的基本性质,得BC AB =22BC AB, ∴余弦值不变,故选D .【点睛】本题考查了锐角三角函数的定义及其分数的基本性质,熟练掌握函数的定义,灵活运用分数的基本性质是解题的关键.10.C解析:C【分析】先证明△ABD ≅△BCE ,推出∠BDA=∠FDB ,BE= DA=8,再证明△BDA ~△FDB ,利用相似三角形的性质求得BD=CE=2,作EG ⊥BC 于G ,根据解直角三角形的知识即可求解【详解】∵ABC ∆是等边三角形,,∴AB=BC ,∠ABD=∠C=60︒,在△ABD 和△BCE 中,60AB BC ABD C BD CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≅△BCE ,∴∠BAD=∠CBE ,BE= DA=1+7=8, ∵∠BDA=∠FDB ,∴△BDA ~△FDB ,∴BD DA FD BD =,即171BD BD+=,∴BD=22,则CE=BD=22,作EG ⊥BC 于G ,∵∠C=60︒,∴CG=CE ⋅1cos602222︒==EG=CE ⋅3sin 60226︒== 在Rt △BEG 中,()22228658BE EG -=-=∴582故选:C【点睛】 本题考查了全等三角形的判定和性质,相似三角形的判定和性质,特殊角的三角函数值,等边三角形各边长相等、各内角为60°的性质.关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.11.B解析:B【分析】通过计算画出第2021秒,AOB 的位置,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,求出DC′的长,即可求解.【详解】∵360°÷60°=6,∴AOB 的位置6秒一循环,而2021=6×336+5,∴第2021秒,AOB 的位置如图所示, 设点C 的对应点C′,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,则∠DOC′=30°,3,∴DC′=OD∙tan ∠333, ∴C′)3,1-. 故选B .【点睛】本题主要考查图形于=与坐标,等边三角形的性质,锐角三角函数,找到图形的变化规律,画出图形,是解题的关键.12.A解析:A【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF 的值,继而求得答案.【详解】解:如图:连接BE,∵四边形BCED是正方形,∴DF=CF=12CD,BF=12BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=12CF=12BF,在Rt△PBF中,tan∠BPF=BFPF=2,∵∠APD=∠BPF,∴tan∠APD=2.故选:A.【点睛】本题考查相似三角形的判定与性质,以及求角的正切值,灵活运用相似三角形的性质,并理解正切的定义是解题关键二、填空题13.【分析】阴影部分面积等于根据切线的性质圆周角定理和等腰直角三角形的性质分别求出相关线段的长是或角的度数是解题关键【详解】解:连接ODCD ∵AC 为⊙O 的直径BC 为⊙O 的切线∴AC ⊥BC ∠ADC=90°解析:6π-【分析】阴影部分面积等于=ABC AOD OCD S S S S ∆∆--阴扇形,根据切线的性质、圆周角定理和等腰直角三角形的性质分别求出相关线段的长是或角的度数是解题关键.【详解】解:连接OD ,CD ,∵AC 为⊙O 的直径,BC 为⊙O 的切线,∴AC ⊥BC ,∠ADC=90°,∵BC=AC=4cm ,∴△ABC 为等腰直角三角形,∠CAD=45°,AO=OC=OD=2cm ,OD ⊥AC ,∴∠COD=2∠CAD=90°,211902==4422622360ABC AOD OCD S S S S ππ∆∆⨯--⨯⨯-⨯⨯-=-阴扇形, 故答案为:6π-.【点睛】本题主要考查求不规则图形的面积,切线的性质,圆周角定理等.掌握割补法是解题关键.14.6【分析】连接OB 如图利用垂径定理得到AC=BC=2则利用勾股定理可计算出OC=11利用垂线段最短当OC 经过点D 时点D 到AB 的距离的最小然后计算出OD 的长从而得到点D 到AB 的距离的最小值【详解】解:解析:6【分析】连接OB ,如图,利用垂径定理得到AC=BC=2,则利用勾股定理可计算出OC=11,利用垂线段最短,当OC 经过点D 时,点D 到AB 的距离的最小,然后计算出OD 的长,从而得到点D 到AB 的距离的最小值.解:连接OB ,如图,∵OC ⊥AB ,∴AC=BC=12AB=2, 在Rt △OBC 中,2222(55)211OB BC -=-=,当OC 经过点D 时,点D 到AB 的距离最小,∵2243+,∴点D 到AB 的距离的最小值为11-5=6.故答案为6.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.2016【分析】根据二次函数的图象与性质可得抛物线的对称轴为再利用m-2+m+2=2h 解得m=h 则可得A (h−2n )B (h +2n )将B (h +2n )代入函数关系式即可求出结果【详解】解:∵A (m-2n解析:2016【分析】根据二次函数的图象与性质可得抛物线2()2020y x h =--+的对称轴为x h =,再利用m-2+m+2=2h ,解得m=h ,则可得A (h−2,n ),B (h +2,n ),将B (h +2,n )代入函数关系式即可求出结果.【详解】解:∵A (m-2,n ),B (m+2,n )是抛物线2()2020y x h =--+上两点, ∴抛物线2()2020y x h =--+的对称轴为x h =,∴m-2+m+2=2h ,解得m=h ,∴A (h−2,n ),B (h +2,n ),当x =h +2时,n =−(h +2−h )2+2020=2016,故答案为:2016.本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上的点的坐标特征并灵活运用所学知识解决问题.16.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴ 解析:2564b -<<- 【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --; ∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6.本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.17.【分析】先将抛物线进行配方后根据和谐抛物线定义写出已知函数的和谐抛物线并整理成一般式【详解】解:∵∴抛物线的和谐抛物线为:即故答案为:【点睛】本题考查了新定义函数问题配方法熟练配方并准确理解新定义是 解析:2467y x x =+-.【分析】先将抛物线进行配方,后根据 “和谐抛物线”定义写出已知函数的“和谐抛物线”,并整理成一般式.【详解】解:∵223374674()44y x x x =-++=--+, ∴抛物线2467y x x =-++的“和谐抛物线”为:23374()44y x =+- 即2467y x x =+-,故答案为:2467y x x =+-.【点睛】本题考查了新定义函数问题,配方法,熟练配方,并准确理解新定义是解题的关键. 18.6【分析】设BC=2x 根据余弦的定义用x 表示出AB 根据勾股定理列式计算得到答案【详解】解:设BC=2x 在Rt △ABC 中∠C=90°∴∴AB=3x 由勾股定理得AC2+BC2=AB2即(2)2+(2x )解析:6【分析】设BC=2x ,根据余弦的定义用x 表示出AB ,根据勾股定理列式计算,得到答案.【详解】解:设BC=2x ,在Rt △ABC 中,∠C=90°,2cos 3B =, ∴23BC AB =, ∴AB=3x ,由勾股定理得,AC 2+BC 2=AB 2,即(2+(2x )2=(3x )2,解得,x=2,∴AB=3x=6,故答案为:6.本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键.19.米【分析】在Rt △ABC 中已知了坡面AB 的坡比是铅直高度BC 和水平宽度AC 的比值据此即可求解【详解】解:根据题意得:BC :AC=1:解得:AC=BC=10(米)故答案为:10米【点睛】本题考查了解直解析:【分析】在Rt △ABC 中,已知了坡面AB 的坡比是铅直高度BC 和水平宽度AC 的比值,据此即可求解.【详解】解:根据题意得:BC :AC=1解得:故答案为:【点睛】本题考查了解直角三角形的应用——坡度坡角问题,理解坡度坡角定义是关键. 20.【分析】作DE ⊥x 轴垂足为E 设OA=m 则点B 坐标为根据旋转的性质求出OA=OD=m ∠AOD=60°求出点D 坐标为构造关于m 的方程解方程得出点B 坐标即可求解【详解】解:如图作DE ⊥x 轴垂足为E 设OA=解析:-【分析】作DE ⊥x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,根据旋转的性质求出OA=OD=m ,∠AOD=60°,求出点D 坐标为1,22m m ⎛⎫-⎪ ⎪⎝⎭,构造关于m 的方程,解方程得出点B 坐标,即可求解.【详解】解:如图,作DE ⊥x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,∵线段OA 绕点О按顺时针方向旋转60︒得到线段,OD∴OA=OD=m ,∠AOD=60°, ∴1cos 2OE OD DOE m =∠=,sin DE OD DOE =∠=,∴点D 坐标为1,22m m ⎛⎫- ⎪ ⎪⎝⎭,∵点B 、D 都在反比例函数()0k y k x =≠的图象上, ∴13322m m m -=-, 解得124,0x x ==(不合题意,舍去),∴点B 坐标为()4,3-, ∴4343k =-⨯=-.故答案为:43-【点睛】本题为反比例函数与几何综合题,考查了反比例函数的性质,旋转的性质,三角函数等知识,理解反比例函数性质,构造方程,求出点B 坐标是解题关键.21.8【分析】在Rt △ADC 中利用正弦的定义得sinC ==则可设AD =12x 所以AC =13x 利用勾股定理计算出DC =5x 由于cos ∠DAC =sinC 得到tanB =接着在Rt △ABD 中利用正切的定义得到B解析:8【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sin C 得到tan B =1213,接着在Rt △ABD 中利用正切的定义得到BD =13x ,所以13x +5x =12,解得x =23,然后利用AD =12x 进行计算. 【详解】 在Rt △ADC 中,sin C =AD AC =1213, 设AD =12x ,则AC =13x , ∴DC 22AC AD -=5x ,∵cos ∠DAC =sin C =1213, ∴tan B =1213,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.22.16【分析】先利用三角函数解直角三角形求得AC=20再根据勾股定理即可求解【详解】解:∵在直角三角形ABC中∠B=90°cosA=AB=12∴cosA===∴AC=20∴BC===16故答案是:16解析:16【分析】先利用三角函数解直角三角形,求得AC=20,再根据勾股定理即可求解.【详解】解:∵在直角三角形ABC中,∠B=90°,cosA=35,AB=12,∴cosA=ABAC =12AC=35,∴AC=20,∴BC=22AC AB-=222012-=16.故答案是:16.【点睛】此题主要考查勾股定理、锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.三、解答题23.(1)见解析;(2)32π;(3)点N【分析】(1)分别半A、B两点绕点C顺时针方向旋转90°得出即可;(2)根据弧长公式求解即可;(3)根据旋转中心的定义进行辨析即可.【详解】解:(1)如图,11A B C ∆为所求(2)点的路径长为:90331801802n r l πππ⨯=== (3)DEF ∆可以看作是由11A B C ∆旋转得到,在点,,,P Q M N 中,点N 是旋转中心. 理由:NC=NF ,NA 1=ND ,NB 1=NE,∠A 1ND=∠CNF=∠B 1NE=90°所以,点N 是旋转中心.故答案为:N .【点睛】此题主要考查了旋转图形的画法、旋转中心的确定以及弧长的求法,学会求作旋转三角形是解答此题的关键.24.(1)见解析;(2)52π;(3)()34,2-;(4)1【分析】(1)根据网格结构找出点B 、C 绕着点A 顺时针旋转90°得到B 1、C 1的位置,然后顺次连接即可;(2)利用勾股定理列式求出AC ,然后根据弧长公式列式计算即可得解;(3)根据直角三角形的外心是斜边的中点,并由图象可得点A 的坐标是(-6,0),C 的坐标是(-2,3),利用中点坐标公式即可求解;(4)利用等面积法即可列出关于内切圆半径的等式,计算后即可得出结果.【详解】解:(1)如图所示,△AB 1C 1即为所求作的图形;(2)∵AB =4,BC =3,∴AC 5==,∴点C 到点1C 所经过的路径的长为:90551802l ππ⨯==; (3)∵直角三角形的外心是斜边的中点,且点A 的坐标是(-6,0),C 的坐标是(-2,3), ∴12×(-6-2)=-4,12×(0+3)=32, ∴△ABC 的外心坐标为()34,2-; 故答案为:()34,2-;(4)设Rt △ABC 的内切圆半径为r ,∵S △ABC =12×3×4=6, ∴12×3r+12×4r+12×5r=6, 解得r=1,∴△ABC 的内切圆半径为1.故答案为:1.【点睛】此题考查了旋转变换、弧长的计算、三角形的外接圆与内切圆等知识,掌握旋转变换的性质、弧长的计算、三角形外接圆与内切圆的相关知识是解题的关键.25.(1)点B 的坐标是()1,3;(2)251366y x x =+;(3)1 235=AB B S △. 【分析】(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .证明()OEB AAS ADO ≌△△,利用三角形全等的性质可得1OE AD ==,3==BE OD ,从而可得答案;(2) 设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,把()()()3,1,0,0,1,3,A O B -代入解析式,利用待定系数法列方程组解方程组可得答案; (3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥ 先求解抛物线的对称轴1313651026x =-=-⨯,1,B B 关于l 对称,再求解1,,BB AM 利用三角形的面积公式可得答案.【详解】解(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .∴ 90,ADO BEO ∠=∠=︒90AOD DAO ∠+∠=︒,()3,1,A -3,1,OD AD ∴==∵90AOB ∠=︒,∴90AOD BOE ∠+∠=︒.∴DAO BOE ∠=∠.在Rt AOD 和Rt OBE 中,90ADO BEO DAO BOEAO BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()OEB AAS ADO ≌△△.∴1OE AD ==,3==BE OD∴ 点B 的坐标是()1,3.(2)()()()3,1,0,0,1,3,A O B -设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,∴ 39310a b c a b c c ++=⎧⎪-+=⎨⎪=⎩. ∴561360a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩. 过点A ,O ,B 的抛物线的函数表达式为251366y x x =+.(3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥251366y x x =+的对称轴1313651026x =-=-⨯. 1,B B 关于l 对称,()()1,3,3,1,B A -1132321,105BB ⎛⎫∴=⨯+= ⎪⎝⎭()33M -,, 312,AM ∴=-=∴ 1123232255AB B S =⨯⨯=. 【点睛】本题考查的是图形与坐标,三角形全等的判定与性质,利用待定系数法求解二次函数的解析式,二次函数的性质,掌握以上知识是解题的关键.26.(1)2142y x x =-++;(2)142y x =+. 【分析】(1)已知了抛物线的对称轴以及AB 的长,即可得到A 、B 的坐标,代入抛物线的解析式中求得待定系数的值,即可得出抛物线的解析式;(2)由于△ECO 和△ACO 的高都为OC ,根据等高三角形的面积比等于底边比可知:OE :OA =4:1,据此可求出E 点坐标,然后根据E 、C 坐标可用待定系数法求出直线EC 的解析式.【详解】解:(1)∵抛物线的对称轴为直线x =1,12a =-, ∴12b a-=,∴1b =,∵AB =6,∴A (−2,0),B (4,0),将B (4,0),1b =代入解析式212y x bx c =-++得4c =, ∴抛物线的解析式为:2142y x x =-++; (2)S △ECO =12EO•OC ,S △ACO =12AO•OC , ∵S △ECO =4S △ACO ,且OA=2,∴EO =4AO =8,∵点E 在A 点的左侧,∴E (−8,0),由抛物线的解析式得:C (0,4),设直线EC 的解析式为:y =kx +b ,将E (−8,0),C (0,4),代入得:804k b b -+=⎧⎨=⎩, 解得124k b ⎧=⎪⎨⎪=⎩,∴直线EC 的解析式为142y x =+. 【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数解析式等知识,熟练掌握二次函数的图象与性质并能准确利用待定系数法求函数解析式是解题的关键.。
初三学生数学学情分析初三学生处于学习和成长的关键阶段,因此在学习和生活中应该受到关注,这样才对孩子学习生活以及成长有帮助,下面就本届初三学生数学学情进行分析。
我班学生基础高低参差不齐,有的基础较牢,成绩较好。
当然也有个别学生没有养成良好的学习习惯、行为习惯。
这样要因材施教,使他们在各自原有的基础上不断发展进步。
从考试情况来看:优等生占12%,学习发展生占56%。
总体情况分析:学生两极分化十分严重,优等生比例偏小,学习发展生所占比例太大,其中发展生大多数对学习热情不高,不求上进。
而其中的优等生大多对学习热情高,但对问题的分析能力、计算能力、、概括能力存在严重的不足,尤其是所涉及的知识拓展和知识的综合能力方面不够好,学生反应能力弱。
根据以上情况分析:产生严重两极分化的主要原因是学生在学生基础太差,学习习惯差,许多学生不会进行知识的梳理,同时学生面临毕业和升学的双重压力等,致使许多学生产生了厌学心理。
为了彻底解决了以上问题,应据实际情况,创新课堂教学模式,推行“自主互动”教学法,真正让学生成为课堂的主人,体验到“我上学,我快乐;我学习,我提高”。
首先从培养学生的兴趣入手,分类指导,加大平日课堂的要求及其它的有力措施,平日认真备课、批改作业,做好优生优培和学习困难生转化工作。
数学基本概念的教学对于学生学好数学是很重要的。
在复习中,既要注意概念的科学性,又要注意概念形成的阶段性。
由于概念是逐步发展的,因此要特别注意遵循循序渐进,由浅入深的原则。
对于某些概念不能一次就透彻地揭示其涵义,也不应把一些初步的概念绝对化。
在教学中要尽可能做到通俗易懂,通过对分析、比较、抽象、概括,使学生形成概念,并注意引导学生在学习,生活和劳动中应用学过的概念,以便不断加深对概念的理解和提高运用数学知识的能力。
在平日讲课中学会对比。
要在区别的基础上进行记忆,在掌握时应进行对比,抓住本质、概念特征,加以记忆。
激发学生学习数学的兴趣,帮助学生形成概念,获得知识和技能,培养观察和分析推理能力,培养学生实事求是、严肃认真的科学态度和科学的学习方法。
九年级数学第二次作业效果检测 班级 姓名 得分
一、选测题(每题3分,共10题,共30分)
1、抛物线y =-5x 2的顶点坐标是 ( ) A (1,1) B (-5,1) C (1,-5) D (0,0)
2、若远点是抛物线y =(m +1)x 2的最高点,则m 的取值范围是 ( )
A.m <-1
B.m <1
C.m >-1
D.m ≤-1
3、抛物线y =x 2-2x +1的顶点坐标是 ( )
A.(1,0)
B.(-1,0) C (-2,1) D (2,-1)
4、若抛物线y =x 2-1
2x +c 的顶点在x 轴上,则c 的值是 ( ) A.116 B.-116 C.14 D.-1
4 5、二次函数y =3x 2-2x -4的二次项系数与常数项的和是 ( )
A.1
B.-1
C.7
D.-6
6、抛物线y =4(x -4)2+3是由y =4x 2如何得到的? ( )
A.向左平移4个单位,向上平移3个单位
B.向左平移4个单位,向下平移3个单位
C.向右平移4个单位,向上平移3个单位
D.向右平移4个单位,乡下平移3个单位
7、抛物线y =-3x 2+5的对称轴是 ( )
A.直线x =12
B.直线x =-1
2 C.y 轴 D. 直线x=2
8、已知抛物线y =x 2-mx +m -2,那么抛物线与x 轴的交点个数是 ( )
A.2
B.1
C.0
D.与m 的值有关
9、下列四个函数图象中,当0<x 时,函数值y 随自变量x 的增大而减小的是( ) A. B.
C. D. 10、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下
列结论:①ac b 42>,②0abc >,③0a 8>+c ,④039<++c b a 。
其中正确结论的个数是( )
A.0个
B.1个
C.2个
D.3个
二、填空题(每题4分,共6题,共24分)
11、若抛物线2)1(x m y -=的开口向上,且与抛物线2
2x y -=的开口大小相同,则m 的值为
12、抛物线32-+=bx ax y 过点(2,4),则代数式148++b a 的值为
13、抛物线2312--=x y 可由抛物线33
12+-=x y 向 平移 个单位得到。
14、若二次函数)2(2-++=m m x x y 的图像经过远点,则m 的值为
15、若m m
x m y -+=2)1(是二次函数,m 的值为 16若抛物线c bx ax y ++=2的大致图像如图所示,则b 的取值范围是
三、简答题(共6题,共46分)
17、已知抛物线的顶点坐标为M (1,-2),且经过点N (2,3),求这个二次函数的表达式。
18、已知二次函数42
12++-=x x y (1)求抛物线的顶点坐标和对称轴;
(2)当x 为何值时,y 有最大(小)值;
(3)求抛物线与两坐标轴的交点坐标;
19、如图,已知二次函数c bx x y ++=2
过点A(1,0),C(0,-3)
(1)求此二次函数的解析式。
(2)在抛物线上存在一点P 使ABP ∆的面积为10,请求出点P 的坐
标。
20、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,其中A(-1,0).点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.
(1)求抛物线的表达式;
(2)求△MCB的面积.
21、如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P 在边AB上沿AB方向以每秒2cm/s的速度匀速运动,Q在边BC上沿BC方向以每秒1cm/s的速度匀速运动,当一点到达终点时,另一点也停止运动。
设运动时间为x秒,∆PBQ的面积为y(cm2)。
(1)求y关于x的函数关系式,并写出x的取值范围。
(2)求∆PBQ的面积的最大值。
22.阅读材料:
如图1,过∆ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫的"水平宽(a)",中间的这条直线在∆ABC内部线段的长度叫∆ABC的"铅垂高(h)".我们可得
ah ,即三角形面积等于水平宽与铅垂高乘积的出一种计算三角形面积的新方法:S∆ABC=1
2
一半.
解答下列问题:
如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA和PB.当点P运动到顶点C时,求∆ABC的铅垂高CD及S∆ABC;
S∆ABC,若存在,求出点P的坐标;若不存在,请说明理由.
(3)是否存在一点P,使S∆PAB=9
8。