新疆兵地十校2019-2020学年高二第一学期期末考试试题理数学【含解析】
- 格式:doc
- 大小:1.30 MB
- 文档页数:19
2019-2020年高二上学期期末考试 数学理 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。
) 1.下列命题正确的是A .若a 2>b 2,则a >b B .若1a >1b,则a <bC .若ac >bc ,则a >bD .若a <b , 则a <b2.抛物线28y x =-的焦点坐标是A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0)3. 设()ln f x x x =,若0'()2f x =,则0x =A. 2eB. eC.ln 22D. ln 24.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词, 然而他的实际效果大哩,原来这句话的等价命题是 A .不拥有的人们不一定幸福 B .不拥有的人们可能幸福 C .拥有的人们不一定幸福 D .不拥有的人们不幸福 5.不等式21≥-xx 的解集为A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞6.下列有关选项正确的...是 A .若q p ∨为真命题,则p q ∧为真命题. B .“5x =”是“2450x x --=”的充要条件.C .命题“若1x <-,则2230x x -->”的否命题为:“若1x <-,则2320x x -+≤”. D .已知命题p :R x ∈∃,使得210x x +-<,则p ⌝:R x ∈∀,使得210x x +-≥7.设0,0.a b >>1133aba b+与的等比中项,则的最小值为 A . 8 B . 4 C . 1D . 148. 如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为1234e e e e 、、、,其大小 关系为A.1243e e e e <<<B.1234e e e e <<<C.2134e e e e <<<D.2143e e e e <<<9.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k 的值是A .1 B.15 C. 75 D. 3510 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为A 9B 12C 16D 1711.在正方体111111ABCD A B C D BB ACD -中,与平面的余弦值为A32B33 C 32D3612.已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0.设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S , 记11S S λ=,22SS λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为A .32 B.12C. 1D. 2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分) 13. 在△ABC 中,若=++=A c bc b a 则,222_14.当x y 、满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .15. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .16 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 三、解答题求函数44313+-=x x y 在区间03⎡⎤⎣⎦,上的最大值与最小值以及增区间和减区间。
2019-2020学年高二上学期期末考试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 在一次数学测试中,成绩在区间上成为优秀,有甲、乙两名同学,设命题p是“甲测试成绩优秀”,q是“乙测试成绩优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”可表示为A. ¬¬B. ¬C. ¬¬D.【答案】A【解析】解:由题意值¬是“甲测试成绩不优秀”,¬是“乙测试成绩不优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”,则用¬¬表示,故选:A.求出¬,¬,结合或且非的意义进行求解即可.本题主要考查逻辑连接词的应用,结合复合命题之间的关系是解决本题的关键.2. 抛物线的焦点坐标是A. B. C. D.【答案】C【解析】解:在抛物线--,即,,,焦点坐标是,故选:C.先把抛物线的方程化为标准形式,再求出抛物线的焦点坐标.本题考查抛物线的标准方程和简单性质的应用,比较基础.3. 的一个必要不充分条件是A. B. C. D.【答案】D【解析】解:的充要条件为对于A是的充要条件对于B,是的充分不必要条件对于C,的不充分不必要条件对于D,是的一个必要不充分条件故选:D.通过解二次不等式求出的充要条件,通过对四个选项的范围与充要条件的范围间的包含关系的判断,得到的一个必要不充分条件.解决一个命题是另一个命题的什么条件,应该先化简各个命题,再进行判断,判断时常有的方法有:定义法、集合法.4. 已知双曲线C:的离心率为,则C的渐近线方程为A. B. C. D.【答案】D【解析】解:由题意可得,即为,由,可得,即,双曲线的渐近线方程为,即为.故选:D.运用双曲线的离心率公式可得,由a,b,c的关系和双曲线的渐近线方程,计算即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和双曲线的方程,考查运算能力,属于基础题.5. 四面体OABC中,M,N分别是OA,BC的中点,P是MN的三等分点靠近,若,,,则A. B. C. D.【答案】B【解析】解:根据题意得,故选:B.运用平面向量基本定理可解决此问题.本题考查平面向量基本定理的简单应用.6. 点到直线的距离为d,则d的最大值为A. 3B. 4C. 5D. 7【答案】A【解析】解:直线即,令,解得,.可得直线经过定点.则当时,d取得最大值..故选:A.直线即,令,解得直线经过定点则当时,d取得最大值.本题考查了直线经过定点、相互垂直的直线,考查了推理能力与计算能力,属于基础题.7. 如图:在直棱柱中,,,P,Q,M分别是,BC,的中点,则直线PQ与AM所成的角是A.B.C.D.【答案】D【解析】解:以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系.设,则0,,2,,0,,1,.,..直线PQ与AM所成的角是.故选:D.以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系,设,分别求出与的坐标,利用空间向量求解.本题考查异面直线所成角的求法,训练了利用空间向量求解空间角,是基础题.8. 《九章算术商功》:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?答曰:四万六千五百尺”所谓堑堵:就是两底面为直角三角形的直棱柱:如图所示的几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,则三棱台的表面积为A. 40B.C. 50D.【答案】B【解析】解:几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,取的中点N,连结MN,BN,,,三棱台的表面积为:梯形梯形梯形.故选:B.取的中点N,连结MN,BN,则三棱台的表面积为梯形梯形梯形.本题考查三棱台的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.9. 直线l过椭圆的左焦点F,且与椭圆交于P,Q两点,M为PQ的中点,O为原点,若是以OF为底边的等腰三角形,则直线l的斜率为A. B. C. D.【答案】B【解析】解:由,得,,.则,则左焦点.由题意可知,直线l的斜率存在且不等于0,则直线l的方程为.设l与椭圆相交于、,联立,得:.则PQ的中点M的横坐标为.是以OF为底边的等腰三角形,,解得:.故选:B.由椭圆方程求得椭圆的焦点坐标,设出直线方程和椭圆方程联立,由根与系数关系结合中点坐标公式求出M的坐标,由,求得直线l的斜率.本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,是中档题.10. 已知抛物线的焦点为F,准线为l,直线m过点F,且与抛物线在第一、四象限分别交于A,B两点,过A点作l的垂线,垂足为,若,则A. B. C. D. P【答案】C【解析】解:抛物线的焦点为,准线为l:,当直线m的斜率不存在时,,不满足题意;当直线m的斜率存在时,设直线m的方程为,与抛物线联立,得,消去y整理得,,又,,,.故选:C.讨论直线m的斜率不存在时,不满足题意;直线m的斜率存在时,设直线m的方程为,与抛物线联立消去y得的值;利用求出的值,再求的值,从而求得的值.本题考查了直线与抛物线方程的应用问题,也考查了分类讨论思想应用问题,是中档题.11. 已知椭圆C的两个焦点分别是,,短轴的两个端点分别为M,N,左右顶点分别为,,若为等腰直角三角形,点T在椭圆C上,且斜率的取值范围是,那么斜率的取值范围是A. B. C. D.【答案】C【解析】解:设椭圆方程为.由为等腰直角三角形,且,得,解得,.则椭圆C的方程为.则,.设,则,得,,,,又,,解得:.斜率的取值范围是.故选:C.由已知求得椭圆方程,分别求出,的坐标,再由斜率之间的关系列式求解.本题考查椭圆的简单性质,考查运算求解能力及推理运算能力,是中档题.12. 如图:已知双曲线中,,为左右顶点,F为右焦点,B为虚轴的上端点,若在线段BF上不含端点存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率e的取值范围是A.B.C.D.【答案】A【解析】解:由题意,,,则直线BF的方程为,在线段BF上不含端点存在不同的两点,使得构成以线段为斜边的直角三角形,,,,在线段BF上不含端点有且仅有两个不同的点,使得,可得,,,.故选:A.求出直线BF的方程为,利用直线与圆的位置关系,结合,即可求出双曲线离心率e 的取值范围.本题考查双曲线的简单性质,考查离心率,考查直线与圆的位置关系,属于中档题.二、填空题(本大题共4小题,共20.0分)13. “”是假命题,则实数m的取值范围是______.【答案】【解析】解:命题“”是假命题,则命题的否定是:,”是真命题,则,解得:故答案为:.特称命题与其否定的真假性相反,求解全称命题是真命题,求出m的范围即可.本题考查命题的真假判断与应用,考查等价转化思想与运算求解能力,属于基础题.14. 已知,若三向量共面,则实数______.【答案】【解析】解:,不平行,三向量共面,存在实数x,y,使,,解得,,.故答案为:.推导出不平行,由三向量共面,得存在实数x,y,使,列方程组能求出.本题考查的知识点是共线向量与向量及平面向量基本定理等基础知识,考查运算求解能力,是基础题.15. 如图,的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,则CD的长为______.【答案】【解析】解:由条件,知,.所以所以.故答案为:.由已知可得,,利用数量积的性质即可得出.本题考查面面角,考查空间距离的计算,熟练掌握向量的运算和数量积运算是解题的关键.16. 椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点,已知椭圆C,其长轴的长为2a,焦距为2c,若一条光线从椭圆的左焦点出发,第一次回到焦点所经过的路程为5c,则椭圆C的离心率为______.【答案】或或【解析】解:依据椭圆的光线性质,光线从左焦点出发后,有如图所示三种路径:图1中:,则;图2中:,则;图3中,,则.椭圆C的离心率为或或,故答案为:或或.由题意画出图形,分类求解得答案.本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.三、解答题(本大题共6小题,共70.0分)17. 已知命题p:方程表示双曲线;命题q:,若¬是¬的充分不必要条件,求实数k的取值范围.【答案】解:p真:得或,q真:,¬是¬的充分不必要条件,若¬是¬的充分不必要条件,则q是p的充分不必要条件,,则有或,或,即实数k的取值范围是或.【解析】求出命题p,q为真命题的等价条件,结合充分条件和必要条件的定义进行转化即可.本题主要考查充分条件和必要条件的应用,求出p,q为真命题的等价条件以及利用逆否命题的等价性进行转化是解决本题的关键.18. 在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.Ⅰ求,的极坐标方程;Ⅱ若直线的极坐标方程为,设与的交点为M,N,求的面积.【答案】解:Ⅰ由于,,:的极坐标方程为,故C:的极坐标方程为:,化简可得.Ⅱ把直线的极坐标方程代入圆:,可得,求得,,,由于圆的半径为1,,的面积为.【解析】Ⅰ由条件根据,求得,的极坐标方程.Ⅱ把直线的极坐标方程代入,求得和的值,结合圆的半径可得,从而求得的面积的值.本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.19. 如图:直三棱柱中,,,,D为棱上的一动点,M,N分别是,的重心,求证:;若点C在上的射影正好为M,求DN与面ABD所成角的正弦值.【答案】证明:有题意知,,,两两互相垂直,以为原点建立空间直角坐系如图所示,则0,,2,,0,,2,设0,,0,,N分别为和,的重心,,,.解:在上的射影为M,面ABD,,又,,得,解得得,或舍,,,设面ABD的法向量为y,,则,取,得1,,设DN与平面ABD所成角为则,与平面ABD所成角的正弦值为.【解析】由,,两两互相垂直,以为原点建立空间直角坐系,利用向量法能证明.求出面ABD的法向量,利用向量法能求出DN与平面ABD所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 设抛物线C:,点,过点P作直线l,若l与C只有一个公共点,求l的方程过C的焦点F,交C与A,B两点,求:弦长;以A,B为直径的圆的方程.【答案】解:若l的斜率不存在,则l:,符合题意;分若l的斜率存在,设斜率为k,则l:;分由,消去y得,由,解得或,直线l的方程为:或;分综上所述,直线l的方程为:或或;分抛物线的焦点为,直线l的方程为:;设,,由,消去x得,;又,;分以AB为直径的圆的半径为;设AB的中点为,则,,圆心为,所求圆的方程为;综上所述,,所求圆的方程为分.【解析】讨论l的斜率不存在和斜率存在时,分别求出直线l的方程即可;写出直线l的方程,与抛物线方程联立求得弦长,再求以AB为直径的圆的方程.本题考查了直线与圆以及抛物线方程的应用问题,是中档题.21. 如图,在等腰梯形CDEF中,CB,DA是梯形的高,,,现将梯形沿CB,DA折起,使且,得一简单组合体ABCDEF如图示,已知M,N分别为AF,BD 的中点.Ⅰ求证:平面BCF;Ⅱ若直线DE与平面ABFE所成角的正切值为,则求平面CDEF与平面ADE所成的锐二面角大小.【答案】证明:Ⅰ连AC,四边形ABCD是矩形,N为BD中点,为AC中点.在中,M为AF中点,故.平面BCF,平面BCF,平面BCF.Ⅱ依题意知,且平面ABFE,在面ABFE上的射影是AE.就是DE与平面ABFE所成的角.故在中:.设且,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,则设分别是平面ADE与平面CDFE的法向量令,即取则平面ADE与平面CDFE所成锐二面角的大小为.运用椭圆的性质,合理地进行等价转化.【解析】连结AC,通过证明,利用直线与平面平行的判定定理证明平面BCF.先由线面垂直的判定定理可证得平面ABFE,可知就是DE与平面ABFE所成的角,解,可得AD及DE的长,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,求出平面ADE与平面CDFE的法向量,代入向量夹角公式,可得答案.本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定与性质,直线与平面平行的判定,线面夹角,是立体几何知识的综合考查,难度较大.22. 已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为,离心率.Ⅰ求椭圆E的方程;Ⅱ过点作直线l交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.【答案】解:Ⅰ,所求椭圆E的方程为:分Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,把代入整理得:,分假设存在定点,使得为定值当且仅当,即时,为定值这时分再验证当直线l的倾斜角时的情形,此时取,,存在定点使得对于经过点的任意一条直线l均有恒为定值.【解析】Ⅰ,由此能导出所求椭圆E的方程.Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,由,整理得:,,假设存在定点,使得为定值由此入手能够推导出存在定点,使得对于经过点的任意一条直线l均有恒为定值.本题考查椭圆方程的求法和点M的存在性质的判断解题时要认真审题,注意挖掘题设中的隐含条件,灵活。
2019-2020学年度第一学期期末教学质量检测高二数学参考答案(理科)一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、1 14、(9,-4) 15、247 16、24;1112 . 三、解答题(共6个小题,共70分)17.(本小题10分)解:将圆C 的方程配方得标准方程为,则此圆的圆心为,半径为2.若直线l 与圆C 相切,则有,; ……………………………………5分过圆心C 作,则根据题意和圆的性质,,或7.……………………………………10分 故所求直线方程为或.18.(本小题12分)连结AC ,则F 是AC 的中点,E 为PC 的中点, 故在△CPA 中,EF ∥PA , ∵PA ⊂平面PAD ,EF ⊄平面PAD ,∴EF ∥平面PAD .……………………………………5分 (2)由(1)可得,EF ∥PA ,又EF ⊥PC , ∴PA ⊥PC∵平面PAD ⊥平面ABCD ,平面ABCD 为正方形 ∴CD ⊥平面PAD ,∴CD ⊥PA , 又CD ∩PC=C ,∴PA ⊥平面PDC , 又PA ⊂平面PAB ,∴平面PAB ⊥平面PCD .……………………………………12分19.(本小题12分)解 设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2,即x 2+y 2-4x -2y +5=r 2,圆C 与圆O 的方程相减得公共弦所在直线的方程为x +2y -5+r 2=0,因为该直线过点(5,-2),所以r 2=4,则圆C 的方程为(x -2)2+(y -1)2=4.……………………………………12分 20.(本小题12分),10,21,02)1(2≠>≤≥--=∆c c c c q 且又即)(为真时,非210≤<∴c ……………………………………5分112110)2(><<<<c c q c p 或为真,则若命题为真,则若命题 ”为假命题,”为真命题,“命题“q p q p ∧∨Θ 假时,真一真一假,当与q p q p ∴210≤<c ).,1(]21,0(,1+∞⋃∈>c c q p 综上所述:真时,假当…………………12分21.(本小题12分)(1)∵//AB CD , 2CD AB =, E 是CD 的中点, ∴//AB DE ,且AB DE =,∴ABDE 为平行四边形, ∴//AD BE ,∴//BE 平面PAD .……………………5分 (2)∵AB AD ⊥且ABDE 为平行四边形, ∴BE CD ⊥, AD CD ⊥, 由已知可得PA ⊥底面ABCD ,∴PA CD ⊥,∴CD ⊥平面PAD ,∴CD PD ⊥,∵E 和F 分别是CD 和PC 的中点,∴//PD EF ,∴CD EF ⊥,∴CD ⊥平面BEF ,∴平面BEF ⊥平面PCD ……………………12分22.(本小题12分)Ⅰ证明:正方形ABCD和矩形BDFE所在的平面互相垂直,平面ABCD,平面ABCD,,是正方形,,,面ABF,平面ABF,.………4分Ⅱ证明:连结EO,交BD于O点,M为EF的中点,,是平行四边形,,又BM不包含于平面ACE,平面ACE,平面ACE.………8分Ⅲ解:以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,,,,,,,,设平面CAF的法向量,则,取,得,又平面ABF的法向量,,,二面角的平面角为.………12分。
)x 2019—2020学年度第一学期期末统一考试高二数学试卷(理科)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题 共40分) 注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.不等式25x x ≥的解集是A .[0,5]B .[5,)+∞C .(,0]-∞D .(,0][5,)-∞+∞2.已知一个数列的前四项为22221357,,,24816--,则它的一个通项公式为 A .221(1)(2)nn n -- B .1221(1)(2)n n n --- C .221(1)2nn n -- D .1221(1)2n nn --- 3.椭圆221625400x y +=的离心率为 A .35B .45C .34D .16254.函数f(x)的导函数'()f x 的图象如右图所示,则下列说法正确的是A .函数()f x 在(2,3)-内单调递增B .函数()f x 在(4,0)-内单调递减C .函数()f x 在3x =处取极大值D .函数()f x 在4x =处取极小值5.等差数列{}n a 的前n 项和12...n n S a a a =+++, 若1031S =,20122S =,则40S =A .182B .242C .273D .4846.长为3.5m 的木棒斜靠在石堤旁,木棒的一端在离堤足1.4m 的地面上,另一端在沿堤上2.8m 的地方,堤对地面的倾斜角为α,则坡度值tan α等于 A .2315 B .516 C .23116 D .1157.已知0,0a b >>,且1a b +=,则11ab a b++的最小值是A .2B .22C .174D .88.已知p :函数2()1f x x mx =++有两个零点, q :x R ∀∈,244(2)10x m x +-+>.若p q ∨为真,p q ∧为假,则实数m 的取值范围为A .(,2)[3,)-∞-+∞B .(,2)(1,2][3,)-∞-+∞C .(1,2][3,)+∞D .(,2)(1,2]-∞-第II 卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中的横线上) 9.等差数列8,5,2,…的第30项是 .10.经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 .11.当x y 、满足不等式组11y xy x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .12.圆222()()x a y b r -+-=经过原点的一个充要条件是 .13.正三角形的一个顶点位于原点,另外两个顶点在抛物线24y x =上,则这个正三角形的边长为 .14.物体沿直线运动过程中,位移s 与时间t 的关系式是2()3s t t t =+. 我们计算在t时刻的附近区间[,]t t t +∆内的平均速度()()s t t s t v t+∆-==∆ ,当t ∆趋近于0时,平均速度v 趋近于确定的值,即瞬时速度,由此可得到t 时刻的瞬时速度为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.)15.(13分)等比数列{}n a 的公比为q ,第8项是第2项与第5项的等差中项. (1)求公比q ;(2)若{}n a 的前n 项和为n S ,判断396,,S S S 是否成等差数列,并说明理由.16.(13分)已知某精密仪器生产总成本C (单位:万元)与月产量x (单位:台)的函数关系为1004C x =+,月最高产量为150台,出厂单价p (单位:万元)与月产量x 的函数关系为21125801800p x x =+-. (1)求月利润L 与产量x 的函数关系式()L x ;(2)求月产量x 为何值时,月利润()L x 最大?最大月利润是多少?17.(13分)第四届中国国际航空航天博览会于2010年11月在珠海举行,一次飞行表演中,一架直升飞机在海拔800m 的高度飞行,从空中A 处测出前下方海岛两侧海岸P 、Q 处的俯角分别是45°和30°(如右图所示). (1)试计算这个海岛的宽度PQ .(2)若两观测者甲、乙分别在海岛两侧海岸P 、Q 处同时测得飞机的仰角为45和30,他们估计P 、Q 两处距离大约为600m ,由此试估算出观测者甲(在P 处)到飞机的直线距离.18.(14分)如图,四棱锥P ABCD -的底面ABCD 为一直角梯形,其中,BA AD CD AD ⊥⊥,2,CD AD AB PA ==⊥底面ABCD ,E 是PC 的中点.(1)试用,,AD AP AB 表示BE ,并判断直线BE 与平面PAD 的位置关系; (2)若BE ⊥平面PCD ,求异面直线PD 与BC 所成角的余弦值.19.(14分)已知函数3221()(2)3f x x ax a a x =-++,a R ∈.(1)当2a =-时,求()f x 在闭区间[]1,1-上的最大值与最小值;(2)若线段AB :()2302y x x =+≤≤与导函数()y f x '=的图像只有一个交点,且交点在线段AB 的内部,试求a 的取值范围.20.(13分)过直角坐标平面xOy 中的抛物线()220y px p =>的焦点F 作一条倾斜角为4π的直线与抛物线相交于A 、B 两点.(1)求直线AB 的方程;(2)试用p 表示A 、B 之间的距离; (3)证明:AOB ∠的大小是与p 无关的定值.参考公式:()()()2222224A A B B A B A B A B x y x y x x x x p x x p ⎡⎤++=+++⎣⎦2019—2020学年度第一学期期末统一考试 数学试卷(理科)答案一、选择题:DDAB DA C B二、填空题:9. -79; 10. 22188y x -=; 11. -3; 12. 222a b r +=;13. 3 14. 613t t ++∆,61t +.三、解答题:15. 解:(1)由题可知,8252a a a =+, ……(1分) 即741112a q a q a q =+, ……(3分)由于10a q ≠,化简得6321q q =+,即63210q q --=, ……(4分)解得31q =或312q =-. 所以1q =或34q =. ……(6分)(2)当1q =时,3191613,9,6S a S a S a ===.易知396,,S S S 不能构成等差数列. ……(8分)当34q =即312q =-时,31113(1)13(1)11221a q a a S q q q -==+=---, 931119(1)19[1()]11281a q a a S q q q -==--=---,621116(1)13[1()]11241a q a a S q q q-==--=---.(11分)zy易知3692S S S +=,所以396,,S S S 能构成等差数列. ……(13分)16.解:(1)2321111()(25)(1004)21100801800180080L x px C x x x x x x x =-=+--+=-++-, 其中0150x <≤. ……(4分) (2)221111'()21(1512600)(120)(105)60040600600L x x x x x x x =-++=---=--+.…(6分)令'()0L x =,解得120x = (105x =-舍). ……(7分)当(0,120)x ∈时,'()0L x >;当(120,150]x ∈时,'()0L x <. ……(9分) 因此,当120x =时,()L x 取最大值. …(10分)所以,月产量为120台时,月利润()L x 最大,最大月利润为(120)1640L =万元.…(13分)17. 解:(1)在Rt ACP ∆中,tan PCCAP AC=∠, 则800tan45800PC =⨯︒=. ……(3分) 在Rt ACQ ∆中,tan QCCAQ AC=∠, 则800tan 608003QC =⨯︒=……(5分) 所以,8003800PQ QC PC =-=(m ). ……(6分)(2)在APQ ∆中,600PQ =,30AQP ∠=︒,453015PAQ ∠=︒-︒=︒. ……(7分) 根据正弦定理,得600sin30sin15PA =︒︒, ……(9分) 则600sin30600sin30300(62)sin(4530)sin 45cos30cos45sin3062PA ︒︒====︒-︒︒︒-︒︒-.…(13分)18. 解:设,AB a PA b ==,建立如图所示空间直角坐标系,(0,0,0),(,0,0)A B a ,(0,0,)P b ,(2,2,0),(0,2,0)C a a D a ,(,,)2bE a a . ……(2分)(1)(0,,)2b BE a =,(0,2,0),(0,0,)AD a AP b ==, 所以1122BE AD AP =+, ……(5分)BE ⊄平面PAD ,//BE ∴平面PAD . ……(7分)(2)BE ⊥平面PCD ,BE PC ∴⊥,即0BE PC ⋅=.(2,2,)PC a a b =-,22202b BE PC a ∴⋅=-=,即2b a =. ……(10分)(0,2,2),(,2,0)PD a a BC a a =-=, ……(11分)2cos ,PD BC <=,所以异面直线PD 与BC . ……(14分)19. 解:(1)当2a =-时,321()23f x x x =+. ……(1分) 求导得2()4(4)f x x x x x '=+=+. ……(2分) 令()0f x '=,解得:4x =-或0x =. ……(3分)列表如下: ……(6分)所以,()f x 在闭区间[]1,1-上的最大值是73,最小值是0. ……(7分) (2)22()22y f x x ax a a '==-++. ……(8分)联立方程组2222,2 3.y x ax a a y x ⎧=-++⎨=+⎩ ……(9分)得()2221230.x a x a a -+++-= ……(10分)设22()2(1)23g x x a x a a =-+++-,则方程()0g x =在区间()0,2内只有一根, 相当于(0)(2)0g g ⋅<,即()()2223230,a a a a +-⋅--< ……(12分)解得 31a -<<-或13a <<. ……(14分)20.解:(1)焦点(,0)2pF ,过抛物线焦点且倾斜角为4π的直线方程是2p y x =-. …(3分)(2)由222y pxp y x ⎧=⎪⎨=-⎪⎩22304p x px ⇒-+=23,4A B A B p x x p x x ⇒+==4A B AB x x p p ⇒=++=. ……(8分) (3)222222222cos 2AO BO ABx y x y x x y y AOB AO BO+-+++----∠==()22A B A B p p x x x x -++===……(12分) ∴AOB ∠的大小是与p 无关的定值. ……(13分)1题:教材《必修⑤》 P76 预备题 改编,考查一元二次不等式求解. 2题:教材《必修⑤》 P67 2(2)改编,考查写数列通项公式. 3题:教材《选修1-1》 P40 例4 改编,考查椭圆几何性质.4题:教材《选修1-1》 P98 第4题改编,考查利用导数研究函数性质. 5题:教材《必修⑤》 P44 例2改编,考查等差数列性质及前n 项和 6题:教材《必修⑤》 P16 习题改编,考查利用余弦定理解三角形 9题:教材《必修⑤》 P38 例1(1)改编,考查等差数列通项公式 10题:教材《选修1-1》 P54 A 组第6题改编,考查双曲线方程与性质 11题:教材《必修⑤》 P91 第1(1)题改编,考查线性规划问题 12题:教材《选修1-1》 P12 第4题改编,考查充要条件.13题:教材《选修1-1》 P64 B 组第2题改编,考查抛物线方程及性质 14题:教材《选修1-1》 P74 导数概念的预备题 改编,考查导数概念15题:教材《必修⑤》 P61 第6题 改编,考查等差数列、等比数列的通项与前n项和.16题:教材《选修1-1》 P104 第6题改编,考查导数的应用. 17题:教材《必修⑤》 P19 第4题改编,考查解三角形.。
2019-2020学年高二年级上学期期末考试数学(理)试卷满分:150分 考试时间:120分钟第Ⅰ卷(选择题,共60分)选择题(本大题共12小题,每小题5分,共60分。
在每题给出的四个选项中,只有一个选项符合题目要求。
)1.设集合{}1,0,1,2A =-,{}|22B x x =-≤<,则A B ⋂= ( ) A. {}1,0,1- B. {}1,0- C. {}|10x x -<< D.{|10}x x -≤≤2.已知向量(1,2)a m =-,(,3)b m =-,若a b ⊥,则实数 m 等于( )A. 2-或3B. 2或3-C. 3D. 353.在ABC ∆中,若2a =,b =,30A =︒,则B 为( )A. 60B. 60或120C. 30D. 30或1504.已知命题11:,23xxp x R ⎛⎫⎛⎫∀∈> ⎪ ⎪⎝⎭⎝⎭;命题2000:,10q x R x x ∃∈--=;则下列命题为真命题的是( )A. p q ∧B. p q ∨⌝C. p q ⌝∧D. p q ⌝∧⌝5.阅读右边的程序框图,运行相应的程序,则输出S 的值 为( )A. 10-B. 6C. 14D. 186.若4cos 5α=-, α是第二象限的角,则sin 4πα⎛⎫-= ⎪⎝⎭ ( ) )A. 10-C. 10-D.107.若某多面体的三视图(单位: cm) 如图所示, 则此多面体的体积是( )A .2cm 3B .32m 3C .1cm 3D .31cm 38.抛物线214y x =的准线方程是( ) A. 1y =- B. 2y =- C. 1x =- D. 2x =-9.已知,x y 满足不等式组⎪⎩⎪⎨⎧≥-+≤-≥-04001y x y x x ,则目标函数3z x y =+的最小值是( )A.4B.6C.8D.10 10.已知数列{}n a 是递增的等比数列, 14239,8a a a a +==,则数列{}n a 的前10项和等于( )A.1024B.511C.512D.1023 11.函数3()35f x x x =-+在闭区间[3,0]-上的最大值与最小值的和是( ) A.6 B.8 C.-6 D.-812.过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=︒,则椭圆的离心率为( )A. 2B. 3C. 12D. 13第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分。
左视图主视图1223第一学期高二年级期末考试数学试卷(理科)满分:150分 ; 时间:120分钟;一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题意要求的。
)1、设集合A =()(){},014<+-∈x x Z x B ={}4,3,2,则=⋂B A A 、(2,4) B 、{}4,2 C 、{}3 D 、{}3,2 2、已知i 是虚数单位,复数Z 满足,2)1(i z i =+则Z 的虚部是 A 、1 B 、i C 、-1 D 、-i 3、设等比数列{}n a 的公比2q =,前n 项和为n S ,则43S a 的值为 A 、154B 、152 C 、74 D 、724、4cos ,(,0),sin cos 54παααα=∈-+则=A 、15B 、15-C 、75-D 、755、向量),1(),1,(m b m a ==,则“1=m ”是“a //b ”的 A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件6、设x 、y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩则11y x ++取值范围是A 、1,52⎡⎤⎢⎥⎣⎦B 、 []1,3 C.、[1,5] D 、[]1,5-7、若n m ,为两条不同的直线,βα,为两个不同的平面,则以下命题正确的是 A 、若,//,//ααn m 则n m // B 、若,,//α⊥m n m 则α⊥n C 、若,//,//βαβm 则α//m D 、若n m m ⊥=,βα ,则α⊥n8、已知一个三棱锥的三视图如图所示,则该三棱锥的体积为A 、32B 、33C 、332D 、39、 已知以原点为中心,实轴在x 轴上的双曲线的一条渐近线方程为,43x y =焦点到渐近线的距离为6,则此双曲线的标准方程为A 、191622=-y xB 、116922=-y xC 、1366422=-y xD 、1643622=-y x 10、在平面直角坐标系xOy 中,已知△ABC 顶点A (-4,0)和C (4,0),顶点B 在椭圆221259x y +=上,则sin sin sin A CB+= A 、34 B 、 23 C 、45 D 、5411、将函数)2sin()(Φ+=x x f (2π<Φ)的图像向左平移3π个单位长度后,所得函数)(x g 的图像关于原点对称,则函数)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的最大值为A 、0B 、21C 、23D 、112、数学上称函数b kx y +=(0,,≠∈k R b k )为线性函数,对于非线性可导函数)(x f ,在点0x 附近一点x 的函数值)(x f ,可以用如下方法求其近似代替值:))(()()(00'0x x x f x f x f -+≈,利用这一方法,001.4=m 的近似代替值A 、大于mB 、小于mC 、等于mD 、与m 的大小关系无法确定二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中横线上) 13、曲线xe y =在点(2,2e )处的切线方程是 14、已知正数y x ,满足12=+y x ,则yx 11+的最小值为 15、椭圆22221(0)x y a b a b+=>>的两顶点为(,0),(0,)A a B b ,且左焦点为F ,FAB ∆是以角B 为直角的直角三角形,则椭圆的离心率e 为 ( )16、已知抛物线E :)0(22>=p px y 的焦点为F ,O 为坐标原点,点M (9,2p -)、N (1,2--p),连接OM 、ON ,分别交抛物线于A 、B 两点,若A 、B 、F 三点共线,则p 的值为 三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤) 17、(本小题满分12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I )求直方图中的a 值;(II )估计居民月均用水量的中位数. (Ⅲ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;18. (本小题满分12分)已知椭圆G :+=1(a >b >0)的离心率为,右焦点为(2,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求直线AB 的方程.19. (本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C . (Ⅰ)证明:AC =AB 1;(Ⅱ)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.20. (本小题满分12分)在平面直角坐标系xoy 中,抛物线)0(22>=p px y 的焦点为F,准线交x 轴于点H,过H 作直线l 交抛物线于A 、B 两点,且AFBF 2=(1)求直线AB 的斜率(2)若∆ABF 的面积为2,求抛物线的方程21.(本小题满分12分)已知函数发f (x )=(x +1)ln x -ax +2. (1)当a =1时,求在x =1处的切线方程;(2)若函数f (x )在定义域上具有单调性,求实数a 的取值范围; (3)求证:,n ∈N22.(本小题满分10分)已知函数f (x )=|2x -1|-2|x -1|. (I )作出函数f (x )的图象; (Ⅱ)若不等式≤f (x )有解,求实数a 的取值范围.答案选择题答案1-5 : DAAAA 6-10: CBCCD 11-12:DA填空题答案13. 22e x e y -= 14. 223+ 15. 512- 16.3 解答题答案17.【答案】解:(I )∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a , ∴解得:a =0.3.(II )估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12, 又样本容量=30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万. (Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0. 06;∴中位数是2+0.06=2.06.18.【答案】解:(1)由椭圆G :+=1(a >b >0)焦点在x 轴上,由右焦点为(2,0)则c =2,e ==,解得:a =2,又b 2=a 2-c 2=4, ∴椭圆G 的方程为;…(4分)(2)设直线l 的方程为y =x +m ,设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0),由,整理得:4x2+6mx+3m2-12=0,①由韦达定理可知:x1+x2=-,由中点坐标公式可知:x0==-,y0=x0+m=,∵AB是等腰△PAB的底边,∴PE⊥AB.∴PE的斜率k==-1,解得:m=2,∴直线AB方程是:x-y+2=0.19.【答案】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(-1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,-,),∴cos <,>==,∴二面角A -A 1B 1-C 1的余弦值为20.(Ⅰ)过,A B 两点作准线的垂线,垂足分别为11,A B ,易知11,AF AA BF BB ==,∵AF BF 2=,∴112AA BB =,∴A 为HB 的中点,又O 是HF 的中点, ∴AO 是BHF ∆的中位线,∴4AF BF AO ==21,而,∴4p x A =,⎪⎭⎫ ⎝⎛0,2p F ∴22242Ap p y p =⋅=,22A y p =±,∴2,42p p A ⎛⎫± ⎪ ⎪⎝⎭,而,02p H ⎛⎫- ⎪⎝⎭ ∴223H A AB AH H A y y k k x x -===±-; …6分 (Ⅱ)∵A 为HB 的中点,O 是HF 的中点,∴2122224ABF AHF AHO A S S S OH y p ∆∆∆===⨯⋅=,∴2422=p ,∴2=p ,∴抛物线的方程为x y 42=. …12分21. 【答案】解:(1)当a =1时,f (x )=(x +1)ln x -x +2,(x >0),f ′(x )=ln x +,f ′(1)=1,f (1)=1,所以求在x =1处的切线方程为:y =x . (2)f ′(x )=ln x ++1-a ,(x >0). (i )函数f (x )在定义域上单调递减时, 即a ≥ln x +时,令g (x )=ln x +,当x >e a时,g ′(x )>0,不成立;(ii )函数f (x )在定义域上单调递增时,a ≤ln x +;令g (x )=ln x +, 则g ′(x )=,x >0;则函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增; 所以g (x )≥2,故a ≤2.(3)由(ii)得当a=2时f(x)在(1,+∞)上单调递增,由f(x)>f(1),x>1得(x+1)ln x-2x+2>0,即ln x>在(1,+∞)上总成立,令x=得ln>,化简得:ln(n+1)-l n n>,所以ln2-ln1>,ln3-ln2>,…,ln(n+1)-l n n>,累加得ln(n+1)-ln1>,即ln(n+1),n∈N*命题得证.22.解:(Ⅰ)令2x-1=0,得x=,令x-1=0,得x=1;当x<时,函数f(x)=|2x-1|-2|x-1|=-(2x-1)+2(x-1)=-1;当≤x≤1时,函数f(x)=|2x-1|-2|x-1|=(2x-1)+2(x-1)=4x-3;当x>1时,函数f(x)=|2x-1|-2|x-1|=(2x-1)-2(x-1)=1;∴f(x)=,作出函数f(x)的图象,如图所示;(Ⅱ)由函数f(x)的图象知,f(x)的最大值是1,所以不等式≤f(x)有解,等价于≤1有解,不等式≤1可化为-1≤0(2a-1)(a-1)≥0(a≠1),解得a≤或a>1,所以实数a的取值范围是(-∞,]∪(1,+∞)。
2019-2020学年高二上学期期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.635.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z 的最小值为()A.﹣3 B.﹣6 C.3 D.68.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.1210.(5分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为()A.90°B.60°C.45°D.30°11.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知,则向量与﹣λ垂直的充要条件是λ=.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.【分析】进而根据焦点在y轴推断出4﹣m>0,m﹣3>0并且m﹣3>4﹣m,求得m的范围.【解答】解:由题意可得:方程表示焦点在y轴上的椭圆,所以4﹣m>0,m﹣3>0并且m﹣3>4﹣m,解得:.故选D.【点评】本题主要考查了椭圆的标准方程,解题时注意看焦点在x轴还是在y轴.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行判断即可.【解答】解:由log(x+2)<0得x+2>1,即x>﹣1,则“x>1”是“log(x+2)<0”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.比较基础.4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.63【分析】由题意可得a3+a5=14,进而可得a1+a7=a3+a5=14,而S7=,代入即可得答案.【解答】解:由题意可得a3+a5=14,由等差数列的性质可得a1+a7=a3+a5=14,故S7====49,故选C【点评】本题考查等差数列的性质和求和公式,属基础题.5.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④【分析】利用四种命题关系写出四个命题,然后判断真假即可.【解答】解:①“若x+y=0,则x,y互为相反数”的逆命题:“若x,y互为相反数,则x+y=0”逆命题正确;②“全等三角形的面积相等”的否命题:“不全等三角形的面积不相等”,三角形的命题公式可知只有三角形的底边与高的乘积相等命题相等,所以否命题不正确;③“若q≤1,则x2+2x+q=0有实根”的逆否命题:“x2+2x+q=0没有实根,则q>1”,因为x2+2x+q=0没有实根,所以4﹣4q<0可得q>1,所以逆否命题正确;④“直角三角形有两个角是锐角”的逆命题:两个角是锐角的三角形是直角三角形,显然不正确.正确命题有①③.故选:C.【点评】本题考查四种命题的关系,命题的真假的判断,基本知识的考查.6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z的最小值为()A.﹣3 B.﹣6 C.3 D.6【分析】先画出可行域,得到角点坐标.再利用z的最大值为12,通过平移直线z=x+y得到最大值点A,求出k值,即可得到答案.【解答】解:可行域如图:由得:A(k,k),目标函数z=x+y在x=k,y=k时取最大值,即直线z=x+y在y轴上的截距z最大,此时,12=k+k,故k=6.∴得B(﹣12,6),目标函数z=x+y在x=﹣12,y=6时取最小值,此时,z的最小值为z=﹣12+6=﹣6,故选B.【点评】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.8.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【分析】在△ABC中,利用二倍角的余弦与正弦定理可将已知cos2=,转化为cosA=,整理即可判断△ABC的形状.【解答】解:在△ABC中,∵cos2=,∴==+∴1+cosA=+1,即cosA=,∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,∴sinAcosC=0,sinA≠0,∴cosC=0,∴C为直角.故选:B.【点评】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用,属于中档题.9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12【分析】由题意可知直线过圆心,可得3m+n=2,从而+=(+),展开后利用基本不等式可求答案.【解答】解:∵直线截得圆的弦长为直径,∴直线mx+ny+2=0过圆心(﹣3,﹣1),即﹣3m﹣n+2=0,∴3m+n=2,∴+=(+)=3+≥3+=6,当且仅当时取等号,由截得,∴+的最小值为6,故选A.【点评】该题考查直线与圆的位置关系、基本不等式的应用,变形+=(+)是解决本题的关键所在.10.(5分)在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为()A.90°B.60°C.45°D.30°【分析】以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D﹣xyz,利用向量法能求出PB与平面EFD所成角.【解答】解:以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系D﹣xyz,D为坐标原点.P(0,0,a),B(a,a,0),=(a,a,﹣a),又=(0,,),=0+=0,∴PB⊥DE.由已知DF⊥PB,又DF∩DE=D,∴PB⊥平面EFD,∴PB与平面EFD所成角为90°.故选:A.【点评】本题考查线面角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.11.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)【分析】根据三角形重心的性质可得G到B、C两点的距离之和等于20,因此G 的轨迹为以B、C为焦点的椭圆.利用题中数据加以计算可得相应的椭圆方程,注意到点G不能落在x轴上得到答案.【解答】解:设AC、AB边上的中线分别为CD、BE∵BG=BE,CG=CD∴BG+CG=(BE+CD)=20(定值)因此,G的轨迹为以B、C为焦点的椭圆,2a=20,c=4∴a=10,b==,可得椭圆的方程为∵当G点在x轴上时,A、B、C三点共线,不能构成△ABC∴G的纵坐标不能是0,可得△ABC的重心G的轨迹方程为=1(y≠0)故选:D【点评】本题给出三角形两条中线长度之和等于定值,求重心G的轨迹方程.着重考查了三角形重心的性质、椭圆的定义与标准方程和轨迹方程的求法等知识,属于中档题.12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴﹣2,∵M在圆上,∴(x0﹣5)2+y02=r2,∴r2=y02+4<12+4=16,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.【点评】本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知,则向量与﹣λ垂直的充要条件是λ=2.【分析】⊥(﹣λ)⇔•(﹣λ)=0,解出即可得出.【解答】解:﹣λ=(﹣3+λ,2,1﹣4λ),∵⊥(﹣λ),∴•(﹣λ)=﹣3(﹣3+λ)+4+1﹣4λ=0,解得λ=2.∴向量与﹣λ垂直的充要条件是λ=2.故答案为:2.【点评】本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.【分析】利用余弦定理,构建方程,根据解此三角形有两解,可得方程有两个不等的正根,从而可求x的取值范围【解答】解:由余弦定理可得:4=c2+x2﹣2cx×cos45°∴c2﹣xc+x2﹣4=0∵解此三角形有两解,∴方程有两个不等的正根∴△=2x2﹣4(x2﹣4)>0,且x2﹣4>0,x>0∴x2﹣8<0,且x2﹣4>0,x>0∴2<x<2故答案为:.【点评】本题重点考查余弦定理的运用,考查解三角形解的个数,解题的关键是利用余弦定理,构建方程,将解此三角形有两解,转化为方程有两个不等的正根.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.【分析】利用点差法,结合M是线段AB的中点,斜率为﹣,即可求出椭圆C 的离心率.【解答】解:设A(x1,y1),B(x2,y2),则①,②,∵M是线段AB的中点,∴=1,=1,∵直线AB的方程是y=﹣(x﹣1)+1,∴y1﹣y2=﹣(x1﹣x2),∵过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,M是线段AB的中点,∴①②两式相减可得,即,∴a=b,∴=b,∴e==.故答案为:.【点评】本题考查椭圆的离心率,考查学生的计算能力,正确运用点差法是关键.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a 的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值范围是1<a≤2.【点评】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.【分析】(1)设双曲线方程为x2﹣y2=λ,λ≠0,由双曲线过点(4,﹣),能求出双曲线方程.(2)由点M(3,m)在此双曲线上,得m=.由此能求出•的值.【解答】解:(1)∵双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,∴设双曲线方程为x2﹣y2=λ,λ≠0,∵双曲线过点(4,﹣),∴16﹣10=λ,即λ=6,∴双曲线方程为=1.(2)∵点M(3,m)在此双曲线上,∴=1,解得m=.∴M(3,),或M(3,﹣),∵F 1(﹣2,0),,∴当M(3,)时,=(﹣2﹣3,﹣),=(,﹣),•=﹣12﹣6=0;当M(3,﹣)时,=(﹣2﹣3,),=(,),•=﹣12﹣6+6+9+3=0.故•=0.【点评】本题考查双曲线方程的求法,考查向量的数量积的求法,解题时要认真审题,注意双曲线性质的合理运用.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。
一、单选题1.点关于y 轴的对称点的坐标为( ) (2,0,22)A A . B . (2,0,22)-(2,0,22)-C . D .(2,0,22)--(2,0,22)【答案】C【分析】根据给定条件,利用空间直角坐标系关于坐标轴对称点的坐标意义求解作答. 【详解】点关于y 轴的对称点的坐标. (2,0,22)A (2,0,22)--故选:C2.已知直线的方向向量为,平面的法向量为,则( ) l (1,1,2)a =r α(2,2,4)n =rA .//B .C .D .与相交l αl α⊥l α⊂l α【答案】B【分析】根据与平行,即可判断直线和平面的位置关系.a n【详解】因为,,故可得,即//,则直线. (2,2,4)n =r (1,1,2)a =r 2n a =n a l α⊥故选:B.3.若向量,,则( ) ()1,1,0a =()1,0,2b =- 3a b +=A B .4C .5D【答案】D【分析】由空间向量坐标的加减运算,和模长公式计算即可.【详解】解析:由题意,得, ()32,3,2a b +=3a b ∴+==故选:D.4.已知直线l 过、两点,则直线l 的倾斜角的大小为( ) ()1,1A -()1,3B A .B .C .D .4π3π23π34π【答案】A【分析】由两点坐标求出斜率,即可得出倾斜角【详解】直线过、两点,则直线的斜率,∴直线的倾斜角为.l ()1,1A -()1,3B l ()31111k -==--4π故选:A .5.如图,在斜四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是平行四边形,M 为A 1C 1与B 1D 1的交点.若,,,则=( )11A B a = 11A D b = 1A A c = BMA .B . 1122a b c -++ 1122a b c -+-C .D .1122--+ a b c 1122-+ a b c 【答案】B【分析】利用向量三角形法则、平行四边形法则即可得出. 【详解】因为斜四棱柱ABCD ﹣A 1B 1C 1D 1的底面是平行四边形, 又M 为A 1C 1,B 1D 1的交点,所以.1111111111()()222MB D B A B A D a b ==-=-所以. 11111()()222BM MB MB B B a b c a b c ⎡⎤=-=-+=--+=-+-⎢⎥⎣⎦故选:B6.以点为圆心,且与直线相切的圆的方程是( ) ()3,2-310x y --=A . B . 22(3)(2)1x y -++=22(3)(2)1x y ++-=C . D .22(3)(2)10x y ++-=22(3)(2)10x y -++=【答案】D【分析】设出圆的方程,由圆心到直线距离等于半径,得到答案. 【详解】设圆的方程为, 222(3)(2)x y r -++=故r 故圆的方程为. 22(3)(2)10x y -++=故选:D7.椭圆的焦点坐标是( )221516x y +=A .B .C .D .()11,0±(0,()0,11±()【答案】B【分析】由已知可得,椭圆的焦点在轴上,进而求出的值,即可解出. y 2c 【详解】由题意可知,椭圆的焦点在轴上,,,所以,y 25b =216a =22211c a b =-=所以椭圆的焦点坐标是.221516x y +=(0,故选:B.8.已知等比数列的首项和公比均为2,则的值为( ) {}n a 3a A . B .2 C .4 D .82-【答案】D【分析】根据等比数列的性质即可求解.【详解】由于等比数列的首项和公比均为2,{}n a 所以,233128a a q ===故选:D9.准线方程为的抛物线的标准方程为( ) 2x =A . B . C . D .28y x =28y x =-28x y =28x y =-【答案】B【分析】结合抛物线的定义求得正确答案. 【详解】由于抛物线的准线方程是,2x =所以抛物线的开口向左,设抛物线的方程为,()220y px p =->则,所以抛物线的标准方程为. 2,282pp ==28y x =-故选:B10.已知数列的前项和,则( ){}n a n 2n S n =2a =A .1 B .2 C .3 D .4【答案】C【分析】根据关系解决即可.,n n a S 【详解】由题知,数列的前项和,{}n a n 2n S n =所以, 122413a S S =-=-=故选:C11.双曲线的渐近线方程是( )22132x y -=A .B . 23y x =±32y x =±C .D . y =y =【答案】D【分析】根据焦点在横轴上双曲线的渐近线方程直接求解即可.【详解】由题得双曲线的方程为,所以22132x y -=a b ==所以渐近线方程为. b y x a =±=故选:D12.已知数列满足,且,则( ){}n a 211n n a a n +=++11a =4a =A .18 B .10 C .8 D .5【答案】A【分析】根据递推公式及可求出结果.1a 【详解】因为,,211n n a a n +=++11a =所以,21113a a =++=, 32418a a =++=. 439118a a =++=故选:A二、填空题13.已知,,则向量的坐标为________. ()0,2,1A ()5,2,2B -AB【答案】()5,4,1-【分析】根据空间向量的坐标表示方法即可求解. 【详解】因为,, ()0,2,1A ()5,2,2B -所以. ()()50,22,215,4,1AB =----=-故答案为:.()5,4,1-14.3与7的等差中项为___________. 【答案】5【分析】由等差中项的定义,若成等差数列,则即可求得. A G B ,,2A BG +=【详解】设3与7的等差中项为,则由等差中项的定义得. x 3752x +==故答案为:515.过点且与直线平行的直线方程为__________. ()1,2A -2310x y -+=【答案】2380.x y -+=【分析】两直线平行则它们的斜率相等,然后再将数据代入直线的点斜式方程可得.【详解】22310,,3x y k -+=∴=化简得: ()221,3y x ∴-=+2380.x y -+=故答案为:2380.x y -+=16.已知抛物线的焦点坐标为,则的值为___________. 22(0)y px p =>()2,0p 【答案】4【分析】利用抛物线的标准方程得到焦点坐标,从而求得值. p 【详解】因为抛物线,22(0)y px p =>所以抛物线的焦点坐标为,,02p ⎛⎫⎪⎝⎭又因为抛物线的焦点坐标为, 22(0)y px p =>()2,0所以,则. 22p=4p =故答案为:.4三、解答题17.已知,.()1,4,2a =- ()2,2,4b =-(1)若,求的值;12c b = cos ,a c <> (2)若,求实数的值.()()3ka b a b +-∥k【答案】(1) (2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得,,()11,1,22c b ==-()1,4,2a =- ∴cos ,a c a c a c⋅<>====(2),,()2,42,24ka b k k k +=-+-+ ()37,2,14a b -=--∵,∴存在实数使得, ()()3ka b a b +-∥m ()3ka b m a b +=- ∴,,,联立解得.27k m -=422k m +=-2414k m -+=-13k =-18.等差数列满足a 5=14,a 7=20,其前n 项和为Sn . {}n a (1)求数列的通项公式; {}n a (2)求该数列的前10项和. 10S 【答案】(1) 31n a n =-(2) 10155S =【分析】(1)由等差数列的通项公式求解即可; (2)由等差数列的求和公式求解即可. 【详解】(1)因为,5714,20a a ==所以,11414620a d a d +=⎧⎨+=⎩解得,123a d =⎧⎨=⎩所以; ()()1123131n a a n d n n =+-=+-=-(2). 101109101024531552S a d ⨯=+=⨯+⨯=19.(1)已知数列的前n 项和Sn =n 2+n ,求数列的通项公式; {}n a {}n a (2)设数列的首项为a 1=1,递推公式为an=1+,写出这个数列的前5项 {}n a 11n a -(2)n ≥【答案】(1);(2)=,. =2n a n 1=1a ,2a 2345358,,235a a a ===【分析】(1)Sn =n 2+n ,,两式相减即得解;21(2)n S n n n -=-≥(2)利用递推公式直接求解.【详解】解:(1)由题得Sn =n 2+n ,,221(1)1(2)n S n n n n n -=-+-=-≥所以两式相减得,又,=2n a n 11=2a S =所以适合.所以数列的通项公式为. =2n a n 1n ={}n a =2n a n (2)由题得=1+,. 1=1a ,2a 11=2a 3451325381,1,1223355a a a =+==+==+=所以数列的前5项为=,. 1=1a ,2a 2345358,,235a a a ===20.如图,在三棱柱中,侧面为矩形,平面平面,111ABC A B C -11ABB A 11ABB A ⊥11ACC A 分别是的中点.12,4,,AB AA D E ==11,BC A B(1)求证:平面;//DE 11ACC A (2)若侧面是正方形,求直线与平面所成角的正弦值. 11ACCA 11A C ADE 【答案】(1)详见解析;【分析】(1)取中点为,由题可得,然后利用线面平行的判定定理即得; AC F //DE 1A F (2)利用坐标法,求出平面的法向量,然后根据线面角的向量求法即得. ADE 【详解】(1)取中点为,连接,AC F 1,DF A F因为点分别为的中点, ,D F ,CB CA 故,, DF //AB 12DF AB =又点为的中点,且四边形为矩形, E 11A B 11ABB A 故,, 1A E //AB 112A E AB =故,, //DF 1A E 1DF A E =故四边形为平行四边形,1DFA E 则,又平面平面, //DE 1A F DE ⊄111,ACC A A F ⊂11ACC A 所以平面;//DE 11ACC A (2)因为为正方形,故可得,11ACC A 1AC AA ⊥又因为平面平面,且平面平面, 11ABB A ⊥11ACC A 11ABB A 111ACC A AA =又平面, AC ⊂11ACC A 所以平面, AC ⊥11ABB A 又平面,AB ⊂11ABB A 所以,又,,AC AB ⊥1AB AA ⊥1AC AA ⊥如图建立空间直角坐标系,则,()()()()0,0,0,2,0,1,0,4,1,4,0,0A D E C 所以,()()()112,0,1,0,4,1,4,0,0AD AE A C AC ====设平面的法向量为,则,ADE (),,n x y z =r 2040n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令,则,1y =()2,1,4n =-设与平面所成角为,则11A C ADE θ111111,sin cos n A C n A C n A C θ⋅===⋅=故直线与平面11A C ADE 21.已知椭圆的中心为坐标原点O ,左右焦点分别为,,短轴长为2,离心率,过右焦1F 2F e =点的直线交椭圆于P ,Q 两点. 2F l (1)求椭圆的标准方程. (2)当直线的倾斜角为时,求的面积. l 4π1PFQ △【答案】(1).22121x y +=(2). 43【分析】(1)根据条件列出关于的式子,利用待定系数法求椭圆方程; ,,a b c (2)直线方程与椭圆方程联立,利用韦达定理表示三角形的面积.【详解】(1),解得:,∴.22222b c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩11a b c ⎧=⎪=⎨⎪=⎩22121x y +=(2)倾斜角为,,14k π⇒=()21,0F ∴:,l 1y x =-()112121212PQF PF F QF F P Q S S S F F y y =+=⨯⨯+△△△P Q P Q y y y y =+=-=,得, 22112y x x y =-⎧⎪⎨+=⎪⎩23210y y +-=, ,44310∆=+⨯⨯>23P Q y y +=-13P Q y y ⋅=-∴. 43S ==22.已知抛物线:,坐标原点为,焦点为,直线:. C 24y x =O F l 1y kx =+(1)若与只有一个公共点,求的值;l C k (2)过点作斜率为的直线交抛物线于两点,求的面积. F 2C ,A B OAB A 【答案】(1)1或0【分析】(1)将直线方程与抛物线方程联立,由或即可得解;0k =Δ0=(2)由抛物线的标准方程得到焦点坐标,从而得到直线方程,联立直线与抛物线方程,根据韦达定理及即可得解. 121||||2OAB S OF y y =⋅-A 【详解】(1)依题意,联立,消去,得,即,214y kx y x =+⎧⎨=⎩x 2114y ky =+2440ky y -+=①当时,显然方程只有一个解,满足条件; 0k =440y -+=②当时,,解得; 0k ≠2(4)440k ∆=--⨯=1k =综上:当或时直线与抛物线只有一个交点. 1k =0k =(2)因为抛物线:,所以焦点,C 24y x =(1,0)F 所以直线方程为,设,,()2122y x x =-=-11(,)A x y 22(,)B x y 联立,消去得,所以,,2224y x y x =-⎧⎨=⎩x 2240y y --=122y y +=124y y =-所以 12||y y -===所以1211||||122OAB S OF y y =⋅-=⨯⨯=A。
新疆 2020 版数学高二上学期理数期末考试试卷(I)卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2017 高二上·汕头月考) 若集合,则()A.B. C.D.2. (2 分) 已知, 其中 是虚数单位,则 a+b=( )A . -1B.1C.2D.33. (2 分) 给出下面结论:(1)命题的否定为;(2)若 是 q 的必要不充分条件,则 p 是 的充分不必要条件;(3)“M>N”是“lnM>lnN”成立的充分不必要条件;(4) 若 A,B,C 是的三个内角,则“A>B”是“sinA>sinB”成立的充要条件。
其中正确结论的个数是( )A.4B.3第 1 页 共 11 页C.2 D.14. (2 分) (2019 高一下·巴音郭楞月考) 能得出 < 成立的是( ) A. B. C. D.5. (2 分) (2019 高二上·金水月考) 在数列 中,已知,,A . 是等差数列 B . 是等比数列 C . 不是等差数列 D . 不是等比数列 6. (2 分) 下列求导运算正确的是( )则 一定( )A. B. C. D.7. (2 分) (2020 高一下·莲湖期末) 已知向量 A. B.第 2 页 共 11 页,则()C. D. 8. (2 分) 椭圆 A . 20 B . 22 C . 28 D . 24上一点 P 与椭圆的两个焦点 F1、F2 的连线互相垂直,则△PF1F2 的面积为( )9. (2 分) 已知正数 , 满足 A.1,则的最小值为( )B.C.D.10. (2 分) (2019 高二上·扶余期中) 点 离为( )A.是抛物线上一点,则 到 的焦点的距B. C.D.11. (2 分) (2019 高二上·南宁月考) 现有 60 瓶矿泉水,编号从 1 至 60.若从中抽取 6 瓶检验,用系统抽 样方法确定所抽的编号为( )第 3 页 共 11 页A . 3,13,23,33,43,53 B . 2,14,26,38,42,56 C . 5,8,31,36,48,54 D . 5,10,15,20,25,3012. (2 分) (2019 高二上·黄陵期中) 已知抛物线离为 5,则的面积( 为原点)为( )A.1B.2C.上有一点,它到焦点 的距D.二、 填空题 (共 4 题;共 4 分)13. (1 分) (2020 高二下·顺德期中) 已知 i 是虚数单位,则复数对应的点在第________象限.14. (1 分) (2019 高二下·奉化期末) 等差数列 ________,数列 的通项公式为________.的前 3 项依次为,,,则实数15. (1 分) (2020 高二上·桂林期末)中,角 A,B 的对边分别为 a,b,已知,,,则等于________.16. (1 分) 曲线 y= x3﹣2 在点(﹣1,﹣ )处的切线的倾斜角为________.三、 解答题 (共 6 题;共 50 分)17. ( 10 分 ) (2019 高 二 下 · 长 春 期 末 ) 在 .中,角 A,B,C 的对边分别是(1) 求角 C 的大小;第 4 页 共 11 页,且(2) 已知等差数列 前 项和 .的公差不为零,若18. ( 10 分 ) (2020· 安 徽 模 拟 ) 在,且.(Ⅰ)求角 A 的大小;,且 , , 成等比数列,求数列的中,三内角 A,B,C 对应的边分别是 a,b,c,(Ⅱ)若的面积是,求的周长.19. (5 分) (2020 高二下·唐山期中) 求下列函数的导数:(1) y=(2) y=20. (5 分) (2017 高二上·南宁月考) 如图,在四棱锥 .中,直线平面,(1) 求证:直线平面.(2) 若直线 与平面所成的角的正弦值为 ,求二面角的平面角的余弦值.21. (10 分) (2019 高二上·湖南月考)的内角 、 、 的对边分别为 、 、 ,已知.(1) 求 ;(2) 若等差数列的公差不为 0,且, 、 、 成等比数列,求数列第 5 页 共 11 页前项和.22. (10 分) (2019 高二上·天河期末) 设椭圆的一个焦点为,且椭圆过点, 为坐标原点,(1) 求椭圆 的标准方程;(2) 是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆 恒有两个交点 、 ,且?若存在,写出该圆的方程,并求 的最大值,若不存在说明理由.第 6 页 共 11 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、参考答案14-1、 15-1、第 7 页 共 11 页16-1、三、 解答题 (共 6 题;共 50 分)17-1、17-2、18-1、19-1、 19-2、第 8 页 共 11 页20-1、20-2、第 9 页 共 11 页21-1、 21-2、第 10 页 共 11 页22-1、22-2、第11 页共11 页。
兵地十校2019-2020学年第一学期高二年级期末联考数学(理)试卷(卷面分值:150分 考试时间120分钟)命题学校:乌苏市第一中学注意事项:1.本试卷共6页,请考生务必将自己的学校、姓名、座位号、准考证号等信息填写在答题卡上. 2.作答非选择题时须用黑色字迹0.5毫米签字笔书写在答题卡的指定位置上,作答选择题须用2B 铅笔将答题卡上对应题目的选项涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案,请保持答题卡卡面清洁,不新叠、不破损.第Ⅰ卷(选择共60分)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题只有一项是符合题目要求的) 1.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”现给出该问题算法的程序框图,其中(mod )N n b m ≡表示正整数N 除以正整数m 后的余数为n ,例如112(mod3)b ≡表示11除以3后的余数是2,执行该程序框图,则输出的N 等于( )A .7B .8C .9D .102.从字母,,,,,a b c d e f 中选出4个数排成一列,其中一定要选出a 和b ,并且必须相邻(a 在b 的前面),共有排列方法( )A .36种B .72种C .90种D .144种3.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600,从中抽取60个样本,如下提供随机数表的第4行到第6行: 32 21 18 34 29 18 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为( ) A .522 B .324 C .535 D .5784.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是( )A .“至少1名男生”与“全是女生”B .“至少1名男生”与“至少有1名是女生”C .“至少1名男生”与“全是男生”D .“恰好有1名男生”与“恰好2名女生”5.某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )A .月跑步平均里程的中位数为6月份对应的里程数B .月跑步平均里程逐月增加C .月跑步平均里程高峰期大致在8、9月D .1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳6.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为( )A .4B .5C .8D .97.口袋中放有大小相等的2个红球和1个白球,有放回地每次摸取一个球,定义数列{}1,:1,n n n a a n -⎧=⎨⎩第次摸取红球第次摸取白球,如果n S 为数列{}n a 前n 项和,则73S =的概率等于( ) A .25571233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B .25272133C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ C .25571133C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ D .34371233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭8.在边长为a 的正三角形内任取一点P ,则点P 到三个顶点的距离均大于2a的概率是( )A .11126- B .16- C .13 D .149.下列选项中,说法正确的是( )A .命题“2000,0x R x x ∃∈-≤”的否定为“2,0x R x x ∃∈->”B .命题“在ABC 中,30A >︒,则1sin 2A >”的逆否命题为真命题 C .若命题“p q ∧”为假,且p ⌝为,则“p q ∨”为真D .设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的充分必要条件10.将三枚骰子各掷一次,设事件A 为“三个点数都不相同”,事件B 为“至少出现一个6点”,则概率(|)P A B 的值为( ) A .6091B .12C .518D .9121611.已知双曲线2222:1(0,0)x y E a b a b-=>>的右顶点为A ,抛物线2:8C y ax =的焦点为F .若在E 的渐近线上存在点P ,使得AP FP ⊥,则E 的离心率的取值范围是( )A .(1,2)B .⎛ ⎝⎦ C .⎫+∞⎪⎣⎭ D .(2,)+∞ 12.已知()0,2A ,抛物线2:(0)C y mx m =>的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N 中,若||:|1:FM MN=∣OFN 面积为( )A .B .C .4D .第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分.共20分)13.在(23)nx y -的二项展开式中,二项式系数的和是512,则各项系数的和是_________. 14.已知随机变量X 服从正态分布()22,N σ且(4)0.88P X ≤=,则(04)P X <<=_______. 15.下列命题中,正确的命题有_________.①回归直线y bx a =+恒过样本点的中心(),x y ,且至少过一个样本点; ②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻画回归效果,2R 越接近0,说明模型的拟合效果越好;④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号.16.为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有______种(用数字作答) 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)2020年将在日本东京举办第32届夏季奥林匹克运动会,简称为“奥运会”,为了解不同年龄的人对“奥运会”的关注程度,某机构随机抽取了年龄在20~70岁之间的100人进行调查,经统计,“年轻人”与“中老年人”的人数之比为2∶3.(1)根据已知条件完成上面的22⨯列联表,并判断是否有99.9%的把握认为是否关注“奥运会”与年龄段有关;(2)现采用分层抽样的方法从中老年人中选取6人进行问卷调查.若再从这6人中选取2人进行面对面询问,求事件“选取的2人中至少有1人关注奥运会”的概率.附参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.临界值表:18.(本题满分12分)已知动点P 与平面上点(1,0),(1,0)A B -的距离之和等于. (1)试求动点P 的轨迹方程C .(2)设直线:1l y kx =+与曲线C 交于M 、N两点,当||3MN =时,求直线的方程. 19.(本题满分12分)某商店为迎接端午节,推出两款粽子:花生粽和肉粽为调查这两款粽子的受欢迎程度,店员连续10天记录了这两种粽子的销售量,如下表表示(其中销售单位:个)(1)根据两组数据完成下面茎叶图:(2)统计学知识,请评述哪款粽子更受欢迎;(3)求肉粽销售量y 关于天数t 的线性回归方程,并预估第15天肉粽的销售量(回归方程系数精确到0.1)参考数据:()()111155i ii t t yy =--=∑,参考公式:()()()121ˆˆˆ,nii i nii tt y y bay bt tt ==--==--∑∑ 20.(本题满分12分)为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取25名学生的成绩(百分制)作为样本,得到频率分布表如下:(1)求样本频率分布表中a ,b 的值,并根据上述频率分布表,在下表中作出样本频率分布直方图;(2)计算这25名学生的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)从成绩在[50,70)的学生中任选2人,求至少有1人的成绩在[60,70)中的概率.21.(本题满分12分)某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润y (单位,元)关于当天需求量n (单位:个,n N ∈)的函数解析式;(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:①若烘焙店一天加工16个这种蛋糕,X 表示当天的利润(单位:元),求X 的分布列与数学期望及方差; ②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.22.(本题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>过点P ⎛- ⎝⎭,左、右焦点分别是12,F F ,过2F 的直线与椭圆交于M ,N 两点,且1F MN 的周长为8b . (1)求椭圆C 的方程;(2)若点D 满足111F D F M F N =+,求四边形1F MDN 面积的最大值.。
新疆兵地十校2019-2020学年高二第一学期期末考试试题理数学【含解析】一、选择题(本大题共12小题,每小题5分,共计60分.在每小题只有一项是符合题目要求的) 1.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”现给出该问题算法的程序框图,其中()mod N n b m ≡表示正整数N 除以正整数m 后的余数为n ,例如()112mod3b ≡ 表示11除以3后的余数是2.执行该程序框图,则输出的N 等于( )A. 7B. 8C. 9D. 10【答案】B 【解析】 【分析】根据程序框图的条件,利用模拟运算法进行计算即可.【详解】第一次,N=7,7除以3的余数是1,不满足条件,N=8,8除以3的余数是2满足条件, 8除以5的余数是3满足条件,输出N=8 故选B【点睛】本题考查程序框图的相关内容,根据框图模拟运算即可得出结果,比较基础.2..从字母,,,,,a b c d e f 中选出4个数字排成一列,其中一定要选出a 和b ,并且必须相邻(a 在b 的前面),共有排列方法( )种. A. 90 B. 72C. 36D. 144【答案】C 【解析】【详解】排列方法为234336C A ,选C.3.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A. 522B. 324C. 535D. 578【答案】D【解析】【分析】根据随机抽样的定义进行判断即可.【详解】第6行第6列开始的数为808(不合适),436,789(不合适),535,577,348,994(不合适),837(不合适),522,535(重复不合适),578则满足条件的6个编号为436,535,577,348,522,578则第6个编号为578本题正确选项:D【点睛】本题主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.4.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A. “至少1名男生”与“全是女生”B. “至少1名男生”与“至少有1名女生”C. “至少1名男生”与“全是男生”D. “恰好有1名男生”与“恰好2名女生”【答案】D【解析】【详解】从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.5.某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是()A. 月跑步平均里程的中位数为6月份对应的里程数B. 月跑步平均里程逐月增加C. 月跑步平均里程高峰期大致在8、9月D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线图中11个月的数据分布,数据从小到大排列中间的数可得中位数,根据数据的增长趋势可判断BCD.【详解】由折线图知,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l0月份,故A,B,C错.本题选择D选项.【点睛】本题主要考查了识别折线图进行数据分析,属于基础题.6.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为()A. 4B. 5C. 8D. 9【答案】B【解析】【分析】由几何概型中的随机模拟试验可得:S 605S 1089=黑正,将正方形面积代入运算即可. 【详解】由题意在正方形区域内随机投掷1089个点, 其中落入白色部分的有484个点, 则其中落入黑色部分的有605个点, 由随机模拟试验可得:S 605S 1089=黑正,又9S =正, 可得605951089S =⨯≈黑,故选B . 【点睛】本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用 模拟实验,列出未知面积与已知面积之间的方程求解.7.口袋中放有大小相等的2个红球和1个白球,有放回地每次摸取一个球,定义数列{}1,:1,n n n a a n -⎧=⎨⎩第次摸取红球第次摸取白球,如果n S 为数列{}n a 前n 项和,则73S =的概率等于( ) A. 25571233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B. 25272133C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C. 25571133C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D. 34371233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】分析:由题意可得模球的次数为7次,只有两次摸到红球,由于每次摸球的结果数之间没有影响,利用独立性事件的概率乘法公式求解即可.详解:由题意73S =说明摸球七次,只有两次摸到红球, 因为每次摸球的结果数之间没有影响,摸到红球的概率是23,摸到白球的概率是13所以只有两次摸到红球概率是225721()()33C ,故选B .点睛:本题主要考查了独立事件的概率乘法公式的应用,其中解答中通过73S =确定摸球次数,且只有两次摸到红球是解答的关键,着重考查了分析问题和解答问题的能力. 8.在边长为a 的正三角形内任取一点P ,则点P 到三个顶点的距离均大于2a的概率是()A.3 16π-B.113126π- C.13D.14【答案】A【解析】分析:先求出满足条件的正三角形ABC的面积,再求出满足条件正三角形ABC内的点到三角形的顶点A,B,C的距离均大于2a的图形的面积,然后根据几何概型公式求解即可得到答案.详解:满足条件的正三角形ABC如下图所示,由题意得正三角形ABC的面积为23S a=正三角形.到正三角形ABC的顶点A,B,C的距离均大于2a的平面区域,如图中阴影部分所示,且其面积和是一个半径为2a的半圆的面积,则2211228aS aππ⎛⎫==⎪⎝⎭阴影.故点P所在区域的面积为22318S aπ=-,所以所求概率为22231348163aSPSaπ-===-正三角形.故选A.点睛:本题考查面积型的几何概型概率的求法,解题的关键是确定概率的类型以及求出所有基本事件构成的平面区域的面积和事件A包含的基本事件构成的平面区域的面积.9.下列选项中,说法正确的是()A. 命题“2000,0x R x x∃∈-≤”的否定为“2,0x R x x∃∈->”B. 命题“在ABC中,30A>︒,则1sin2A>”的逆否命题为真命题C. 若命题“p q∧”为假,且p⌝为假,则“p q∨”为真D. 设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的充分必要条件 【答案】C 【解析】 【分析】A 通过特称命题的否定改写规则判断;B 通过判断原命题的真假来判断;C 根据复合命题的真假来判断;D 根据等比数列的单调性来判断.【详解】A :命题“2000,0x R x x ∃∈-≤”的否定为“2,0x R x x ∀∈->”,故错误;B :当=150A ︒时,1sin =2A ,故命题“在ABC 中,30A >︒,则1sin 2A >”时假命题,则其逆否命题也为假命题,故错误;C :因为p ⌝为假,则p 为真,又p q ∧为假,故q 必为假,则p q ∨为真,故正确;D :当1a =-,2q 时,{}n a 是递减数列,故“1q >”不是“{}n a 为递增数列”的充分条件,故错误.故选:C.【点睛】本题考查特称命题的否定的写法,考查充分条件和必要条件的判断,考查复合命题的真假,是一道基础题.10.将三枚骰子各掷一次,设事件A 为“三个点数都不相同”,事件B 为“至少出现一个6点”,则概率(A |B)P 的值为( )A.6091B.12C.518D.91216【答案】A 【解析】考点:条件概率与独立事件.分析:本题要求条件概率,根据要求的结果等于P (AB )÷P(B ),需要先求出AB 同时发生的概率,除以B 发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果. 解:∵P(A|B )=P (AB )÷P (B ), P (AB )=3606=60216P (B )=1-P (B )=1-3356=1-125216=91216∴P(A/B )=P (AB )÷P(B )=6021691216=6091故选A .11.已知双曲线()2222:10,0x y E a b a b-=>>的右顶点为A ,抛物线2:8C y ax =的焦点为F ,若在E 的渐近线上存在点P ,使得PA FP ⊥,则E 的离心率的取值范围是( ). A. ()1,2 B. 32C. ()2,+∞D. 32[)+∞ 【答案】B 【解析】 【分析】由已知可得以AF 为直径的圆与渐近线有公共点,得出,,a b c 的不等量关系,结合222c a b =+,即可求解. 【详解】抛物线2:8C y ax =的焦点为(2,0)F a ,双曲线()2222:10,0x y E a b a b-=>>的右顶点为(,0)A a ,在E 的渐近线上存在点P ,使得PA FP ⊥, 不妨设渐近线方程为by x a=, 则以AF 为直径的圆与渐近线有公共点, 即AF中点3(,0)2a 到直线0bx ay -=的距离2a d ≤, 即22332,3,22abab a d b c c a b ==≤≤+ 22222299,89,8c b c c a a ∴≤≤∴≤3214e ∴<≤. 故选:B.【点睛】本题考查双曲线的简单几何性质,应用直线与圆的位置关系是解题的关键,考查计算求解能力,属于中档题.12.已知点(0,2)A ,抛物线2:(0)C y mx m =>的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若:1:3FM MN =,则三角形OFN 面积为( ) A. 22B. 23C. 4D. 25【答案】A 【解析】根据抛物线的定义有MB MF =,依题意可知cos 3NMB ∠=,tan 2NMB ∠=,也即2tan 24OA AFO mOF ∠===,故42m =.所以ONF ∆的高为2224⋅=,面积为124222⨯⋅=.故选A.【点睛】本题主要考查抛物线的定义,考查直线与圆锥曲线位置关系,考查数形结合的数学思想方法.首先根据题意画出图象,包括M 到准线的距离MB ,根据题目所给的比例关系,利用角的正切值建立方程,求得m 的值,然后利用角的正切值求出高并求出三角形的面积.第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分.共20分)13.在(23)nx y -的二项展开式中,二项式系数的和是512,则各项系数的和是_____ . 【答案】1- 【解析】 【分析】根据二项式系数的和求解出n 的值,求解各项系数的和时可考虑令1x y ==,由此可计算出各项系数的和.【详解】因为二项式系数的和是512,所以01...2512n nn n n C C C +++==,所以9n =,又因为()()()()()()()998109129992323...2323C x y C x y C x y x y =-+-+-+-, 令1x y ==可得:()()()()()()()998191299912323...231C C C -=-+-++-=-,所以各项系数的和为:1-. 故答案为1-.【点睛】本题考查根据二项式系数求参数以及求解各项系数和,难度一般. (1)求解形如()nax by +的展开式中的各项系数和时,可令1x y ==求得结果; (2)形如()nax by +的展开式中的二项式系数之和为2n . 14.已知随机变量X 服从正态分布()22,N σ且()40.88X P ≤=,则()04P X <<=_____________【答案】0.76 【解析】 【分析】由已知条件可知数据对应的正态曲线的对称轴,根据对称性即可得到结果. 【详解】随机变量X 服从正态分布()22,N σ,则曲线的对称轴为2X =,()20.5P X ≤=,由()40.88X P ≤=可得()40.880.0825.3P X ==<-<, 则()()204240.76P P X X <=<<<= 故答案为0.76.【点睛】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所求区间用已知区间表示;正态曲线的主要性质是:(1)正态曲线关于x μ=对称;(2)在正态曲线下方和x 轴上方范围内的区域面积为1.15.下列命题中,正确的命题有__________.①回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,且至少过一个样本点; ②将一组数据每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻画回归效果,2R 越接近0,说明模型的拟合效果越好;④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1160编号,按编号顺序平均分成20组(18号,916号,,153160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号. 【答案】②④ 【解析】回归直线ˆˆˆybx a =+恒过样本点的中心(),x y ,不须过样本点;①错误;将一组数据的每个数据都加一个相同的常数后,数据的波动性不变,故方差不变;②正确;用相关指数2R 来刻画回归效果,2R 越接近1,说明模型的拟合效果越好;③错误;④中系统抽样方法是正确的.故本题应选②④.16.为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有_____种(用数字作答) 【答案】540 【解析】 【分析】首先将6个小队分成三组,有114,123,222++++++三种组合,然后再分配,即可求出结果.【详解】(1)若按照1:1:4进行分配有436390C A ⨯=种方案; (2)若按照1:2:3进行分配有323633360C C A ⨯=种方案;(3)若按照2:2:2进行分配有4236433390C C A A ⨯=种方案; 由分类加法原理,所以共有9036090540++=种分配方案.【点睛】本题主要考查分类加法计数原理,以及排列组合的相关知识应用.易错点是平均分配有重复,注意消除重复.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.2020年将在日本东京举办第32届夏季奥林匹克运动会,简称为“奥运会”,为了解不同年龄的人对“奥运会”的关注程度,某机构随机抽取了年龄在20~70岁之间的100 人进行调查,经统计,“年轻人”与“中老年人”的人数之比为23:. 关注不关注 合计 年轻人 30中老年人(1)根据已知条件完成上面的22⨯列联表,并判断是否有99.9%的把握认为是否关注“奥运会”与年龄段有关;(2)现采用分层抽样的方法从中老年人中选取6人进行问卷调查.若再从这6人中选取2人进行面对面询问,求事件“选取的2人中至少有1人关注奥运会”的概率.附参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中.n a b c d =+++临界值表:()20P K k ≥ 0.05 0.010 0.0010k3.8416.635 10.828【答案】(1)列联表见解析;有99.9%的把握认为是否关注“奥返会”与年龄段有关.(2)35【解析】 【分析】(1)根据“年轻人”与“中老年人”的人数之比可得列联表,再进行独立性检验;(2)列举“从这6人中选取2人”可能的情况,再得出事件“选取的2人中至少有1人关注奥运会”的事件数,利用古典概率公式求解. 【详解】解:(1)年轻人共有2100405⨯=人,中老年人共有3100605⨯=人. 关注不关注合计年轻人 30 10 40 中老年人204060所以22100(30401020)5016.6710.828406050503K ⨯-⨯==≈⨯⨯⨯>.故有99.9%的把握认为是否关注“奥返会”与年龄段有关.(2)抽取的6位中老年人中有4人不关注,记为12342A A A A ,,,,人关注,记为12B B , ,设“选取的2人中至少有1人关注奥运会”为事件A .从送6人中选2人的选法有121314()()()A A A A A A ,,,,,,111223()()() A B A B A A ,,,,,,24212234()()()()A A A B A B A A ,,,,,,,,11124142()()()()A B A B A B A B ,,,,,,,,12() B B ,, 共15种.其中有9种情况满足题意; 故()93155P A ==. 【点睛】本题考查列联表、独立性检验、古典概型的求解,属于基础题.18.已知动点P 与平面上点()1,0A -,()10B ,的距离之和等于2. (1)试求动点P 的轨迹方程C .(2)设直线:1l y kx =+与曲线C 交于M 、N 两点,当42MN =. 【答案】(1)2212x y +=;(2)1y x =±+【解析】 【分析】(1)由椭圆定义可知所求轨迹为2a =1c =的椭圆,进而求得2b ,从而得到所求轨迹;(2)将直线方程代入椭圆方程,得到韦达定理的形式;由弦长公式可构造方程求得k ,进而得到结果. 【详解】(1)222PA PB AB +=>=∴由椭圆定义可知点P 轨迹是以,A B 为焦点的椭圆,且2a =1c =2221b a c ∴=-= ∴动点P 的轨迹方程C 为:2212x y +=(2)将直线:1l y kx =+代入椭圆方程得:()221240kxkx ++=则2160k ∆=> 0k ∴≠设()11,M x y ,()22,N x y 122412kx x k ∴+=-+,120x x =()()22221212221642141312k MN k x x x x k k ∴=+⋅+-=+⋅=+,解得:1k =± ∴直线l 的方程为:1y x =±+【点睛】本题考查轨迹方程的求解、弦长公式的应用;关键是能够熟练掌握椭圆的定义,进而得到动点所满足的方程,属于基础题.19.某商店为迎接端午节,推出两款粽子:花生粽和肉粽为调查这两款粽子的受欢迎程度,店员连续10天记录了这两种粽子的销售量,如下表表示(其中销售单位:个)(1)根据两组数据完成上面茎叶图: (2)统计学知识,请评述哪款粽子更受欢迎;(3)求肉粽销售量y 关于天数t 的线性回归方程,并预估第15天肉粽的销售量(回归方程系数精确到0.1).参考数据:()()111155i ii t t yy =--=∑,参考公式:()()()121ˆˆˆ,ni ni ii i tt y y bay bt t t ==--==--∑∑ 【答案】(1)见解析;(2)肉粽更受欢迎,评述见解析;(3) 1.8889.66y t =+,118个 【解析】 【分析】(1)根据两组数据填写茎叶图即可; (2)由茎叶图中的数据,分析得出统计结论;(3)计算平均数与回归系数,写出线性回归方程,利用回归方程计算t =15时y 的值. 【详解】解:(1)根据两组数据填写茎叶图,如图所示;(2)肉粽平均每天销售量18897+98+95+101+98+103+106+103+111=10010x +=,花生粽平均每天销售量2103+93+98+93+106+86+87+94+91+99=9510x =,肉粽方差22222222222112+3+2+5+1+2+3+6+3+11==36.210S ,花生粽方差2222222222228+2+3+2+11+9+8+1+4+4==3810S ,由茎叶图知,肉粽的销售量均值较花生棕高,两种粽子的销售量波动情况相当, 所以可以认为肉粽更受欢迎;(3)计算()()1222222101111165(110),9753122242i i t t t==⨯+=-=⨯++++⨯=∑, 1100(123251236311)10010y =+⨯----+-++++=, ()()()1011262ˆ 1.8833iii iitty y btt=--∴==≈-∑∑, 11100 1.8889.662a y bt =-=-⨯=; ∴y 关于t 的线性回归方程 1.8889.66y t =+,∴预估第15天肉粽的销售量y =1.88×15+89.66=117.86≈118(个). 【点睛】本题主要考查了茎叶图、平均数和线性回归方程的应用问题,是中档题.20. 为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取25名学生的成绩(百分制)作为样本,得到频率分布表如下:分数 [50,60) [60,70) [70,80) [80,90) [90,100]频数 2 3 9 a 1频率0.08 0.12 0.36 b 0.04(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在下表中作出样本频率分布直方图;(Ⅱ)计算这25名学生的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从成绩在[50,70)的学生中任选2人,求至少有1人的成绩在[60,70)中的概率.【答案】(Ⅰ)详见解析;(Ⅱ)96;(Ⅲ)910.【解析】试题分析:(Ⅰ)由频数总数求出a的值,概率频率=频数样本容量,求出b的值,再画出频率分布直方图;(Ⅱ)根据平均数与方差的计算公式求出平均数与方差;(Ⅲ)求出成绩在[50,60)和[60,70)的学生数,用列举法求出成绩在[50,70)的学生任选2人的方法有多少种以及至少有1人的成绩在[60,70)中的方法数,计算概率即可.试题解析:(Ⅰ)由,得;由,得.频率分布直方图如下:(Ⅱ)平均数为;方差为.或.(Ⅲ)成绩在[50,60)的学生共有2人,记为,在[60,70)共有3人,记为. 从成绩在[50,70)的5名学生任选2人的方法有10种(列举略),其中至少有1人的成绩在[60,70)中方法有9种(列举略),所以,所求概率910 p=.考点:频率分布直方图的应用.21.某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润y(单位:元)关于当天需求量n(单位:个,n∈N)的函数解析式;(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:日需求量n 14 15 16 17 18 19 20 频数 10201616151310①若烘焙店一天加工16个这种蛋糕,X 表示当天的利润(单位:元),求X 的分布列与数学期望及方差; ②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由. 【答案】(1)120960,[0,16),960,[16,),n n n y n n -∈∈⎧=⎨∈+∞∈⎩NN(2)①分布列见解析;()912E X =(元);()6336D X =②应加工17个,详见解析 【解析】 【分析】(1)根据题意,分别讨论[0,16)∈n 和[16,)∈+∞n 两种情况,即可得出结果;(2)①先由(1)计算出X 的可能取值,结合题中条件,即可得出分布列,进而可求出期望与方差; ②根据题意求出X 的可能取值,得出期望,与①比较大小,即可得出结论. 【详解】(1)由题意,当[0,16)∈n 时,利润120960=-y n ; 当[16,)∈+∞n 时,利润()1206016960=-⨯=y ;综上,当天的利润y 关于当天需求量n 的函数解析式为120960,[0,16),960,[16,),n n n y n n -∈∈⎧=⎨∈+∞∈⎩NN ;(2)①由(1)可得,当14n =时,利润12014960720=⨯-=X ; 当15n =时,利润12015960840=⨯-=X ; 当16n ≥时,利润960=X ; 所以X 的分布列为:X720 840 960 P0.10.20.7所以()7200.18400.29600.7912E X =⨯+⨯+⨯=(元);222()(720912)0.1(840912)0.2(960912)0.76336D X =-⨯+-⨯+-⨯=;②由题意,加工17个蛋糕时,当14n =时,利润120146017660=⨯-⨯=X ; 当15n =时,利润120156017780=⨯-⨯=X ; 当16n =时,利润120166017900=⨯-⨯=X ; 当17n ≥时,利润60171020=⨯=X ;X 的分布列如下: X660 780 900 1020 P0.10.20.160.54则()6600.17800.29000.1610200.54916.8912E X =⨯+⨯+⨯+⨯=>从数学期望来看,每天加工17个蛋糕的利润高于每天加工16个蛋糕的利润,应加工17个.【点睛】本题主要考查函数模型,以及离散型随机变量的分布列,期望与方差等,熟记离散型随机变量分布列的概念,期望与方差的计算公式即可,属于常考题型.22.已知椭圆C :()222210x y a b a b +=>>过点31,2P ⎛- ⎝⎭,左、右焦点分别是1F ,2F ,过2F 的直线与椭圆交于M ,N 两点,且1F MN ∆的周长为8b . (1)求椭圆C 的方程;(2)若点D 满足111F D FM F N =+,求四边形1F MDN 面积的最大值. 【答案】(1)2214x y +=(2)4【解析】 【分析】(1)本题首先可以根据椭圆定义以及1F MN ∆的周长为8b 得出48ab ,然后根据椭圆过点31,2P ⎛⎫- ⎪ ⎪⎝⎭得出221314a b +=,最后联立方程,即可得出结果; (2)本题首先可根据题意求出2F 的坐标为)3,0并设出直线MN 的方程为3x my =+然后联立直线方程与椭圆方程并计算出122234my y m-+=+、12214y y m -=+,再然后根据111F D FM F N =+得出四边形1F MDN 的面积为1212F F y y ,最后通过化简并利用不等式即可得出四边形1F MDN 的面积的最大值.【详解】(1)因为1F MN ∆的周长为8b ,所以48ab ,因为椭圆C :()222210x y a b a b +=>>过点31,2P ⎛⎫- ⎪ ⎪⎝⎭,所以221314a b +=, 联立方程22131448a b a b⎧+=⎪⎨⎪=⎩,解得24a =,21b =,所以椭圆C 的方程为2214x y +=;(2)略。