[精品]2019-2020年北京市怀柔区九年级数学上册期末质量试题有答案
- 格式:doc
- 大小:404.50 KB
- 文档页数:12
北京市怀柔区2019届九年级上期末统考数学试题含答案解析数 学 试 卷一.选择题(共有10个小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为 A .812×106 B .81.2×107 C .8.12×108 D .8.12×109 【考点】科学记数法和近似数、有效数字 【试题解析】根据科学记数法的知识,812 000 000=【答案】C2. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,相反数最大是A .aB .bC .cD .d 【考点】实数的相关概念 【试题解析】一个数的相反数是在这个数前面加上负号得到的,所以最大的数应该是a ,选A 【答案】A3. 如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =2,DB =4,则AE AC的值为A .12B .13 C .14D .16 【考点】比例线段的相关概念及性质–3–2–1012345–4a d 2题图EDCB A 3题图【试题解析】=,选B【答案】B4. 若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为A .1:2B . 2:1C .1:4D .4:1 【考点】相似三角形的应用 【试题解析】面积比是相似比的平方,所以面积比=1:4,选C 【答案】C5. 二次函数y =(x ﹣1)2+2的最小值为( )A .1B . -1C .2D .-2 【考点】二次函数的图像及其性质 【试题解析】 当x=1时,y取最小值∴二次函数的最小值为2,选C 【答案】C6. 将抛物线2=-y x 向上平移2个单位,则得到的抛物线表达式为 A .2y=-(x+2) B .2y=-(x-2) C .2y=-x -2 D .2y=-x +2 【考点】二次函数图像的平移 【试题解析】 向上平移2个单位,y=【答案】D7. 已知Rt △ABC 中,∠C=90°,AC=3,BC=4,则cosA 的值为( ) A .34B . 43C . 35D . 45【考点】锐角三角函数 【试题解析】 ∵AC=3,BC=4 ∴AB=5∴cosA=选C 【答案】C长:243cm8. 如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为A .43米B .65米C .125米D . 24米【考点】解直角三角形 【试题解析】 在Rt△ABC中,∵i=1:2,AC=12米,∴BC=6米,根据勾股定理得:AB=6米【答案】B9. 如图,⊙O 是△ABC 的外接圆,∠ACO =45°,则∠B 的度数为( )A.30°B. 35°C. 40°D. 45°【考点】与圆有关的计算 【试题解析】 连结OA,∵OA=OC,∠ACO=45°, ∴∠OAC=45°, ∴∠AOC=180°﹣45°﹣45°=90°, ∴∠B=∠AOC=45°.选D 【答案】D10.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB 是骨柄长OA 的34,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为243cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB 为( )A . 21cmB .20 cmC .19cmD . 18cm【考点】与圆有关的计算 【试题解析】在矩形布料上剪下最大的扇形,那么OA=24cm24×所以选D 【答案】D二、填空题(本题共6个小题,每小题3分,共18分) 11.4的平方根是 .【考点】平方根、算术平方根、立方根 【试题解析】 ± 【答案】12.不等式组⎪⎩⎪⎨⎧->+≥-1230211x x 的正整数解是 . 【考点】一次不等式(组)的解法及其解集的表示 【试题解析】 x ≤2,x>-1 ∴-1<x≤2∴正整数解为1;2 【答案】1,2.13.如图,tan ∠ABC= . 【考点】特殊角的三角函数值 【试题解析】CBA30︒10题图1tan∠ABC=tan30°=【答案】14.写出一个抛物线开口向上,与y轴交于(0,2)点的函数表达式 .【考点】二次函数表达式的确定【试题解析】【答案】a>0,c=2,答案不唯一.15.已知⊙O的半径2,则其内接正三角形的面积为 .【考点】与圆有关的计算【试题解析】作出图形如图,连接OB,AO并延长交 BC于点H,则AC⊥BC且BH=CH,∠OBH=300.∵⊙O的面积为2π,∴.∴.∴.∴【答案】316.学校组织社会大课堂活动去首都博物馆参观,明明提前上网做了功课,查到了下面的一段文字:首都博物馆建筑本身是一座融古典美和现代美于一体的建筑艺术品,既具有浓郁的民族特色,又呈现鲜明的现代感.首都博物馆建筑物(地面以上)东西长152米、南北宽66米左右,建筑高度41米.建筑内部分为三栋独立的建筑,即:矩形展馆,椭圆形专题展馆,条形的办公科研楼.椭圆形的青铜展馆斜出墙面寓意古代文物破土而出,散发着浓郁的历史气息.明明对首都博物馆建筑物产生了浓厚的兴趣,站到首都博物馆北广场,他被眼前这座建筑物震撼了.整个建筑宏大壮观,斜出的青铜展馆和北墙面交出一条抛物线,抛物线与外立面之间和谐、统一,明明走到过街天桥上照了一张照片(如图所示).明明想了想,算了算,对旁边的文文说:“我猜想这条抛物线的顶点到地面的距离应是15.7米左右.” 文文反问:“你猜想的理由是什么”?明明说:“我的理由是 ”. 明明又说:“不过这只是我的猜想,这次准备不充分,下次来我要用学过的数学知识准确的测测这个高度,我想用学到的 知识, 我要带 等测量工具”. 【考点】直角三角形与勾股定理 【试题解析】这道题考查的是数学知识的应用,因为在建筑中,经常会有黄金分割,所以明明猜测的理由就是黄金分割,用的知识可以是解直角三角形,也可以是别的数学知识,测量工具主要是测量角和长的工具.【答案】黄金分割,解直角三角形(答案不唯一),测角仪、皮尺(答案不唯一).三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分) 17.计算:2012(3cos602π--+--︒.【考点】幂的运算 【试题解析】原式==2 【答案】218. 已知0362=--x x ,求代数式()()311)3(2+-+--x x x x 的值.【考点】代数式及其求值 【试题解析】==.∵,∴,∴原式=3+4=7. 【答案】719.已知如图,△ABC 中,AE 交BC 于点D ,∠C=∠E ,AD :DE=3:5,AE=8,BD=4,求D C 的长.【考点】相似三角形的应用 【试题解析】 ∵∠C=∠E ,∠ADC=∠BDE, △ADC∽△BDE,∴, 又∵AD :DE=3:5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴,∴DC=【答案】DC=20.如图,一次函数y 1=﹣x +2的图象与反比例函数y 2=xk的图象相交于A ,B 两点,点B 的坐标为(2m ,-m ).(1)求出m 值并确定反比例函数的表达式; (2)请直接写出当x <m 时,y 2的取值范围.【考点】反比例函数与一次函数综合【试题解析】(1)∵据题意,点B的坐标为(2m,-m)且在一次函数y1=﹣x+2的图象上,代入得-m=-2m+2.∴m=2. ∴B点坐标为(4,-2)把B(4,﹣2)代入y2=得k=4×(﹣2)=﹣8,∴反比例函数表达式为y2=﹣;(2)当x<4,y2的取值范围为y2>0或y2<﹣2.【答案】(1)﹣8(2)y2>0或y2<﹣22,求AB的长.21.已知如图,在△ABC中,∠A=30°,∠C=105°,AC=3【考点】直角三角形与勾股定理【试题解析】在△ABC中,∠A=30°,∠C=105°∴∠B=45°,过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.【答案】3+22.已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接A C.若∠A=22.5°,CD=8cm,求⊙O的半径.【考点】与圆有关的概念及性质【试题解析】连接OC,∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵∠ A =22.5°,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,【答案】4cm23. 如图,在数学实践课中,小明为了测量学校旗杆CD 的高度,在地面A 处放置高度为1.5米的测角仪AB ,测得旗杆顶端D 的仰角为32°,AC 为22米,求旗杆CD 的高度.(结果精确到0.1米.参考数据:sin 32°= 0.53,cos 32°= 0.85,tan 32°= 0.62)【考点】解直角三角形 【试题解析】 过点B作,垂足为E(如图),在Rt △DEB 中,∠DEB=,(米),(米)(米) 答:旗杆CD 的高度为15.1米.23题图【答案】旗杆CD的高度为15.1米24. 如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.【考点】切线的性质与判定【试题解析】.(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴∠ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)有(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD=,∵OD=OA,PO=PA+OA=2+OA,∴, ∴OA=3,∴⊙O半径为3.【答案】见解析25.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求x取何值时,花园面积S最大,并求出花园面积S的最大值.【考点】一元二次方程的应用【试题解析】(1)∵AB=xm,则BC=(28﹣x)m,∴x(28﹣x)=192,解得:x1=12,x2=16,答:x的值为12m或16m;(2)由题意可得出:,解得:. 又S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∴当x≤14时,S随x的增大而增大.∴x=13时,S取到最大值为:S=﹣(13﹣14)2+196=195 答:x为13m时,花园面积S最大,最大面积为195m2.【答案】见解析26.在“解直角三角形”一章我们学习到“锐角的正弦、余弦、正切都是锐角的函数,统称为锐角三角函数” .小力根据学习函数的经验,对锐角的正弦函数进行了探究. 下面是小力的探究过程,请补充完成:(1)函数的定义是:“一般地,在一个变化的过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,我们就把x称为自变量,y称为因变量,y 是x的函数”.由函数定义可知,锐角的正弦函数的自变量是,因变量是,自变量的取值范围是___________.(2)利用描点法画函数的图象.小力先上网查到了整锐角的正弦值,如下:sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474sin19°=0.3255681544571567 sin20°=0.342033256687 sin21°=0.35836794954530027sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.6293203910498375sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.933580426497sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738sin88°=0.9993908270190958 sin89°=0.9998476951563913②建立平面直角坐标系(两坐标轴可视数值需要分别选取不同长度做为单位长度);③描点.在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点;④连线. 根据描出的点,画出该函数的图象;(3)结合函数的图象,写出该函数的一条性质: .【考点】锐角三角函数【试题解析】(1)锐角的角度;正弦值;大于0°且小于90°;(2)①列表(小力选取了10对数值);(3)在0°到90°,函数值随着x 的增大而增大. 【答案】见解析27.已知:抛物线3bx x y 21++=与x 轴分别交于点A (-3,0),B (m ,0).将y 1向右平移4个单位得到y 2. (1)求b 的值;(2)求抛物线y 2的表达式;(3)抛物线y 2与y 轴交于点D ,与x 轴交于点E 、F (点E 在点F 的左侧),记抛物线在D 、F 之间的部分为图象G (包含D 、F 两点),若直线1-+=k kx y 与图象G 有一个公共点,请结合函数图象,求直线1-+=k kx y 与抛物线y 2的对称轴交点的纵坐标t 的值或取值范围.【考点】二次函数与几何综合 【试题解析】 (1)把A(-3,)代入∴b=4 ∴y1的表达式为:(2)将y1变形得:y1=(x+2)2-1据题意y2=(x+2-4)2-1=(x-2)2-1 ∴抛物线y2的表达式为 (3)的对称轴x=2 ∴顶点(2,-1) ∵直线过定点(-1,-1) 当直线与图像G有一个公共点时当直线过F (3,0)时,直线把x=2代入∴当直线过D(,3)时,直线把x=2代入∴ 即∴结合图象可知或【答案】见解析28. 如图1,点O 在线段AB 上,AO=2,OB=1,OC 为射线,且∠BOC=60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t=21秒时,则OP= ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP=AB 时,过点A 作AQ ∥BP ,并使得∠QOP=∠B ,求证:AQ·BP=3.为了证明AQ·BP=3,小华同学尝试过O 点作OE ∥AP 交BP 于点E.试利用小华同学给我们的启发补全图形并证明AQ·BP=3.【考点】相似三角形的应用 【试题解析】 (1)2×=1,高=面积=3×=; (2)①∵∠A<∠BOC=60°, ∴∠A不可能是直角. ②当∠ABP=90°时, ∵∠BOC=60°, ∴∠OPB=30°. ∴OP=2OB,即2t=2. ∴t=1③当∠APB=90°,如图,过点P 作PD ⊥AB 于点D ,则OP=2t ,OD=t ,PD=,AD=,DB=.∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B. ∴△APD ∽△PBD.∴,即,即,解得(舍去). (3)补全图形,如图 ∵AP=AB , ∴∠APB=∠B. ∵OE ∥AP ∴∠OEB=∠APB=∠B. ∵AQ∥BP, ∴∠QAB+∠B=180°.又∵∠3+∠OEB=180°, ∴∠3=∠QAB. 又∵∠AOC=∠2+∠B=∠1+∠QOP, ∵∠B=∠QOP, ∴∠1=∠2. ∴△QAO ∽△OEP.∴,即AQ ·EP=EO ·AO. ∵OE ∥AP, ∴△OBE∽△ABP.∴.∴OE=AP=1,BP=EP.∴AQ ·BP=AQ·EP=AO·OE=×2×1=3【答案】见解析29.如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C . (1)求抛物线的表达式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少? (3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5SP B Q CBK =△△:S ,求K 点坐标.【考点】二次函数与几何综合【试题解析】(1)将A(-2,0),B(4,0)两点坐标分别代入y=ax2+bx-3(a≠0),即,解得:抛物线的表达式为:(2)设运动时间为t秒,由题意可知:过点Q作QD⊥AB,垂直为D,易证△OCB∽△DQB,OC=3,OB=4,BC=5,AP=3t,PB=6-3t,BQ=t,对称轴当运动1秒时,△PBQ面积最大,,最大为.(3)如图,设K(m,) 连接CK、BK,作KL∥y轴交BC与L,由(2)知:,设直线BC的表达式为y=kx+n,解得:直线BC的表达式为y=x-3即:解得:K坐标为(1,)或(3,)【答案】见解析。
2019.1北京怀柔区初三数学期末试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是A .2y x =B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若OA .1B .2CD.6.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2, 则AB 的长为 A .2B .3C .4D .5第2题图第4题图第5题图7.若要得到函数()21+2y x =-的图象,只需将函数2y x =的图象A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________.10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是.DECBA第6题图第8题图11题图13题图13.如图所示的网格是正方形网格,则sin∠BAC与sin∠DAE的大小关系是.14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标可以是和.15.如图,为测量河内小岛B到河边公路l的距离,在l上顺次取A,C,D三点,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为米.16.在平面直角坐标系xOy内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点(填“能”或“不能”)画一个圆,理由是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.已知:53ab=. 求:a bb+.18.计算:2cos30-4sin45︒︒19.已知二次函数y = x2-2x-3.(1)将y = x2-2x-3化成y = a (x-h)2 + k的形式;(2)求该二次函数图象的顶点坐标.20.如图,在△ABC中,∠B为锐角,AB=BC=7,sin B=AC的长.A21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5. 求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P, 使得△P AC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ; ③以点O 为圆心,以OA 为半径作圆;④以点C 为圆心,CA 为半径画弧,交⊙O 于点D(与点A 不重合); ⑤连接线段AD 交BC 于点P.E DCBA ABC所以点P 就是所求作的点. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明: ∵CD=AC , ∴CD = . ∴∠ =∠ . 又∵∠ =∠ ,∴△P AC ∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy 中,直线y=x+2 与双曲线ky x相交于点A (m ,3). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图; (3)若P 是坐标轴上一点,当OA =P A 时.直接写出点P 的坐标.24. 如图,AB 是O 的直径,过点B 作O 的切线BM ,点A ,C ,D 分别为O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.CD BM;(1)求证://(2)连接OE,若DE=m,求△OBE的周长.25. 在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1), (x ,y 2),并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:当△APC 有一个角是30°时,AP 的长度约为 cm.26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A()-,与y轴交于点B,此抛物线顶点C到x轴的距离为4.3,0(1)求抛物线的表达式;(2)求CAB∠的正切值;(3)如果点P是x轴上的一点,且ABP CAO∠=∠,直接写出点P的坐标.27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH .(1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计算结果.........)A BCDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线y=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.2018-2019学年度第一学期期末初三质量检测数学试卷评分标准一、选择题(本题共16分,每小题2分) 下列各题均有四个选项,符合题意的选项只有..一个二、填空题(本题共16分,每小题2分) 9.下10.3411. m 712.32π13.sin ∠BAC >sin ∠DAE 14.(2,2),(0,2)(答案不唯一)15.16.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵53a b =,∴1a b a b b +=+=53+1=83.………………………5分 =2218.解:原式3分4分 5分19.解:(1)y=x 2-2x-3=x 2-2x+1-1-3……………………………2分 =(x-1)2-4.……………………3分 (2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD ⊥BC 于点D ,∴∠ADB =∠ADC =90°. ∵sin 2B =, B∴∠B=∠BAD=45°.………………2分 ∵AB=∴AD=BD=3.…………………………3分 ∵BC =7,∴DC=4. ∴在Rt △ACD 中,5AC ==.…………………………5分21.(1)证明:∵AB ⊥BC ,∴∠B =90°.∵AD ∥BC ,∴∠A =90°.∴∠A =∠B .………………2分 ∵AD =1,AE =2,BC =3,BE =1.5, ∴121.53=.∴AD AEBE BC= ∴△ADE ∽△BEC .∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°. ∴∠DEC =90°.………………5分22.(1)补全图形如图所示:………………2分 (2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线k y x=相交于点A (m ,3).∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径, ∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分 (2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,…………………4分 ③在Rt △OBE 中,由勾股定理得出………………………………5分 ④计算出△OB E 周长为2………………………………6分25.(1)3.00…………………………………1分(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方. 由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-.可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=.所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分(3)点p 的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分 (2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分 (3)求解思路如下:由∠A HQ=141°,∠B HQ=60°解得∠A HB=81°.a.在△ABH 中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP 中,由∠A HP=120°,AH=PH ,解得∠PA H=30°.c.在△ADB 中,由∠A DB=∠A BD= 30°,解得∠BAD =120°. 由a 、b 、c 可得∠DAP =21°.在△DAP 中,由∠A DP= 60°,∠DAP =21°,AD=1,可解△DAP , 从而求得DP 长.…………………………………7分 28.解:(1)∵A (1,0),AB =3 ∴B (1,3)或B (1,-3)A BCDPHQx∵12QA QB = ∴Q (1,1)或Q (1,-1)………………3分(2)点A (1,0)关于直线y = x 的对称点为A ′(0,1) ∴Q A =Q A ′∴QB A Q '21=………………5分 (3)-4≤t ≤4………………7分。
北京市怀柔区九年级上学期期末考试数学试题一、选择题(本题共16分,每小题2分)1.北京电影学院落户,怀柔一期工程建设进展顺利,一期工程建筑面积为178800平方米,建设内容有教学行政办公、图书馆、各类实习用房、学生及教工宿舍、食堂用房等,预计将于2019年投入使用.将178800用科学记数法表示应为()A.1.788×104B.1.788×105C.1.788×106D.1.788×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:178800用科学记数法表示应为1.788×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.若将抛物线y=﹣2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是()A.y=﹣(+3)2﹣2B.y=﹣(﹣3)2﹣2C.y=(+3)2﹣2D.y=﹣(+3)2+2【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=﹣2的顶点坐标为(0,0),先向左平移3个单位,再向下平移2个单位后的抛物线的顶点坐标为(﹣3,﹣2),所以,平移后的抛物线的解析式为y=﹣(+3)2﹣2.故选:A.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.3.在Rt△ABC中,∠C=90°,AC=4,BC=3,则tanA的值为()A.B.C.D.【分析】根据锐角的正切等于对边比邻边解答.【解答】解:如图,tanA==.故选B.【点评】此题考查了锐角三角函数的定义,掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边是解题的关键.4.如图,在△ABC中,点D,E分别为边AB,AC上的点,且DE∥BC,若AD=4,BD=8,AE=2,则CE的长为()A.2B.4C.6D.8【分析】根据平行线分线段成比例定理即可解决问题;【解答】解:∵DE∥BC,∴=,∴=,∴EC=4,故选:B.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.5.如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得∠BOC=2∠A,进而可得答案.【解答】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠B0C=50°.故选:B.【点评】此题主要考查了圆周角定理,关键是准确把握圆周角定理即可.6.网球单打比赛场地宽度为8米,长度在球网的两侧各为12米,球网高度为0.9米(如图AB的高度).中网比赛中,某运动员退出场地在距球网14米的D点处接球,设计打出直线穿越球,使球落在对方底线上C处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点高度至少为()A.1.65米B.1.75米C.1.85米D.1.95米【分析】根据AB∥DE知△ABC∽△EDC,据此可得=,将有关数据代入计算即可.【解答】解:由题意知AB∥DE,则△ABC∽△EDC,∴=,即=,解得:ED=1.95,故选:D.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定和性质.7.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米【分析】连接OC.根据垂径定理和勾股定理求解即可.【解答】解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴OE=分米,在Rt△OCE中,CE=分米,∴CD=2分米;故选:B.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.8.如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为,圆心O与P点的距离为y,图2记录了一段时间里y与的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB【分析】结合图1分别画出A、B、C、D四种函数图象,即可判断.【解答】解:根据画出的函数的图象,C符合,故选:C.【点评】本题考查了动点问题的函数图象,根据题意,分别画出函数的图象是解题的关键.二、填空题(本题共16分,每小题2分)9.分解因式:33﹣62+3= 3(﹣1)2.【分析】此题是分解因式中综合性题目,应从提出3这个公因式后,再利用完全平方公式进一步因式分解.【解答】解:33﹣62+3,=3•2﹣3•2+3,=3(2﹣2+1),=3(﹣1)2.【点评】本题考查了提取公因式法与公式法因式分解,应注意找准公因式,提取公因式后因注意能否继续因式分解,此题容易分解因式不彻底.10.若△ABC∽△DEF,且对应边BC与EF的比为1:3,则△ABC与△DEF的面积比等于1:9 .【分析】根据相似三角形面积的比等于相似比的平方,即可得出△ABC与△DEF的面积比.【解答】解:∵△ABC与△DEF的相似比是1:3,∴△ABC与△DEF的面积比等于12:32=1:9.故答案为1:9.【点评】熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.11.有一个反比例函数的图象,在第二象限内函数值随着自变量的值增大而增大,这个函数的表达式可能是(写出一个即可):y=﹣.【分析】首先根据反比例函数的性质可得<0,再写一个符合条件的数即可.【解答】解:∵反比例函数y=(是常数,≠0),在其图象所在的每一个象限内,y的值随着的值的增大而增大,∴<0,∴y=﹣.故答案为:y=﹣.【点评】此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=(是常数,≠0),当>0时,在每一个象限内,函数值y随自变量的增大而减小;当<0时,在每一个象限内,函数值y随自变量增大而增大.12.抛物线y=2(+1)2+3的顶点坐标为(﹣1,3).【分析】抛物线y=a(﹣h)2+,顶点坐标是(h,),直接根据抛物线y=2(+1)2+3写出顶点坐标则可.【解答】解:顶点坐标是(﹣1,3).【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.13.将y=2﹣4+5化成y=a(﹣h)2+的形式y=(﹣2)2+1 .【分析】化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方凑完全平方式,把一般式转化为顶点式.【解答】解:∵y=2﹣4+5,∴y=2﹣4+4+1,∴y=(﹣2)2+1.故答案为y=(﹣2)2+1.【点评】本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:y=a2+b+c(a≠0,a、b、c为常数);(2)顶点式:y=a(﹣h)2+;(3)交点式(与轴):y=a(﹣1)(﹣2).14.数学实践课上,同学们分组测量教学楼前国旗杆的高度.小泽同学所在的组先设计了测量方案,然后开始测量了.他们全组分成两个测量队,分别负责室内测量和室外测量(如图).室内测量组到教室内窗台旁,在点E处测得旗杆顶部A的仰角α为45°,旗杆底部B的俯角β为60°.室外测量组测得BF的长度为5米.则旗杆AB= (5+5)米.【分析】根据题意直接得出AN的长,进而得出BN的长,即可得出答案.【解答】解:如图所示:由题意可得,EN=BF=5m,∵α为45°,∴AN=EN=5m,tan60°==,解得:BN=5,则旗杆AB=AN+BN=(5+5)m.故答案为:(5+5).【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.15.在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为米2.【分析】根据等边三角形的性质和弧长公式即可得到结论.【解答】解:草皮种植面积==πm2,故答案为:π.【点评】本题考查了等边三角形的性质,弧长公式,正确的识别图形是解题的关键.16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:如图1,△OAB.求作:⊙O,使⊙O与△OAB的边AB相切.小明的作法如下:如图2,①取线段OB的中点M;以M为圆心,MO为半径作⊙M,与边AB交于点C;②以O为圆心,OC为半径作⊙O;所以,⊙O就是所求作的圆.请回答:这样做的依据是圆的定义、直径所对的圆周角为90°,经过半径的外端并且垂直于这条半径的直线是圆的切线.【分析】由作图步骤,根据“圆的定义、直径所对的圆周角为90°,经过半径的外端并且垂直于这条半径的直线是圆的切线”可得答案.【解答】解:①取线段OB的中点M;以M为圆心,MO为半径作⊙M,则根据圆的定义知OB为⊙M的直径;由直径所对圆周角为直角知OC⊥AB;②以O为圆心,OC为半径作⊙O;由经过半径的外端并且垂直于这条半径的直线是圆的切线知⊙O就是所求作的圆;综上,这样做的依据是:圆的定义、直径所对的圆周角为90°,经过半径的外端并且垂直于这条半径的直线是圆的切线.故答案为:圆的定义、直径所对的圆周角为90°,经过半径的外端并且垂直于这条半径的直线是圆的切线.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握圆的有关性质及切线的判定和性质.三、解答题(本题共68分,第20、21题每小题5分,第26-28题每小题5分,其余每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:4sin45°﹣+(﹣1)0+|﹣2|.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=4×﹣2+1+2=2﹣2+3=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)如图,在△ABC中,D为AC边上一点,BC=4,AC=8,CD=2.求证:△BCD∽△ACB.【分析】根据两边成比例夹角相等的两三角形相似即可判断.【解答】证明:∵BC=4,AC=8,CD=2,∴=,又∵∠C=∠C,∴△BCD∽△ACB.【点评】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定方法,学会利用数形结合的思想思考问题;19.(5分)如图,在△ABC中,tanA=,∠B=45°,AB=14.求BC的长.【分析】作CD⊥AB于D,如图,先在Rt△CDA中利用tanA的定义可计算.【解答】解:过点C作CD⊥AB于点D,如图,∵在Rt△CDA中,tanA=,设CD=3,AD=4,∵在Rt△CDB中,∠B=45°∴tanB==1,sinB=,∵CD=3.∴BD=3,BC=•3=3.又∵AB=AD+BD=14,∴4+3=14,解得=2,∴BC=6.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.熟练掌握三角函数的定义是解决此类问题的关键.20.(6分)在平面直角坐标系Oy中,直线y=+3与双曲线y=相交于点A(m,2).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,且满足PA=OA.直接写出点P的坐标.【分析】(1)理由待定系数法即可解决问题;(2)利用描点法画出函数图象即可;(3)图中P、P′即为满足条件的点P,写出坐标即可;【解答】解:(1)∵直线y=+3与双曲线y=相交于点A(m,2).∴A(﹣1,2),y=﹣.(2)函数图象如图所示.(3)观察图象可知满足条件的点P坐标为(0,4)或(﹣2,0).【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.21.(6分)一个二次函数图象上部分点的横坐标,纵坐标y的对应值如下表:(2)求m的值;(3)在给定的直角坐标系中,画出这个函数的图象;(4)根据图象,写出当y<0时,的取值范围.【分析】(1)先确定出顶点坐标,再设顶点式解析式为y=a(+1)2+2,然后将点(1,0)代入求出a的值,从而得解;(2)将=2代入函数解析式计算即可得解;(3)根据二次函数图象的画法作出图象即可;(4)根据函数图象,写出轴上方部分的的取值范围即可.【解答】解:(1)由图表可知抛物线的顶点坐标为(﹣1,2),所以,设这个二次函数的表达式为y=a(+1)2+2,∵图象过点(1,0),∴a(1+1)2+2=0,∴a=﹣,∴这个二次函数的表达式为y=﹣(+1)2+2;(2)=2时,m=﹣(2+1)2+2=﹣;(3)函数图象如图所示;(4)y<0时,<﹣3或>1.【点评】本题考查了抛物线与轴的交点问题,二次函数的性质,待定系数法求二次函数解析式,读懂题目信息,从表格中判断出顶点坐标是解题的关键.22.(5分)如图,已知AB是⊙O的直径,点M在BA的延长线上,MD切⊙O于点D,过点B 作BN⊥MD于点C,连接AD并延长,交BN于点N.(1)求证:AB=BN;(2)若⊙O半径的长为3,cosB=,求MA的长.【分析】(1)本题可连接OD,由MD切⊙O于点D,得到OD⊥MD,由于BN⊥MC,得到OD∥BN,得出∠ADO=∠N,根据等腰三角形的性质和等量代换可得结果;(2)由(1)知,OD∥BN,得到∠MOD=∠B,根据三角函数的定义即可得到结果.【解答】(1)证明:连接OD,∵MD切⊙O于点D,∴OD⊥MD,∵BN⊥MC,∴OD∥BN,∴∠ADO=∠N,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠N,∴AB=BN;(2)由(1)OD∥BN,∴∠MOD=∠B,∴cos∠MOD=cosB=,在Rt△MOD中,cos∠MOD═,∵OD=OA,MO=MA+OA=3+MA,∴,∴MA=4.5.【点评】本题考查了切线的性质,等腰三角形性质以及等边三角形的判定等知识点,正确的画出辅助线是解题的关键.23.(5分)数学课上老师提出了下面的问题:在正方形ABCD对角线BD上取一点F,使.小明的作法如下:如图①应用尺规作图作出边AD的中点M;②应用尺规作图作出MD的中点E;③连接EC,交BD于点F.所以F点就是所求作的点.请你判断小明的作法是否正确,并说明理由.【分析】根据相似三角形的判定和性质解答即可.【解答】解:正确.理由如下:由做法可知M为AD的中点, E为MD的中点,∴∵四边形ABCD是正方形,∴AD=BC,ED∥BC,∴△DEF∽△BFC∴∵AD=BC∴∴.【点评】此题考查作图问题,关键是根据正方形的性质和相似三角形的判定和性质解答.24.(5分)已知:如图,在四边形ABCD中,BD是一条对角线,∠DBC=30°,∠DBA=45°,∠C=70°.若DC=a,AB=b,请写出求tan∠ADB的思路.(不用写出计算结果)【分析】作DE⊥BC于点E、AF⊥BD于点F,Rt△CDF中可得DE=CDsinC=asin70°,Rt△BDE中可得BD=2DE=2asin30°,在由AF=BF=AB=b,据此得出DF、AF的长,从而得出答案.【解答】解:如图,(1)过D点作DE⊥BC于点E,可知△CDE和△DEB都是直角三角形;(2)由∠C=70°,可知sin∠C的值,在Rt△CDE中,由sin∠C和DC=a,可求DE的长;(3)在Rt△DEB中,由∠DBC=30°,DE的长,可求BD的长;(4)过A点作AF⊥BD于点F,可知△DFA和△AFB都是直角三角形;(5)在Rt△AFB中,由∠DBA=45°,AB=b,可求AF和BF的长;(6)由DB、BF的长,可知DF的长;(7)在Rt△DFA中,由可求tan∠ADB.【点评】本题主要考查解直角三角形,解题的关键是根据题意构建直角三角形、熟练掌握三角函数的运用.25.(5分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,点E是BC边上一动点,联结AE,过点E作AE的垂线交直线CD于点F.已知AD=4cm,CD=2cm,BC=5cm,设BE的长为cm,CF的长为ycm.小东根据学习函数的经验,对函数y随自变量的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与y的几组值,如下表:(2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BE=CF时,BE的长度约为0.6~0.8 cm.【分析】根据题意作图测量即可,第(3)问构造直线y=与所画图象求交点即可.【解答】解:(1)根据题意作图测量可得y=1.5故答案为:1.5(2)根据题意作图得(3)根据题意,所画图象于直线y=交点即为所求数值.故测量数据在0.6~0.8之间.故答案为:0.6~0.8【点评】本题为动点问题的函数图象探究题,考查了函数图象的画法和将数据条件转化为函数图象的思想.解答关键是标准作图、数形结合.26.(7分)在平面直角坐标系Oy中,直线l:y=﹣2+n与抛物线y=m2﹣4m﹣2m﹣3相交于点A (﹣2,7).(1)求m、n的值;(2)过点A作AB∥轴交抛物线于点B,设抛物线与轴交于点C、D(点C在点D的左侧),求△BCD的面积;(3)点E(t,0)为轴上一个动点,过点E作平行于y轴的直线与直线l和抛物线分别交于点P、Q.当点P在点Q上方时,求线段PQ的最大值.【分析】(1)把点A的坐标分别代入直线和抛物线解析式求得m、n的值即可;(2)利用抛物线解析式求得点C、D的坐标,结合抛物线的对称性和三角形的面积公式解答;(3)P(t,﹣2t+3),Q( t,t2﹣4t﹣5),由2﹣4﹣5=﹣2+3得直线y=﹣2+3与抛物线y=2﹣4﹣5的两个交点坐标分别为(﹣2,7)和(4,﹣5),由两点间的距离公式和二次函数最值的求法解答.【解答】解:(1)把A(﹣2,7)代入y=﹣2+n,得7=4+n,解得n=3.把把A(﹣2,7)代入y=m2﹣4m﹣2m﹣3,得7=4m+8m﹣2m﹣3,解得m=1.综上所述,m=1,n=3;(2)由(1)知抛物线表达式为y=2﹣4﹣5令y=0得,2﹣4﹣5=0.解得1=﹣1,2=5,∴抛物线y=2﹣4﹣5与轴得两个交点C、D的坐标分别为C(﹣1,0),D(5,0)∴CD=6.∵A(﹣2,7),AB∥轴交抛物线于点B,根据抛物线的轴对称性,可知B(6,7)∵S△BCD=21;(3)据题意,可知P(t,﹣2t+3),Q( t,t2﹣4t﹣5),由2﹣4﹣5=﹣2+3得直线y=﹣2+3与抛物线y=2﹣4﹣5的两个交点坐标分别为(﹣2,7)和(4,﹣5)∵点P在点Q上方∴﹣2<t<5,∴PQ=﹣t2+2t+8=﹣( t﹣1)2+9∵a=﹣1∴PQ的最大值为9.【点评】考查了二次函数综合题,利用待定系数法求一次函数、二次函数解析式,函数图象上点的坐标特征,二次函数最值的求法以及三角形的面积公式等知识点进行解答,另外注意二次函数图象的性质在解题过程中的应用,难度不是很大.27.(7分)在等腰△ABC中,AB=AC,将线段BA绕点B顺时针旋转到BD,使BD⊥AC于H,连结AD并延长交BC的延长线于点P.(1)依题意补全图形;(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DP与BC之间的数量关系.请你用小明的思路补全图形并证明线段DP与BC之间的数量关系.【分析】(1)依据将线段BA绕点B顺时针旋转到BD,使BD⊥AC于H,连结AD并延长交BC 的延长线于点P,进行作图;(2)依据∠BAC=2α,∠AHB=90°,可得∠ABH=90°﹣2α,依据BA=BD,即可得到∠BDA=45°+α;(3)依据D关于BC的对称点为E,且DE交BP于G,可得DE⊥BP,DG=GE,∠DBP=∠EBP,BD=BE,再判定△ABC≌△BDE,可得BC=DE,进而得到∠DPB=∠ADB﹣∠DBP=45°+α﹣α=45°,据此可得BC=DP.【解答】解:(1)如图:(2)∵∠BAC=2α,∠AHB=90°,∴∠ABH=90°﹣2α,∵BA=BD,∴∠BDA=45°+α;(3)补全图形,如图:证明过程如下:∵D关于BC的对称点为E,且DE交BP于G,∴DE⊥BP,DG=GE,∠DBP=∠EBP,BD=BE,∵AB=AC,∠BAC=2α,∴∠ABC=90°﹣α,由(2)知∠ABH=90°﹣2α,∠DBP=90°﹣α﹣(90°﹣2α)=α,∴∠DBP=∠EBP=α,∴∠BDE=2α,∵AB=BD,∴△ABC≌△BDE,∴BC=DE,∴∠DPB=∠ADB﹣∠DBP=45°+α﹣α=45°,∴=,∴=,∴=,∴BC=DP.【点评】本题主要考查了利用旋转变换以及轴对称变换进行作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.28.(7分)在平面直角坐标系Oy中,点P的横坐标为,纵坐标为2,满足这样条件的点称为“关系点”.(1)在点A(1,2)、B(2,1)、M(,1)、N(1,)中,是“关系点”的A,M ;(2)⊙O的半径为1,若在⊙O上存在“关系点”P,求点P坐标;(3)点C的坐标为(3,0),若在⊙C上有且只有一个“关系点”P,且“关系点”P的横坐标满足﹣2≤≤2.请直接写出⊙C的半径r的取值范围.【分析】(1)先判断出直线y=2上的点是“关系点”,再将点A,B,M,N的坐标代入判断即可得出结论;(2)构造直角三角形,即可得出结论;(3)先判断出满足条件的点的特点,再利用三角函数和平面坐标系中两点间的距离公式即可得出结论.【解答】解:(1)设点P的纵坐标为y,则y=2,∴点P在直线y=2上,即:直线y=2上的点称为“关系点”,当=1时,y=2×1=1,∴点A是“关系点”,当=2时,y=2×2=4≠1,∴点B不是“关系点”,当=时,y=2×=1,∴点M是“关系点”,∴点A,M是“关系点”,故答案为:A,M;(2)如图1,过点P作PG⊥轴于点G,设P(,2)∵OG2+PG2=OP2∴2+42=1∴52=1∴2=∴=∴P(,)或P(﹣,﹣);(3)如图2,由(1)知,点P在直线y=2上,∵﹣2≤≤2,即:点(2,4)为B,(﹣2,﹣4)为A,过B作BE⊥轴于E,∴OE=2,BE=4,在Rt△BOE中,根据勾股定理得,OB==2,∴sin∠BOE===,①当⊙C与线段AB相切时,切点记作D,连接CD,∵C(3,0),∴OC=3,在Rt△COD中,sin∠COD=,∴,∴CD=,②当以点C为圆心的圆刚好过点B时,与线段的另一个交点记作F,⊙C的半径BC==,当以点C为圆心的圆刚好过点A时,⊙C的半径AC==,∵在⊙C上有且只有一个“关系点”P,∴点P和点D重合时,满足条件,点P在线段AF上时,满足条件(包括点A,不包括点F),∴t=或<r≤.【点评】此题是圆的综合题,主要考查了新定义“关系点”的理解掌握,直线解析式的确定,圆的切线的性质,勾股定理,锐角三角函数,理解和应用新定义是解本题的关键.。
7题图6题图 5题图 4题图怀柔区2021 - -2021学年度第|一学期期末九年级|教学质量检测数 学 试 卷一、选择题 (共8道小题 ,每题4分 ,共32分 )下面各题均有四个选项 ,其中只有一个..是符合题意的. 1.13-的相反数是 ( ) A .3- B .3 C .13- D .132. ,ABC △中 ,∠C =90° ,sin ∠A =32,那么∠A 的度数是 ( ) A .30° B .45° C .60° D . 90° 3.假设反比例函数2k y x+=的图象位于第二、四象限内 ,那么k 的取值范围是 ( )A .2k >-B .2k <-C .0k >D .0k <4.如图 ,⊙O 的半径为5 ,AB 为弦 ,OC ⊥AB ,垂足为C ,假设OC =3 ,那么弦AB 的长为 ( ). A ... 8. B ...6.C ...4.D ...10..5.如图 ,D 是ABC △边AB 上一点 ,那么以下四个条件不.能单独判定.....ABC ACD △∽△的是( ) A .B ACD ∠=∠ B .ADC ACB ∠=∠ C .AC AB CD BC= D .2AC AD AB =⋅6.如图 ,假设将飞镖投中一个被平均分成6份的圆形靶子 ,那么落在阴影局部的概率是 ( ) A .12 B .56 C .13 D .237.如图 ,BC 是⊙O 的直径 ,A 、D 是⊙O 上两点 ,假设∠D = 35° ,那么∠OAC 的度数是 ( )A .35°B .55°C .65°D .70°8.如图 ,在Rt △ABC 中 ,∠ACB =90° ,∠BAC =30° ,AB =2 ,D 是AB 边上的一个动点 (不与点A 、B 重合 ) ,过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,那么以下图象中 ,能表示y 与x 的函数关系的图象大致是 ( )二、填空题 (共4道小题 ,每题4分 ,共16分 )9.如图 ,在△ABC 中 ,DE ∥BC ,假设DE =1 ,BC =3 ,那么△ADE 与△ABC 面积的比为 .10.如图 ,点A 、B 、C 是半径为3cm 的⊙O 上三个点 ,且︒=∠30ABC , 那么劣弧 AC 的长是 .11.如下图 ,边长为1的小正方形构成的网格中 ,半径为1的⊙O 的圆心O 在格点上 , 那么∠AED 的正弦值等于 .12.如下表 ,从左到右在每个小格子中都填入一个整数 ,使得其中任意三个相邻格子中所填 整数之和都相等 ,那么第99个格子中的数为 ,2021个格子中的数为 .三、解答题 (此题共30分 ,每题5分 )3abc-12…11题图10题图AEOBC DOABCA DE9题图BCAED13.计算:2sin 452cos603tan60+18.︒+︒-︒ 14.抛物线228y x x =--.(1 )用配方法把228y x x =--化为2()y x h k =-+形式;(2 )并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x 轴交点坐标是 ,当x 时 ,y 随x 的增大而增大. 解15.解不等式: 4(x +1)≤5x +8 ,并把它的解集在数轴上表示出来. 解:16.如图: ,梯形ABCD 中 ,∠B =90° ,AD ∥BC ,AB ⊥BC ,AB =AD =3 ,BC =7. 求cos ∠C. 解:17. 以直线1x =为对称轴的抛物线过点A (3 ,0 )和点B(0 ,3) ,求此抛物线的解析式. 解:18.如图 ,在ABC △中 ,90C =∠ ,在AB 边上取一点D ,使BD BC = ,过D 作DE AB ⊥交AC 于E ,AC =8 ,BC =6.求DE 的长.解:四、解答题 (此题共20分 ,每题5分 )19.如图 ,小明在十月一日到公园放风筝 ,风筝飞到C 处时的线长为20米 ,此时小明正好站在A 处 ,并测得60CBD ∠= ,牵引底端B 离地面 , 求此时风筝离地面的高度. 解:20.甲、乙两大型超市为了吸引顾客 ,都举行有奖酬宾活动 ,凡购物满200元 ,均可得到一次抽奖的时机 ,在一个纸盒里装有2个红球和2个白球 ,除颜色外其它都相同 ,抽奖者一次从中摸出两个球 ,根据球的颜色决定送礼金券 (在他们超市使用时 ,与人民币等值 )的多少 (如下表 ).甲超市.球 两 红 一红一白 两 白 礼金券 (元 )205020乙超市:球 两 红 一红一白 两 白 礼金券 (元 )502050(1 )用树状图表示得到一次摸奖时机时中礼金券的所有情况; (2 )如果只考虑中奖因素 ,你将会选择去哪个超市购物?请说明理由. 解:21. 如图 ,AB 是⊙O 的直径 ,AD 是弦 ,22.5A ∠= ,延长到点C ,使得∠ACD =45°. (1 )求证:CD 是⊙O 的切线; (2 )假设22AB =,求OC 的长.证明:22.在△ABC 中 ,∠C =120° ,AC =BC ,AB =4 ,半圆的圆心O 在AB 上 ,且与AC ,BC 分别相切于点D ,E .(1 )求半圆O 的半径; (2 )求图中阴影局部的面积.解:五、解答题 (此题共22分 ,23题7分,24题7分 ,25题8分 ) 23.如下图 ,在直角坐标系中 ,点A 是反比例函数1ky x=的图象上一点 ,AB x ⊥轴的正半轴于B 点 ,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点 ,并交y 轴于点()02D -,,假设4AOD S =△. (1 )求反比例函数和一次函数的解析式;(2 )观察图象 ,请指出在y 轴的右侧 ,当12y y >时x 的取值范围 ,当1y <2y 时x 的取值范围.解:A BC OD EDBACOAxyB OCD(第25题)24. 把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中 ,将它绕点C 顺时针旋转α角 ,旋转后的矩形记为矩形EDCF .在旋转过程中 ,(1 )如图① ,当点E 在射线CB 上时 ,E 点坐标为 ;(2 )当CBD ∆是等边三角形时 ,旋转角α的度数是 (α为锐角时 ); (3 )如图② ,设EF 与BC 交于点G ,当EG =CG 时 ,求点G 的坐标.(4) 如图③ ,当旋转角90α=时 ,请判断矩形EDCF 的对称中|心H 是否在以C 为顶点 ,且经过点A 的抛物线上.图① 图② 图③解:25.如图 ,在平面直角坐标系中 ,顶点为 (4 ,1- )的抛物线交y 轴于A 点 ,交x 轴于B ,C 两点 (点B 在点C 的左侧 ). A 点坐标为 (0 ,3 ).(1 )求此抛物线的解析式;(2 )过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切 ,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系 ,并给出证明;(3 )点P 是抛物线上的一个动点 ,且位于A ,C 两点之间 ,问:当点P 运动到什么位置时 ,PAC ∆的面积最|大 ?并求出此时P 点的坐标和PAC ∆的最|大面积. 解:x yαFE DBO AC xy αF ED BOAC参考答案一、选择题 (共8道小题 ,每题4分 ,共32分 )下面各题均有四个选项 ,其中只有一个..是符合题意的.二、填空题 (此题共16分 ,每题4分 ) 题号 910 1112 答案91π55 2; -1三、解答题 (此题共30分 ,每题5分 )13.计算:2sin 452cos60︒+︒解: 原式 =12+222⋅⋅分=………………………………………………5分14.抛物线228y x x =--.(1 )用配方法把228y x x =--化为2()y x h k =-+形式;(2 )并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x 轴交点坐标是 ,当x 时 ,y 随x 的增大而增大.解 (1 )228y x x =--=x 2-2x +1-1-8=(x -1)2 -9.………………………………………………3分(2)抛物线的顶点坐标是 (1 ,-9)抛物线的对称轴方程是 x =1 ……………………………4分 抛物线与x 轴交点坐标是 (-2 ,0 ) (4 ,0 );当x >1 时 ,y 随x 的增大而增大. ………………………………5分 15.解不等式: 4(x +1)≤5x +8 ,并把它的解集在数轴上表示出来. 解: 去括号 ,得 4x +4≤5x +8 ……………………………… 1分 移项、合并同类项 ,得-x ≤4……………………………… 3分-5-4-3-2-1210BCAED系数化为1 ,得 x ≥4- ……………………………… 4分 不等式的解集在数轴上表示如下:………………… 5分16.如图: ,梯形ABCD 中 ,∠B =90° ,AD ∥BC ,AB ⊥BC ,AB =AD =3 ,BC =7. 求cos ∠C.解:方法一、作DE ⊥BC ,如图1所示 ,…………1分 ∵AD ∥BC ,AB ⊥BC ,AB =AD =3 ,∴四边形ABED 是正方形.…………………2分 ∴DE =BE =AB =3. 又∵BC =7 ,∴EC =4 ,……………………………………3分 由勾股定理得CD =5.…………………………4分 ∴ cos ∠C =45EC CD =.…………………………5分 方法二、作AE ∥CD ,如图2所示 ,……………1分 ∴∠1 =∠C ,∵AD ∥BC ,∴四边形AECD 是平行四边形.………………2分 ∵A B =AD =3 ,∴EC =AD =3 , 又∵BC =7 ,∴BE =4 ,……………………………………3分∵ AB ⊥BC ,由勾股定理得AE =5. ………………4分 ∴ cos ∠C = cos ∠1 =45BE AE =. …………………………5分 17. 以直线1x =为对称轴的抛物线过点A (3 ,0 )和点B(0 ,3) ,求此抛物线的解析式. 解:设抛物线的解析式为2(1)y a x b =-+ , ………………………………………1分抛物线过点A (3 ,0 )和B(0 ,3). ∴40,3.a b a b +=⎧⎨+=⎩ 解得1,4.a b =-⎧⎨=⎩… ………4分∴抛物线的解析式为223y x x =-++. ……………………………………5分 18.如图 ,在ABC △中 ,90C =∠ ,在AB 边上取一点D ,使BD BC = ,过D 作DE AB ⊥交AC 于E ,86AC BC ==,.求DE 的长.解:在ABC △中 ,9086C AC BC ===,,∠ , 2210AB AC BC ∴=+=.…………………2分图1 图2又6BD BC == ,4AD AB BD ∴=-=.DE AB ⊥ ,90ADE C ∴==∠∠.又A A =∠∠ ,AED ABC ∴△∽△.………………………………4分DE ADBC AC∴=. .3684=⨯=⋅=BC AC AD DE ………………………5分 四、解答题 (此题共20分 ,每题5分 )19.如图 ,小明在十月一日到公园放风筝 ,风筝飞到C 处时的线长为20米 ,此时小明正好站在A 处 ,并测得60CBD ∠= ,牵引底端B 离地面 , 求此时风筝离地面的高度.解:依题意得 ,90CDB BAE ABD AED ∠=∠=∠=∠=︒ , ∴四边形ABDE 是矩形 ,…………1分1.5.DE AB ∴== ……………2分在Rt BCD △中 ,sin ,CD CBD BC∠=……………3分又∵ 20BC = ,60CBD ∠= ,由BCCD=60sin ∴ 3sin 60201032CD BC =⋅︒=⨯= .……………4分 103 1.5CE ∴=+ .………………………………………5分即此时风筝离地面的高度为()103 1.5+米 .20.甲、乙两大型超市为了吸引顾客 ,都举行有奖酬宾活动 ,凡购物满200元 ,均可得到一次抽奖的时机 ,在一个纸盒里装有2个红球和2个白球 ,除颜色外其它都相同 ,抽奖者一次从中摸出两个球 ,根据球的颜色决定送礼金券 (在他们超市使用时 ,与人民币等值 )的多少 (如下表 ).甲超市.球 两 红 一红一白 两 白 礼金券 (元 )205020乙超市:球 两 红 一红一白 两 白 礼金券 (元 )502050(1 )用树状图表示得到一次摸奖时机时中礼金券的所有情况;(2 )如果只考虑中奖因素 ,你将会选择去哪个超市购物?请说明理由. 解: (1 )树状图为:…………2分(2 )∵去甲超市购物摸一次奖获50元礼金券的概率是P (甲 ) =64 =32,…………3分 去乙超市购物摸一次奖获50元礼金券的概率是P (乙 ) = 62 =31 (4)分∴我选择去甲超市购物……………………………………………………………………5分21. 如图 ,AB 是⊙O 的直径 ,AD 是弦 ,22.5A ∠= ,延长AB 到点C ,使得∠ACD =45°. (1 )求证:CD 是⊙O 的切线; (2 )假设22AB =,求OC 的长. (1 )证明:连接OD .∵OA OD = ,22.5A ∠= , 22.5ODA A ∴∠=∠=︒ ,45DOC ∴∠=︒ . ……………………1分∵45ACD ∠= ,90ODC ∴∠=︒ ,OD CD ∴⊥ . ……………………2分又∵点D 在⊙O 上 ,∴CD 是⊙O 的切线 .……………………3分 (2 )∵直径22AB =,122OD AB ∴==. …………… 4分 在Rt OCD △中 ,sin ODC OC= ,∴ 2sin 45︒= ,∵ 2sin 45︒= ,2OC ∴= .……………………5分22.在△ABC 中 ,∠C =120° ,AC =BC ,AB =4 ,半圆的圆心O 在AB 上 ,且与AC ,BC 分别相切于点D ,E .(1 )求半圆O 的半径;(2 )求图中阴影局部的面积. 解: (1 )解:连结OD ,OC ,DBACO∵半圆与AC ,BC 分别相切于点D ,E .∴DCO ECO ∠=∠ ,且OD AC ⊥.…………………1分 ∵AC BC = ,∴CO AB ⊥且O 是AB 的中点.∴122AO AB ==. ∵120C ∠=︒ ,∴60DCO ∠=︒. ∴30A ∠=︒. ∴在R t AOD △中 ,112OD AO ==. 即半圆的半径为1. ……………………………………….3分(2 )设CO =x ,那么在R t AOC △中 ,因为30A ∠=︒ ,所以AC =2x ,由勾股定理得: 222AC OC AO -= 即 222(2)2x x -= 解得 23x =(23x =舍去 )∴ 112343422ABC S AB OC =⋅=⨯=△ …………………….4分 ∵ 半圆的半径为1 , ∴ 半圆的面积为2π,∴ 438332S ππ-=-=阴影….…………………………….5分五、解答题 (此题共22分 ,23题7分,24题7分 ,25题8分 ) 23.如下图 ,在直角坐标系中 ,点A 是反比例函数1ky x=的图象上一点 ,AB x ⊥轴的正半轴于B 点 ,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点 ,并交y 轴于点()02D -,,假设4AOD S =△. (1 )求反比例函数和一次函数的解析式;(2 )观察图象 ,请指出在y 轴的右侧 ,当12y y >时x 的取值范围 ,当1y <2y 时x 的取值范围.解:作AE y ⊥轴于E ∵42AOD S OD ==△, ∴.421=⋅AE OD ∴4AE =. ………………………………………1分ABCO D E∵AB OB C ⊥,为OB 的中点 ,∴90DOC ABC OC BC OCD BCA ==︒==∠∠,,∠∠. ∴Rt Rt DOC ABC △≌△.…………………………………3分 ∴2AB OD ==. ∴A (4 ,2 ). 将A (4 ,2 )代入1k y x =中 ,得8k =. 18y x∴=. ……………4分 将()42A ,和()02D ,-代入2y ax b =+,得422a b b +=⎧⎨=-⎩解之得:12a b =⎧⎨=-⎩∴22y x =-.…………………………………………………………………5分 (2 )在y 轴的右侧 ,当12y y >时 ,04x <<. ………………………6分当1y <2y 时x >4. ……………………………………………………7分24. 把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中 ,将它绕点C 顺时针旋转α角,旋转后的矩形记为矩形EDCF .在旋转过程中 ,(1 )如图① ,当点E 在射线CB 上时 ,E 点坐标为 ;(2 )当CBD ∆是等边三角形时 ,旋转角α的度数是 (α为锐角时 ); (3 )如图② ,设EF 与BC 交于点G ,当EG =CG 时 ,求点G 的坐标.(4) 如图③ ,当旋转角90α=时 ,请判断矩形EDCF 的对称中|心H 是否在以C 为顶点 ,且经过点A 的抛物线上.图① 图② 图③解: (1 )E (4 ,132 ) ………………………………………………1分(2 )︒60 …………………………………………………………………2分 (3 )设x CG = ,那么x EG = ,x FG -=6 ,在Rt △FGC 中 ,∵222CG FG CF =+ ,∴222)6(4x x =-+ ,x y αFE DBO A C xy αF ED BOACxx解得 313=x ,即313=CG . ∴G (4 ,313). …………………………………………………………4分(4 )设以点C 为顶点的抛物线的解析式为2)4(-=x a y . 把A (0 ,6 )代入得 ,2)40(6-=a . 解得 , 83=a . ∴此抛物线的解析式为2)4(83-=x y .……………………………………6分 ∵矩形EDCF 的对称中|心为对角线FD 、CE 的交点H ,∴由题意可知H 的坐标为 (7 ,2 ). 当7=x 时 ,2827)47(832≠=-=y , ∴点H 不在此抛物线上. ………………………………………………7分25.如图 ,在平面直角坐标系中 ,顶点为 (4 ,1- )的抛物线交y 轴于A 点 ,交x 轴于B ,C 两点 (点B 在点C 的左侧 ). A 点坐标为 (0 ,3 ).(1 )求此抛物线的解析式;(2 )过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切 ,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系 ,并给出证明;(3 )点P 是抛物线上的一个动点 ,且位于A ,C 两点之间 ,问:当点P 运动到什么位置时 ,PAC ∆的面积最|大 ?并求出此时P 点的坐标和PAC ∆的最|大面积. 解: (1 )设抛物线为2(4)1y a x =--.∵抛物线经过点A (0 ,3 ) ,∴23(04)1a =--.∴14a =. ∴抛物线为2211(4)12344y x x x =--=-+. …………2 (2) 答:l 与⊙C 相交. ……………………………………3证明:当21(4)104x --=时,12x =,26x =.∴B 为 (2 ,0 ) ,C 为 (6 ,0 ). ∴AB =设⊙C 与BD 相切于点E ,连接CE , 那么90BEC AOB ∠=︒=∠.∵90ABD ∠=︒ ,∴∠ABO +∠CBE =90°. 又∵∠ABO +∠BAO =90° ,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BCOB AB =.∴2CE =.∴2CE =>.…………4分 ∵抛物线的对称轴l 为4x = ,∴C 点到l 的距离为2. ∴抛物线的对称轴l 与⊙C 相交. …………………5分 (3) 解:如图 ,过点P 作平行于y 轴的直线交AC 于点Q .由点A (0,3 )点C (6,0 )可求出直线AC 的解析式为132y x =-+.………………6分 设P 点的坐标为 (m ,21234m m -+ ) ,那么Q 点的坐标为 (m ,132m -+ ).∴2211133(23)2442PQ m m m m m =-+--+=-+.∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时 ,PAC ∆的面积最|大为274.此时 ,P 点的坐标为 (3 ,34- ). …………………8分解答(3)的关键是作PQ ∥y 轴交AC 于Q ,以PQ 为公共底 ,OC 就是高 ,用抛物线、直线解析式表示P 、Q 两点的纵坐标 ,利用三角形的面积推导出面积与P 点横坐标m 的函数关系式 ,即:2327(3)44PAC S m ∆=--+.评分说明:局部解答题有多种解法 ,以上各题只给出了局部解法 ,学生的其他解法可参照评分标准给分.。
2019-2020学年度第一学期期末检测九年级数学试题第I 卷(选择题 共30分)一、选择题(本大题共10个,每小题3分,共30分。
在每小题给出的四个选项中只有一个符合要求)1.下列图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B. 平行四边形C. 矩形D. 正五边形2.下列事件中,必然事件是A. 某射击运动射击一次,命中靶心B. 通常情况下,水加热到100℃时沸腾C. 掷一次骰子,向上的一面是6点D. 抛一枚硬币,落地后正面朝上3.已知关于x 的一元二次方程x 2+2kx+(k-1)2=0有两个不相等的实数根,则K 的取值范围为 A. K >12 B. K >-12 C. K >18 D. K <124.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB=θ,则拉线BC 的长度为(A ,D ,B 在同一条直线上)A cos θ5.已知点A (1x ,1y ),B (2x ,2y )为反比例函数y=6x图象上的两点,当1x >2x >0时,下列结论正确的是A. 0 <1y <2y B. 0 <2y <1yB. C.1y<2y <0 D.2y<1y<06.将二次函数y=12x2-2x+5化成y=a(x-h)2+k的形式为A.Y=12(x-4)2+3 B. Y=12(x-4)2+1C. Y=12(x-2)2+3 D. Y=12(x-2)2+17.如图,AB是⊙O的直径,BC=1,C,D是圆周上的点,且∠CDB=30°,则图中阴影部分的面积为A.8.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是A. B. C. D.点,其横坐标为1,则一次函数的图象可能是....10.在平面直角坐标系中,正方形A1B1C1D1,D1E1F1B2,A2B2C2D2,D2E3E4B3,A3B3C3D3,…,按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3,…在x轴上,已知正方形A1B1C1D1的边长为1,∠OB1C1=30°,B1C1∥B2C2∥B3C3…,则正方形A n B n C n D n的边长是第II卷(非选择题共70分)二、填空题(本大题共5个小题,每小题3分,共15分)12.将抛物线y=2x2向上平移3个单位,得到的抛物线的解析式是___________。
数学试题答案一、选择题(本题共16分,每小题2分) 下列各题均有四个选项,符合题意的选项只有..一个9.下10.34 11. m 712.32π13.sin ∠BAC >sin ∠DAE 14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵53a b =,∴1a b a b b +=+=53+1=83.………………………5分 =218.解:原式3分………………………4分 5分19.解:(1)y=x 2-2x-3=x 2-2x+1-1-3……………………………2分 =(x-1)2-4.……………………3分 (2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分 20.解:作AD ⊥BC 于点D ,∴∠ADB =∠ADC =90°. ∵sin 2B =, ∴∠B=∠BAD=45°.………………2分 ∵AB =,∴AD=BD=3.…………………………3分 ∵BC =7,∴DC=4. ∴在Rt △ACD 中,B225AC AD DC =+=.…………………………5分21.(1)证明:∵AB ⊥BC ,∴∠B =90°.∵AD ∥BC ,∴∠A =90°.∴∠A =∠B .………………2分 ∵AD =1,AE =2,BC =3,BE =1.5, ∴121.53=.∴AD AEBE BC=∴△ADE ∽△BEC .∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°. ∴∠DEC =90°.………………5分22.(1)补全图形如图所示:………………2分 (2)AC ,∠CAP=∠B ,∠ACP=∠ACB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3).∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM ,∴BE ⊥AB.∴//CD BM .…………………………3分 (2) 连接DB.由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,3∴CB AEFGHOPD yx–1–2–3–4–5–6–71234567–1–2–3–4–51234AOACDF M O②在Rt △ADB 中利用30°角,解得m ,m.…………………4分 ③在Rt △OBE 中,由勾股定理得出m.………………………………5分 ④计算出△OB E 周长为m.………………………………6分 25.(1)3.00…………………………………1分(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方. 由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=. 所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分(3)点p 的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分A BH(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠DHQ=120°. ∴△ADH ≌△PQH.∴AH =PH ,∠AHD =∠PHQ .∴∠AHD+∠DHP =∠PHQ+∠DHP . ∴∠AHP=∠DHQ . ∵∠DHQ=120°,∴∠AHP=120°.………………5分 (3)求解思路如下:由∠AHQ=141°,∠BHQ=60°解得∠AHB=81°.a.在△ABH 中,由∠AHB=81°,∠ABD=30°,解得∠BAH=69°.b.在△AHP 中,由∠AHP=120°,AH=PH ,解得∠PAH=30°.c.在△ADB 中,由∠ADB=∠ABD= 30°,解得∠BAD=120°. 由a 、b 、c 可得∠DAP=21°.在△DAP 中,由∠ADP= 60°,∠DAP=21°,AD=1,可解△DAP , 从而求得DP 长.…………………………………7分 28.解:(1)∵A (1,0),AB =3 ∴B (1,3)或B (1,-3) ∵12QA QB = ∴Q (1,1)或Q (1,-1)………………3分(2)点A (1,0)关于直线y = x 的对称点为A ′(0,1) ∴Q A =Q A ′∴QB A Q '21=………………5分 (3)-4≤t ≤4………………7分x。
怀柔区第一学期初三期末质量检测数学试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60°2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .32B . 23C .49D .94 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x = C .3y x =- D .12y x =5.正方形ABCD 内接于O ,若O ,则正方形的边长是A .1B .2CD .6.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC 3,DE 1.5,AD 2,则AB 的长为 A .2 B .3 C .4D .57.若要得到函数()21+2y x =-的图象,只需将函数2y x =的图象A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度8.如图,一条抛物线与轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为 A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11.如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为.12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是. 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是. 14.写出抛物线y=2(-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是和.15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为米.16.在平面直角坐标系Oy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点(填“能”或“不能”)画一个圆,理由是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.11题图CBA18.计算:2cos30-4sin 45︒︒19.已知二次函数y =2-2-3.(1)将y =2-2-3化成y =a (-h )2+的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角,AB BC 7,sin 2B =,求AC 的长.21.如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5. 求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知△ABC .求作在BC 边上求作一点P,使得△P AC ∽△ABC .作法如图,E DCBA ABC②作线段AB 的垂直平分线EF,交GH 于点O ; ③以点O 为圆心,以OA 为半径作圆;④以点C 为圆心,CA 为半径画弧,交⊙O 于点D(与点A 不重合); ⑤连接线段AD 交BC 于点P. 所以点P 就是所求作的点. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明 ∵CD=AC , ∴CD =. ∴∠=∠. 又∵∠=∠,∴△P AC ∽△ABC ()(填推理的依据).23.在平面直角坐标系Oy 中,直线y=+2 与双曲线ky x相交于点A (m ,3). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图; (3)若P 是坐标轴上一点,当OA =P A 时.直接写出点P 的坐标.24.如图,AB 是O 的直径,过点B 作O 的切线BM ,点A ,C ,D 分别为O 的三等分点,连接AC ,AD ,DC ,延长AD 交BM 于点E ,CD 交AB 于点F. (1)求证://CD BM ;(2)连接OE ,若DE=m ,求△OBE 的周长.25.在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm. 小聪根据学习函数的经验,分别对函数y1,y2随自变量的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整(1)按照下表中自变量的值进行取点、画图、测量,分别得到了y1,y2与的几组对应值;1(,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26.在平面直角坐标系Oy 中,抛物线22y ax ax c =++(其中、为常数,且<0)与轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是轴上的一点,且ABP CAO ∠=∠,直接写出点P 的坐标.27.在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1)依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计算结果.........)28.在平面直角坐标系Oy中,点A(,0),B(,y),若线段AB上存在一点Q满足12QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y=的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.第一学期期末初三质量检测数学试卷评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个二、填空题(本题共16分,每小题2分)9.下10.3411. m 712.32π13.sin ∠BAC >sin ∠DAE 14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵53a b =,∴1a b a b b +=+=53+1=83.………………………5分 =222⨯⨯18.解:原式………………………3分………………………4分 5分19.解:(1)y=2-2-3=2-2+1-1-3……………………………2分 =(-1)2-4.……………………3分 (2)∵y=(-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD ⊥BC 于点D ,∴∠ADB =∠ADC =90°. ∵sin B =, ∴∠B=∠BAD=45°.………………2分 ∵AB∴AD=BD=3.…………………………3分 ∵BC 7,∴DC=4. ∴在Rt △ACD 中,B5AC =.…………………………5分21.(1)证明:∵AB ⊥BC ,∴∠B =90°.∵AD ∥BC ,∴∠A =90°.∴∠A =∠B .………………2分 ∵AD =1,AE =2,BC =3,BE =1.5, ∴121.53=.∴AD AEBE BC=∴△ADE ∽△BEC .∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°. ∴∠DEC =90°.………………5分22.(1)补全图形如图所示………………2分 (2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=+2与双曲线ky x=相交于点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得=3, 3y x=……………………………………2分 (2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径, ∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,m.②在Rt △ADB 中利用30°角,解得m ,…………………4分③在Rt △OBE 中,由勾股定理得出………………………………5分④计算出△OB E 周长为2m.………………………………6分25.(1)3.00…………………………………1分(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与轴有交点,∴抛物线的顶点C 在轴的上方. 由于抛物线顶点C 到轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与轴的交点A 的坐标是()3,0-,可得1a =-.因此,抛物线的表达式是223y x x =--+.………………………2分(2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=. 所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分 A B27.(1)补全图形,如图所示.………………2分(2)AH与PH的数量关系:AH=PH,∠AHP=120°.证明:如图,由平移可知,PQ=DC.∵四边形ABCD是菱形,∠ADC=60°,∴AD=DC,∠ADB=∠BDQ=30°.∴AD=PQ.∵HQ=HD,∴∠HQD=∠HDQ=30°.∴∠ADB=∠DQH,∠D HQ=120°.∴△ADH≌△PQH.∴AH=PH,∠A HD=∠P HQ.∴∠A HD+∠DHP =∠P HQ+∠DHP. ∴∠A HP=∠D HQ. ∵∠D HQ=120°,∴∠A HP=120°.………………5分(3)求解思路如下:由∠A HQ=141°,∠B HQ=60°解得∠A HB=81°.a.在△ABH中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP中,由∠A HP=120°,AH=PH,解得∠PA H=30°.c.在△ADB中,由∠A DB=∠A BD= 30°,解得∠BAD=120°.由a、b、c可得∠DAP=21°.在△DAP中,由∠A DP= 60°,∠DAP=21°,AD=1,可解△DAP,从而求得DP长.…………………………………7分28.解:(1)∵A(1,0),AB=3∴B(1,3)或B(1,-3)∵12 QA QB=∴Q(1,1)或Q(1,-1)………………3分(2)点A(1,0)关于直线y=的对称点为A′(0,1)∴Q A =Q A′∴QBA Q'21=………………5分(3)-4≤t≤4………………7分x。
1怀柔区2017—2018学年度第一学期初三期末质量检测数 学 试 卷 2018.1第1-8题均有四个选项,符合题意的选项只有一个1. 北京电影学院落户,怀柔一期工程建设进展顺利,一期工程建筑面积为178800平方米,建设内容有教学行政办公、图书馆、各类实习用房、学生及教工宿舍、食堂用房等,预计将于2019年投入使用. 将178800用科学记数法表示应为A .1.788×104B .1.788×105C .1.788×106D .1.788×107 2.若将抛物线y = -12x 2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是 A .2)3(212-+-=x y B .2)3(212---=x y C .2)3(2-+=x y D. 2)3(212++-=x y 3.在Rt △ABC 中,∠C =90°,AC =4,BC =3,则tan A 的值为 A .34B .43C .53D .54 4. 如图,在△ABC 中,点D ,E 分别为边AB,AC 上的点,且DE ∥BC ,若AD =4,BD =8,AE =2,则CE 的长为A .2B .4C .6D .85. 如图,⊙O 是△ABC 的外接圆,∠BOC =100°)A .40︒B .50︒C .80︒D .100︒6. 网球单打比赛场地宽度为8米,长度在球网的两侧各为12米,球网高度为0.9米(如图AB 的高度).中网比赛中,某运动员退出场地在距球网14米的D 点处接球,设计打出直线..穿越球,使球落在对方EDC A第4题图 第5题图E2底线上C 处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点高度至少为A. 1.65米B. 1.75米C.1.85米D. 1.95米 7. 某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O ,再任意找出圆O 的一条直径标记为AB (如图1),测量出AB =4分米;②将圆环进行翻折使点B 落在圆心O 的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C 、D (如图2);③用一细橡胶棒连接C 、D 两点(如图3); ④计算出橡胶棒CD 的长度.A .22 分米B .23分米C .32 分米D .33分米8.如图1,⊙O 过正方形ABCD 的顶点A 、D 且与边BC 相切于点E ,分别交AB 、DC 于点M 、N .动点P 在⊙O 或正方形ABCD 的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O 与P 点的距离为y ,图2记录了一段时间里y 与x 的函数关系,在这段时间里P 点的运动路径为 A.从D点出发,沿弧DA →弧AM →线段BM →线段BC B.从B 点出发,沿线段BC →线段CN →弧ND →弧DAC.从A 点出发,沿弧AM →线段BM →线段BC →线段CN第8题图1第8题图2D.从C 点出发,沿线段CN →弧ND →弧DA →线段AB二、填空题(本题共16分,每小题2分)9.分解因式:3x 3-6x 2+3x =_________.10.若△ABC ∽△DEF ,且对应边BC 与EF 的比为1∶3,则△ABC 与△DEF 的面积比等于 . 11. 有一个反比例函数的图象,在第二象限内函数值随着自变量的值增大而增大,这个函数的表达式可能是(写出一个即可): .12.抛物线y =2(x +1)2+3 的顶点坐标是 .13.把二次函数y =x 2-4x +5化成y=a (x -h )2+k 的形式为__________________.14. 数学实践课上,同学们分组测量教学楼前国旗杆的高度.小泽同学所在的组先设计了测量方案,然后开始测量了.他们全组分成两个测量队,分别负责室内测量和室外测量(如图).室内测量组来到教室内窗台旁,在点E 处测得旗杆顶部A 的仰角α为45°,旗杆底部B 的俯角β为60°. 室外测量组测得BF 的长度为5米.则旗杆AB =______米.15.1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为米2.16. 阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:4请回答:这样做的依据是 .三、解答题(本题共68分,第20、21题每小题6分,第26-28题每小题7分,其余每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:4sin45°-8+(3-1)0+|-2|.18.如图,在△ABC 中,D 为AC 边上一点,BC =4,AC =8,CD=2.求证:△BCD ∽△ACB .19. 如图,在△ABC 中,tan A =4,∠B =45°,AB =14. 求BC 的长. 20.在平面直角坐标系xOy 中,直线3+-=x y 与双曲线ky =相交于点A (m ,2). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图;(3)若P 是坐标轴上一点,且满足P A =OA . 直接写出点P 的坐标.21.一个二次函数图象上部分点的横坐标x ,纵坐标y (2)求m 的值;(3)在给定的直角坐标系中,画出这个函数的图象; (4)根据图象,写出当y <0时,x 的取值范围.22. 如图,已知AB 是⊙O 的直径,点M 在BA 的延长线上,MD 切⊙O 于点D ,过点B 作BN ⊥MD 于点于点N .(1)求证:AB =BN ;第18题图 第19题图5DB(2)若⊙O 半径的长为3,cosB =52,求MA 的长.23.数学课上老师提出了下面的问题: 在正方形ABCD 对角线BD 上取一点F ,使51=D B DF . 小明的做法如下:如图① 应用尺规作图作出边AD 的中点M ; ② 应用尺规作图作出MD 的中点E ; ③ 连接EC ,交BD 于点F . 所以F 点就是所求作的点.请你判断小明的做法是否正确,并说明理由.24. 已知:如图,在四边形ABCD 中,BD 是一条对角线,∠DBC =30°, ∠DBA =45°,∠C =70°.若DC =a ,AB=b , 请写出求tan ∠ADB 的思路. (不用写出计算结果........)25.如图,在四边形ABCD 中,AD ∥BC ,∠ADC =90°,点E 是BC ,过点E 作AE 的垂线交直线CD 于点F .已知AD =4cm ,CD =2cm ,BC =5cm ,设BE 的长为x cm ,CF 的长为y cm.的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:((2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;6CB(3)结合画出的函数图象,解决问题: 当BE =CF 时,BE 的长度约为 cm.26.在平面直角坐标系xOy 中,直线l : n x y +-=2与抛物线3242---=m mx mx y 相交于点A(2-,7). (1)求m 、n 的值;(2)过点A 作AB ∥x 轴交抛物线于点B ,设抛物线 与x 轴交于点C 、D (点C 在点D 的左侧),求△BCD 的面积;(3)点E (t ,0)为x 轴上一个动点,过点E 作平行于y轴的直线与直线l 和抛物线分别交于点P 、Q .当点P 在点Q 上方时,求线段PQ 的最大值.27. 在等腰△ABC 中,AB =AC ,将线段BA 绕点B 顺时针旋转到BD ,使BD ⊥AC 于H ,连结AD 并延长交BC 的延长线于点P . (1)依题意补全图形;(2)若∠BAC =2α,求∠BDA 的大小(用含α的式子表示);(3)小明作了点D 关于直线BC 的对称点点E ,从而用等式表示线段DP 与BC 之间的数量关系.请你用小明的思路补全图形并证明线段DP 与BC 之间的数量关系.28.在平面直角坐标系xOy 中,点P 的横坐标为x ,纵坐标为2x ,满足这样条件的点称为“关系点”.7(1)在点A (1,2)、B (2,1)、M (21,1)、N (1,21)中, 是“关系点”的 ;(2)⊙O 的半径为1,若在⊙O 上存在“关系点”P , 求点P 坐标;(3)点C 的坐标为(3,0),若在⊙C 上有且只有....一个..“关系点”P ,且“关系点”P 的横坐标满足 -2≤x≤2.请直接写出⊙C 的半径r 的取值范围.2019-2020学年度第一学期期末初三质量检测数学试卷评分标准一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一9.3x (x -1)2. 10.1:9. 11.答案不唯一,k <0即可. 12.(﹣1,3). 13.y =(x -2)2+1. 14. 5+53. 15. 16.圆的定义,直径的定义,直径所对的圆周角为90°,到线段两端点距离相等的点在线段的垂直平分线上,经过半径的外端并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第20、21题每小题6分,第26-28题每小题7分,其余每小题5分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式=4×22-22+1+2 …………………………………………………………………… 4分 =3 ………………………………………………………………………………………5分18.证明:∵BC =4,AC =8,CD =2.…………………………1分∴BC CD AC BC =………………………………………3分 又∵∠C =∠C …………………………………………………………………………4分∴ △BCD ∽△ACB ……………………………………………………………………5分π25819.解:过点C 作CD ⊥AB 于点D ,如图. ………………………………………………1分 ∵在Rt △CDA 中,tan A =AD CD = 43设CD =3x ,AD =4x . ……………………………………………………………………………2分 ∵在Rt △CDB 中,∠B =45° ∴tan B =DB CD = 1,sin B =BC CD =22,……………………………………………………………3分 ∵CD =3x . ∴BD =3x ,BC =2·3x =32x . 又∵AB =AD+BD =14, ∴4x +3x =14,解得x =2.…………………………………………………………………………4分∴BC =62. ……………………………………………………………………………………5分 20.解:(1)∵直线3+-=x y 与双曲线xky =相交于点A (m ,2). ∴ A (1,2)………………………………………1分 ∴xy 2=…………………………………………2分 (2)如图…………………………………………………………4分(3)P (0,4)或P (2,0) …………………………………………6分 21.解:(1)设这个二次函数的表达式为2()y a x h k =-+. 依题意可知,顶点为(-1,2),………………………1分 ∴ ()212++=x a y .∵图象过点(1,0), ∴()21102++=a .∴12a =-.∴这个二次函数的表达式为()21212++-=x y …………2分 (2)25-=m .………………………………………………3分(3)如图…………………………………………………………………………………………5分9(4)x <-3或x >1..…………………………………………………………………………………6分 22.(1)证明:连接OD ,…………………………1分 ∵MD 切⊙O 于点D ,∴OD ⊥MD , ∵BN ⊥MC ,∴OD ∥BN ,…………………………………2分 ∴∠ADO =∠N ,∵OA =OD ,∴∠OAD =∠ADO ,∴∠OAD =∠N ,∴AB =BN ;………………………………………………………………………………………3分 (2)解:由(1)OD ∥BN ,∴∠MOD =∠B ,………………………………………………………………………………4分 ∴cos ∠MOD =cosB =52, 在Rt △MOD 中,cos ∠MOD ==OMOD, ∵OD =OA ,MO =MA +OA =3+MA ,∴AM 33=52,∴MA =4.5………………………………………………………………………………………5分 23.解:正确. ………………………………………………………………………………………1分 理由如下: 由做法可知M 为AD 的中点,E 为MD 的中点, ∴AD DE =41. …………………………………………………………2分 ∵四边形ABCD 是正方形,∴AD=BC ,ED ∥BC . ………………………………………………3分 ∴△DEF ∽△BFC ∴BC DE =BF DF ………………………………………………………..4分 ∵AD =BC ∴BF DF =BC DE =41∴BD DF =51………………………………………………………………………………………5分 24.解: (1)过D 点作DE ⊥BC 于点E ,可知△CDE 和△DEB 都是直角三角形;……………1分 (2)由∠C =70°,可知sin ∠C 的值,在Rt △CDE 中,由sin ∠C 和DC =a ,可求DE 的长;10D……………………………………………………………………………………………2分 (3)在Rt △DEB 中,由∠DBC =30°,DE 的长,可求BD 的长………………………………3分 (4)过A 点作AF ⊥BD 于点F , 可知△DF A 和△AFB 都是直角三角形; ………………4分 (5)在Rt △AFB 中,由∠DBA =45°,AB =b ,可求AF 和BF 的长;(6)由DB 、BF 的长,可知DF 的长;(7)在Rt △DF A 中,由DF F A ,可求tan ∠ADB . ………………5分 25.解:(1)1.5……………………………………… ..1分 (2)如图……………………………………………4分(3)0.7(0.6~0.8均可以) .………………………….5分 . 26. 解:(1)m =1………………………………………………………………………………………1分 n =3………………………………………………………………………………………………2分 (2)由(1)知抛物线表达式为y =x 2-4x -5 令y =0得,x 2-4x -5=0.解得x 1=-1,x 2=5,……………………………………………………………………………3分 ∴抛物线y =x 2-4x -5与x 轴得两个交点C 、D 的坐标分别为C (-1,0),D (5,0) ∴CD =6.∵A (2-,7),AB ∥x 轴交抛物线于点B ,根据抛物线的轴对称性,可知B (6,7)………4分∴S △BCD =21.……………………………………………………………………………………5分(3) 据题意,可知P (t ,-2 t +3),Q ( t ,t 2-4 t -5),由x 2-4x -5=-2x +3得直线y =-2x +3与抛物线y = x 2-4x -5的两个交点坐标分别为(-2,7)和(4,-5) ……………………………………………………………………………………………6分 ∵点P 在点Q 上方∴-2<t <5, ∴PQ = -t 2+2 t +8=-( t -2) 2+9 ∵a =-1∴PQ 的最大值为9.……………………………………………………………………………7分27. 解:(1)如图……………………………………………1分(2) ∵∠BAC =2α,∠AHB =90°∴∠ABH =90°-2α …………………………………………………………………………… 2分 ∵BA =BD ∴∠BDA =45°+α………………………………………………………………………………3分11(3)补全图形,如图………………4分证明过程如下:∵D 关于BC 的对称点为E ,且DE 交BP 于G∴DE ⊥BP ,DG =GE ,∠DBP =∠EBP ,BD =BE ;…………………………………………5分 ∵AB=AC ,∠BAC=2α∴∠ABC=90°-α由(2)知∠ABH =90°-2α∠DBP =90°-α-(90°-2α)=α∴∠DBP =∠EBP =α∴∠BDE =2α∵AB =BD ∴△ABC ≌△BDE ………………………………………………………………………………6分 ∴BC =DE∴∠DPB =∠ADB -∠DBP =45°+α-α=45°∴DP DG =21, ∴DPDE =2, ∴DP BC =2, ∴BC =2DP .………………………………………………………………………………7分 28.解:(1)A 、M . ……………………………………………………………………………………2分(2)过点P 作PG ⊥x 轴于点G …………………………………………………………………3分 设P (x ,2x )∵OG 2+PG 2=OP 2 ………………………………………………………………………………4分 ∴x 2+4x 2=1∴5x 2=1∴x 2=51 ∴x =55± ∴P (55,552)或P (55-,552-)……………………………………………………5分12(3)r =556或 4117≤<r …………………………………………………………7分。
–3–2–112345–4ba dEDCBA 怀柔区第一学期初三期末质量检测数 学 试 卷第1-10题均有四个选项,符合题意的选项只有一个1.2016年9月15日22时04分09秒 “天宫二号”在酒泉卫星发射中心成功发射,为祖国的航天历史打开新的历程.“天宫二号”全长10.4米,总重量达8600公斤,将8600用科学记数法表示应为 (A)86×102(B)8.6×103(C)86×103(D)0.86×1032.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,这四个数中,绝对值最小的是(A)a (B)b(C)c(D)d3.已知56(0)x y y =≠,那么下列比例式中正确的是 (A)56x y=(B)65x y= (C) 56x y =(D)65x y= 4.已知△ABC ∽△C B A '''∆,如果它们的相似比为3∶2,那么它们的面积比应是(A)32 (B) 23 (C)49 (D)945.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AE =3,EC =6,则ADAB的值为 (A)12(B)13 (C)14 (D)166.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为偶数的概率是 (A)14(B)16(C)12 (D)137.将抛物线2=-y x +1向上平移2个单位,得到的抛物线表达式为 (A)2y=-(x+2) (B)2y=-(x-2) (C)2y=-x -1(D)2y=-x +38. 如图,Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为CBA(A)34(B) 43 (C)35(D) 459.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“马”的坐标是(-2,2),它是抛物线)0(2≠=a ax y 上的一个点,那么下面哪个棋子在该抛物线上 (A)帥 (B)卒 (C)炮 (D)仕10.在17月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是 (A)1月份(B)2月份 (C)5月份(D)7月份二、填空题(本题共18分,每小题3分)11.分解因式:23a b b -= .12.请写出一个开口向下,且经过(0,3)的抛物线的表达式 .13.农业部门引进一批新麦种,在播种前做了五次发芽试验, 目的是想了解一粒这样的麦种发芽情况,实验统计数据如下第10题图第9题图估计在与实验条件相同的情况下,种一粒这样的麦种发芽的概率约为 . 14.已知扇形的圆心角是1200,半径是6,则它的面积是 . 15.有两棵树,一棵高15米,另一棵高7米,两树相距6米,一只鸟从一棵树的树梢飞到另一棵树 的树梢.问小鸟至少飞行 米.16. 阅读下面材料:在数学课上,老师给同学们布置了一道尺规作图题:请回答:小丽这样作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.170(22cos45π+--︒.18.已知250x x --=,求代数式(+1)2﹣(2+1)的值.19.如图,⊙O 的半径为5,AB 为弦,OC ⊥AB ,交AB 于点D , 交⊙O 于点C ,CD =2. 求弦AB 的长.20.已知:如图,在△ABC 中,∠A=105°,∠B=30°,AC=2 .求BC 的长.21.如图,四边形ABCD 是平行四边形,AE 平分∠BAD,交DC 的延长线于点E, AB=3,EF=0.8,AF=2.4.求AD 的长.22.如图,直线L1:y =b +c 与抛物线L2:2y ax =的两个交点坐标分别为(),4A m ,()1,1B .(1)求m 的值;(2)过动点P(n ,0)且垂直于轴的直线与L1,L2的交点分别 为C ,D ,当点C 位于点D 上方时,请直接写出n 的取值范围.23.《雁栖塔》位于怀柔“北京雁栖湖国际会都中心”所处大岛西南部突出部位的半岛上,是“北京雁栖湖国际会都中心”的标志性建筑,也是整个雁栖湖风景区的标志性建筑.某校数学课外小组为了测量《雁栖塔》(底部可到达)的高度,准备了如下的测量工具:①平面镜,②皮尺,③长为1米的标杆,④高为1.5m 的测角仪(测量仰角、俯角的仪器).第一组选择用②④做测量工具;第二组选用②③做测量工具;第三组利用自身的高度并选用①②做测量工具,分别画出如下三种测量方案示意图.(1)请你判断如下测量方案示意图各是哪个小组的,在测量方案示意图下方的括号内填上小组名称. (2)选择其中一个测量方案示意图,写出求《雁栖塔》高度的思路.F EDCBAAB CFEC BA( )( )E DC B A( )F E DCB A24.阅读下列材料:“怀山俊秀,柔水有情”—怀柔,一直受到世人的青睐.早在上世纪90年代,联合国第4届世界妇女大会NGO 论坛的举办使怀柔蜚声海内外,此后,随着世界养生大会、国际青少年嘉年华、全国汽车拉力赛等一系列活动赛事的成功举办,为这座国际交往新城聚集了庞大的人气. 2014年11月11日,全世界的眼光再次聚焦在北京怀柔雁栖湖,这里成功举办了第22次APEC 领导人峰会.现如今怀柔已成为以自然风光游为基础,休闲度假游、乡村美食游、满族风情游为特色,影视文化游、健身养生游、竞技赛事游为时尚的多元化旅游胜地.随着怀柔旅游业的迅速发展,也带动了怀柔的经济收入.据统计,2011年全年接待游客1047万人次,比上一年增长5.3%;2012年全年接待游客1085万人次,比上一年增长3.7%; 2013年全年接待游客1107.6万人次,比上一年增长2%; 2014年全年接待游客1135万人次,比上一年增长2.4%;2015年全年接待游客1297.4万人次,比上一年增长14.3%.(以上数据于怀柔信息网)根据以上材料解答下列问题:(1)用折线图将2011-2015年怀柔区全年接待游客量表示出,并在图中标明相应数据; (2)根据绘制的折线图中提供的信息,预估 2016年怀柔区全年接待游览客量约 万人次,你的预估理由是 .25.如图,AB 是⊙O 的直径,AE 是弦,直线CG 与⊙O 相切于点C ,CG ∥AE ,CG 与BA 的延长线交于点G ,过点C 作CD ⊥AB 于点D ,交AE 于点F. (1)求证:AC CE ; (2)若∠EAB =30°,CF=a ,写出求四边形GAFC 周长的思路.26.函数232y x x =++的图象如图所示,根据图象回答问题: (1)当 时,2320x x ++;(2)在上述问题的基础上,探究解决新问题:①函数y =___________;②下表是函数y y 与的对应值.点,画出该函数的图象:③写出该函数的一条性质:.27.已知:关于的方程2-(m+2)+m+1=0. (1)求证:该方程总有实数根;(2)若二次函数y= 2-(m+2)+m+1(m>0)与轴交点为A ,B (点A 在点B 的左边),且两交点间的距离是2,求二次函数的表达式;(3)横、纵坐标都是整数的点叫做整点.在(2)的条件下,垂直于y 轴的直线y=n 与抛物线交于点E ,F.若抛物线在点E ,F 之间的部分与线段EF 所围成的区域内(包括边界)恰有7个整点,结合函数的图象,直接写出n 的取值范围.28.在等边△ABC 中,E 为BC 边上一点,G 为BC 延长线上一点,过点E 作∠AEM=60°,交∠ACG 的平分线于点M.(1)如图(1),当点E 在BC 边的中点位置时,通过测量AE ,EM 的长度,猜想AE 与EM 满足的数量关系是 ;(2) 如图(2),小晏通过观察、实验,提出猜想:当点E 在BC 边的任意位置时,始终有AE=EM.小晏把这个猜想与同学进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:在BA 上取一点H 使AH=CE ,连接EH ,要证AE=EM , 只需证△AHE≌△E CM.想法2:找点A 关于直线BC 的对称点F ,连接AF ,CF ,EF.(易证∠BCF+∠BCA+ACM=180°,所以M ,C ,F 三点在同一直线上)要证AE=EM ,只需证ΔMEF 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转60°,得到线段BF ,连接CF ,EF ,要证AE=EM ,只需证四边形MCFE为平行四边形.请你参考上面的想法,帮助小晏证明AE=EM.(一种方法即可)29.在平面直角坐标系Oy 中,点A 为平面内一点,给出如下定义:过点A 作AB ⊥y 轴于点B ,作正方形ABCD (点A 、B 、C 、D 顺时针排列),即称正方形ABCD 为以A 为圆心,OA 为半径的⊙A 的“友好正方形”.(1)如图1,若点A 的坐标为(1,1),则⊙A 的半径为 . (2)如图2,点A 在双曲线y=x1(>0)上,它的横坐标是2,正方形ABCD 是⊙A 的“友好正方形”,试判断点C 与 ⊙A 的位置关系,并说明理由.(3)如图3,若点A 是直线y=-+2上一动点,正方形ABCD 为⊙A 的“友好正方形”,且正方形ABCD 在(2)ABC GEM(1)MECBA⊙A 的内部时,请直接写出点A 的横坐标m 的取值范围.怀柔区第一学期初三期末质量检测数学试卷答案及评分参考一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个二、填空题(本题共18分,每小题3分)图1图3三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=1222+-⨯………………………………4分 1 ………………………………5分18.解:原式=22212x x x x ++--. ………………………………2分=21x x -++.………………………………3分 ∵250x x --=,∴25x x -=.………………………………4分∴原式=221()1514x x x x -++=--+=-+=-.………………………………5分 19.解:∵OC 是⊙O 的半径,OC ⊥AB 于点D , ∴AD =BD =21AB . ………………………………1分 ∵OC =5,CD =2,∴OD =OC -CD =3. ………………………………2分在Rt △AOD 中,OA =5,OD =3,∴AD =22OD OA -=2235-=4,………………………………4分∴AB =2AD =8.………………………………5分 20.解:∵∠A=105°,∠B=30°. ∴∠C=45°. ……………………………… 1分 过点A 作AD ⊥BC 于点D ,∴ ∠ADB=∠ADC=90° 在Rt △ADC 中,∠ADC=90°,∠C=45°,AC=2.∴∠DAC==∠C =45°.∵ sinC=ADAC,∴ (2)分∴.…………………………3分A在Rt △ADB 中,∠ADB=90°,∠B=30°. ∵∴∴由勾股定理得:. ……………………4分∴………………………………5分21.解∵四边形ABCD 为平行四边形,∴AB=DC=3,AB ∥DE. ………………………………1分 ∴AF DCFE CE=. ∵AB=3,EF=0.8,AF=2.4,∴2.430.8CE=.……………………………3分 ∴CE=1. ……………………………… 4分 ∴DE=DC+CE=3+1=4. ∵AB ∥DE,∴∠BAE=∠ E.∵AE 平分∠BAD ,∴∠BAE=∠DAE.∴∠E=∠DAE. ∴AD=DE=4.AD 的长为4. …………………………… 5分22.解:(1)把()1,1B 代入2y ax =得:a=1,∴2y x =.………………………1分把(),4A m 代入2y x =得4=2m .∴m=2±.……………………………2分∵点A 在二象限,∴m=-2. ………………………………3分 (2)-2〈n 〈1. ………………………………5分23.解:(1)二组 一组 三组………………………………3分 (2)一图思路①分别测出在同一时刻标杆EF 和《雁栖塔》AB 的影长DF,CB ;②由△ABC ∽△EFD ,利用AB CB EFDF= 求出AB 的值. ………………………5分二图思路:①用测角仪测出∠ACB 的角度; ②用皮尺测量CB 的长;③AB=CBtan ∠ACB; ④AE=AB+1.5………………………………5分三图思路:①用皮尺分别测量DF 、CF 、CB 的长;②由△ABC ∽△DFE , 利用AB CB DFCF=求出AB 的值 .……………………………5分24.解:(1)如下图:………………………………3分2011-2015年怀柔区全年接待游客量统计图0.82.43FEDCBAB(2)1375(预估值在13231483之间都可以),预估理由须包含折线图中提供的信息且支撑预估的数据. 如由前几年平均数得到等.………………………………5分 25.证明:(1)连接OC,如图.∵直线CG 与⊙O 相切于点C,∴CG ⊥OC. ∵C G ∥AE,∴AE ⊥OC.又∵OC 为⊙O 的半径,∴AC CE =.…………………2分(2)连接AC ,如图.①由∠EAB =30°,CG ∥AE,可得∠CGB =30°, 又由直线CG 与⊙O 相切于点C ,∠AOC=60°, 可推出△AOC 是等边三角形. ………………………3分②由△AOC 是等边三角形,∠EAB =30°,CF=a , 可得∠CAF=∠ACF =30°,CF=AF=a ,DF=12a ,AD=2a .…………………4分 ③利用CG ∥AE ,可得到△ADF ∽△GDC ,从而推出,GC=3a .④计算出四边形GAFC 的周长为5a .(每一步没有写出结果,只要写出思路就可得满分)………………………………5分 26.解:(1)21xx--或.………2分(2)①21x x ≤-≥-或………………3分②如图 ………………………………4分 ③关于直线=-1.5对称或增减性等. ……………………5分27.解:(1)△=(m+2)2-4(m+1)= m 2≥0∴不论m 取何值,该方程总有实数根. …………2分(2)由题意可知: 1=1,2=m+1,∴A (1,0) B (m+1,0). ……………………3分 ∵两交点间距离为2,∴m+1-1=2.∴m=2. ……………………4分 ∴y= 2-4+3. …………5分 (3)1≤n <2. …………7分28.(1)相等;…………1分 (2)想法一:∵△A BC 是等边三角形,∴AB=BC, ∠B=60°. …………2分 ∵AH=CE,∴BH=BE. ∴∠BHE=60°.∴AC//HE.∴∠1=∠2. ……………………………3分在△A OE 和△COM 中,∠ACM=∠AEM=60°,∠AOE=MOE, ∴∠1=∠3.∴∠2=∠3. ……………………………5分 ∵∠BHE=60°,∴∠AHE=120°.∵∠ECM=120°.∴∠AHE=∠ECM. ……………………………6分 ∵AH=CE,∴△AHE ≌△ECM (AAS ). ∴AE=EM. ……………………………7分(或根据一线三等角证△ABE ∽△ECO,得∠BAE=∠CEM, 再证∠AHE=∠ECM,得△AHE ≌△ECM (ASA )) 想法二:∵在△A OE 和△COM 中, ∠ACM=∠AEM=60°,∠AOE=∠COM,∴∠EAC=∠EMC. ……………………………3分 又∵对称△ACE ≌△FCE,∴∠EAC=∠EFC, AE=EF. …………5分 ∴∠EMC=∠EFC.∴EF=EM.∴AE=EM. …………7分 想法三:∵将线段BE 绕点B 顺时针旋转60°,∴可证△ABE ≌△CBF (SAS ). …………………2分∴∠1=∠2 AE=CF. …………………3分 ∵∠AEM=∠CBA=60°,∴∠1=∠CEM.∴∠2=∠CEM.∴EM//CF. …………4分 ∵∠CBF=60°,BE=BF,∴∠BEF=60°,∴∠MCE=∠CEF=1200.∴CM//EF. …………………5分 ∴四边形MCFE 为平行四边形.∴CF=EM.∴AE=EM. …………………7分 29.解:(1;…………………2分 (2)∵A (2,21), ∴O A=217414=+ ∵AC=22∴O A<A C , ∴点C 在⊙A 外. (或如图,利用勾股定理直观分析:∵OB<BC,AB=AB, ∴O A<A C 也可以) …………6分 (3) m<1且m ≠0.…………8分。
怀柔区第一学期初三期末质量检测数 学 试 卷第1-8题均有四个选项,符合题意的选项只有一个1. 北京电影学院落户,怀柔一期工程建设进展顺利,一期工程建筑面积为178800平方米,建设内容有教学行政办公、图书馆、各类实习用房、学生及教工宿舍、食堂用房等,预计将于2019年投入使用. 将178800用科学记数法表示应为A .1.788×104B .1.788×105C .1.788×106D .1.788×107 2.若将抛物线y = -122先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是 A .2)3(212-+-=x y B .2)3(212---=x y C .2)3(2-+=x y D. 2)3(212++-=x y 3.在Rt △ABC 中,∠C =90°,AC =4,BC =3,则tan A 的值为 A .34B .43C .53D .54 4. 如图,在△ABC 中,点D ,E 分别为边AB,AC 上的点,且DE ∥BC ,若AD =4,BD =8,AE =2,则CE 的长为A .2B .4C .6D .85. 如图,⊙O 是△ABC 的外接圆,∠BOC =100°)A .40︒B .50︒C .80︒D .100︒6. 网球单打比赛场地宽度为8米,长度在球网的两侧各为12米,球网高度为0.9米(如图AB 的高度).中网比赛中,某运动员退出场地在距球网14米的D 点处接球,设计打出直线..穿越球,使球落在对方底线上C 处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点高度至少为EDC A第4题图 第5题图A. 1.65米B. 1.75米C.1.85米D. 1.95米 7. 某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O ,再任意找出圆O 的一条直径标记为AB (如图1),测量出AB =4分米;②将圆环进行翻折使点B 落在圆心O 的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C 、D (如图2);③用一细橡胶棒连接C 、D 两点(如图3); ④计算出橡胶棒CD 的长度.A .22分米B. 23分米 C .32分米D .33分米8.如图1,⊙O 过正方形ABCD 的顶点A 、D 且与边BC 相切于点E ,分别交AB 、DC 于点M 、N .动点P 在⊙O 或正方形ABCD 的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为,圆心O与P 点的距离为y ,图2记录了一段时间里y 与的函数关系,在这段时间里P 点的运动路径为 B.从B 点出发,沿线段BC →线段CN →弧ND →弧DA C.从A 点出发,沿弧AM →线段BM →线段BC →线段CN D.从C 点出发,沿线段CN →弧ND →弧DA →线段AB二、填空题(本题共16分,每小题2分)第8题图1 第8题图29.分解因式:33-62+3=_________.10.若△ABC ∽△DEF ,且对应边BC 与EF 的比为1∶3,则△ABC 与△DEF 的面积比等于 . 11. 有一个反比例函数的图象,在第二象限内函数值随着自变量的值增大而增大,这个函数的表达式可能是(写出一个即可): .12.抛物线y =2(+1)2+3 的顶点坐标是 .13.把二次函数y =2-4+5化成y=a (-h )2+的形式为__________________.14. 数学实践课上,同学们分组测量教学楼前国旗杆的高度.小泽同学所在的组先设计了测量方案,然后开始测量了.他们全组分成两个测量队,分别负责室内测量和室外测量(如图).室内测量组到教室内窗台旁,在点E 处测得旗杆顶部A 的仰角α为45°,旗杆底部B 的俯角β为60°. 室外测量组测得BF 的长度为5米.则旗杆AB =______米.15.1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为米2.16. 阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:三、解答题(本题共68分,第20、21题每小题6分,第26-28题每小题7分,其余每小题5分)解答应写出文字说明、演算步骤或证明过程. 17.计算:4sin45°-8+(3-1)0+|-2|.18.如图,在△ABC 中,D 为AC 边上一点,BC =4,AC =8,CD=2.求证:△BCD ∽△ACB .19. 如图,在△ABC 中,tan A =4,∠B =45°,AB =14. 求BC 的长. 20.在平面直角坐标系Oy中,直线3+-=x y 与双曲线ky =相交于点A (m ,2). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图;(3)若P 是坐标轴上一点,且满足P A =OA . 直接写出点P 的坐标.21.一个二次函数图象上部分点的横坐标,纵坐标y (2)求m 的值;(3)在给定的直角坐标系中,画出这个函数的图象; (4)根据图象,写出当y <0时,的取值范围.22. 如图,已知AB 是⊙O 的直径,点M 在BA 的延长线上,MD 切⊙O 于点D ,过点B 作BN ⊥MD 于点C ,连接AD 并延长,交BN 于点N . (1)求证:AB =BN ;(2)若⊙O 半径的长为3,cosB =52,求MA 的长.第18题图 第19题图D23.数学课上老师提出了下面的问题: 在正方形ABCD 对角线BD 上取一点F ,使51=D B DF . 小明的做法如下:如图① 应用尺规作图作出边AD 的中点M ; ② 应用尺规作图作出MD 的中点E ; ③ 连接EC ,交BD 于点F . 所以F 点就是所求作的点.请你判断小明的做法是否正确,并说明理由.24. 已知:如图,在四边形ABCD 中,BD 是一条对角线,∠DBC =30°, ∠DBA =45°,∠C =70°.若DC =a ,AB=b , 请写出求tan ∠ADB 的思路. (不用写出计算结果........)25.如图,在四边形ABCD 中,AD ∥BC ,∠ADC =90°,点E 是BC ,过点E 作AE 的垂线交直线CD 于点F .已知AD =4cm ,CD =2cm ,BC =5cm ,设BE 的长为 cm ,CF 的长为y cm.小东根据学习函数的经验,对函数y 随自变量的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与y 的几组值,如下表:((2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;CB(3)结合画出的函数图象,解决问题 当BE =CF 时,BE 的长度约为 cm.26.在平面直角坐标系Oy 中,直线l n x y +-=2与抛物线3242---=m mx mx y 相交于点A(2-,7). (1)求m 、n 的值;(2)过点A 作AB ∥轴交抛物线于点B ,设抛物线 与轴交于点C 、D (点C 在点D 的左侧),求△BCD 的面积;(3)点E (t ,0)为轴上一个动点,过点E 作平行于y 轴的直线与直线l 和抛物线分别交于点P 、Q .当点P 在点Q 上方时,求线段PQ 的最大值.27. 在等腰△ABC 中,AB =AC ,将线段BA 绕点B 顺时针旋转到BD ,使BD ⊥AC 于H ,连结AD 并延长交BC 的延长线于点P . (1)依题意补全图形;(2)若∠BAC =2α,求∠BDA 的大小(用含α的式子表示);(3)小明作了点D 关于直线BC 的对称点点E ,从而用等式表示线段DP 与BC 之间的数量关系.请你用小明的思路补全图形并证明线段DP 与BC 之间的数量关系.28.在平面直角坐标系Oy 中,点P 的横坐标为,纵坐标为2,满足这样条件的点称为“关系点”. (1)在点A (1,2)、B (2,1)、M (21,1)、N (1,21)中,是“关系点”的 ;(2)⊙O 的半径为1,若在⊙O 上存在“关系点”P , 求点P 坐标;(3)点C 的坐标为(3,0),若在⊙C 上有且只有.... 一个..“关系点”P ,且“关系点”P 的横坐标满足 -2≤≤2.请直接写出⊙C 的半径r 的取值范围.第一学期期末初三质量检测数学试卷评分标准一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个9.3(-1)2. 10.19. 11.答案不唯一,<0即可. 12.(﹣1,3). 13.y =(-2)2+1. 14. 5+53. 15. 16.圆的定义,直径的定义,直径所对的圆周角为90°,到线段两端点距离相等的点在线段的垂直平分线上,经过半径的外端并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第20、21题每小题6分,第26-28题每小题7分,其余每小题5分)解答应写出文字说明、演算步骤或证明过程. 17. 解原式=4×22-22+1+2 …………………………………………………………………… 4分 =3 ………………………………………………………………………………………5分18.证明:∵BC =4,AC =8,CD =2.…………………………1分∴BC CD AC BC =………………………………………3分 又∵∠C =∠C …………………………………………………………………………4分∴ △BCD ∽△ACB ……………………………………………………………………5分19.π25A解:过点C 作CD ⊥AB 于点D ,如图. ………………………………………………1分 ∵在Rt △CDA 中,tan A =AD CD = 43设CD =3,AD =4. ……………………………………………………………………………2分 ∵在Rt △CDB 中,∠B =45° ∴tan B =DB CD = 1,sin B =BC CD =22,……………………………………………………………3分 ∵CD =3. ∴BD =3,BC =2·3=32. 又∵AB =AD+BD =14, ∴4+3=14,解得=2.…………………………………………………………………………4分∴BC =62. ……………………………………………………………………………………5分 20.解:(1)∵直线3+-=x y 与双曲线xky =相交于点A (m ,2). ∴ A (1,2)………………………………………1分∴xy 2=…………………………………………2分 (2)如图…………………………………………………………4分 (3)P (0,4)或P (2,0) …………………………………………6分21.解:(1)设这个二次函数的表达式为2()y a x h k =-+. 依题意可知,顶点为(-1,2),………………………1分∴ ()212++=x a y .∵图象过点(1,0), ∴()21102++=a .∴12a =-. ∴这个二次函数的表达式为()21212++-=x y …………2分 (2)25-=m .………………………………………………3分 (3)如图…………………………………………………………………………………………5分(4)<-3或>1..…………………………………………………………………………………6分 22.(1)证明:连接OD ,…………………………1分 ∵MD 切⊙O 于点D ,∴OD ⊥MD , ∵BN ⊥MC ,∴OD ∥BN ,…………………………………2分 ∴∠ADO =∠N ,∵OA =OD ,∴∠OAD =∠ADO ,∴∠OAD =∠N , ∴AB =BN ;………………………………………………………………………………………3分 (2)解:由(1)OD ∥BN ,∴∠MOD =∠B ,………………………………………………………………………………4分 ∴cos ∠MOD =cosB =52, 在Rt △MOD 中,cos ∠MOD ==OMOD, ∵OD =OA ,MO =MA +OA =3+MA ,∴AM 33=52,∴MA =4.5………………………………………………………………………………………5分 23.解:正确. ………………………………………………………………………………………1分 理由如下: 由做法可知M 为AD 的中点,E 为MD 的中点, ∴AD DE =41. …………………………………………………………2分 ∵四边形ABCD 是正方形,∴AD=BC ,ED ∥BC . ………………………………………………3分 ∴△DEF ∽△BFC ∴BC DE =BF DF ………………………………………………………..4分 ∵AD =BC ∴BF DF =BC DE =41∴BD DF =51………………………………………………………………………………………5分 24.解 (1)过D 点作DE ⊥BC 于点E ,可知△CDE 和△DEB 都是直角三角形;……………1分D(2)由∠C =70°,可知sin ∠C 的值,在Rt △CDE 中,由sin ∠C 和DC =a ,可求DE 的长;……………………………………………………………………………………………2分 (3)在Rt △DEB 中,由∠DBC =30°,DE 的长,可求BD 的长………………………………3分 (4)过A 点作AF ⊥BD 于点F , 可知△DF A 和△AFB 都是直角三角形; ………………4分(5)在Rt △AFB 中,由∠DBA =45°,AB =b ,可求AF 和BF 的长; (6)由DB 、BF 的长,可知DF 的长; (7)在Rt △DF A 中,由DFFA ,可求tan ∠ADB . ………………5分 25.解:(1)1.5……………………………………… ..1分 (2)如图……………………………………………4分 (3)0.7(0.6~0.8均可以) .………………………….5分. 26. 解:(1)m =1………………………………………………………………………………………1分 n =3………………………………………………………………………………………………2分 (2)由(1)知抛物线表达式为y =2-4-5 令y =0得,2-4-5=0.解得1=-1,2=5,……………………………………………………………………………3分∴抛物线y =2-4-5与轴得两个交点C 、D 的坐标分别为C (-1,0),D (5,0)∴CD =6.∵A (2-,7),AB ∥轴交抛物线于点B ,根据抛物线的轴对称性,可知B (6,7)………4分∴S △BCD =21.……………………………………………………………………………………5分(3) 据题意,可知P (t ,-2 t +3),Q ( t ,t 2-4 t -5), 由2-4-5=-2+3得直线y =-2+3与抛物线y =2-4-5的两个交点坐标分别为(-2,7)和(4,-5) ……………………………………………………………………………………………6分 ∵点P 在点Q 上方∴-2<t <5, ∴PQ = -t 2+2 t +8=-( t -2) 2+9 ∵a =-1∴PQ 的最大值为9.……………………………………………………………………………7分27. 解:(1)如图……………………………………………1分 (2) ∵∠BAC =2α,∠AHB =90°∴∠ABH =90°-2α …………………………………………………………………………… 2分 ∵BA =BD∴∠BDA =45°+α………………………………………………………………………………3分 (3)补全图形,如图………………4分证明过程如下:∵D 关于BC 的对称点为E ,且DE 交BP 于G∴DE ⊥BP ,DG =GE ,∠DBP =∠EBP ,BD =BE ;…………………………………………5分 ∵AB=AC ,∠BAC=2α ∴∠ABC=90°-α 由(2)知∠ABH =90°-2α ∠DBP =90°-α-(90°-2α)=α ∴∠DBP =∠EBP =α ∴∠BDE =2α ∵AB =BD∴△ABC ≌△BDE ………………………………………………………………………………6分 ∴BC =DE∴∠DPB =∠ADB -∠DBP =45°+α-α=45° ∴DP DG =21, ∴DP DE=2, ∴DPBC=2, ∴BC =2DP .………………………………………………………………………………7分 28.解:(1)A 、M . ……………………………………………………………………………………2分 (2)过点P 作PG ⊥轴于点G …………………………………………………………………3分 设P (,2)∵OG 2+PG 2=OP 2 ………………………………………………………………………………4分∴2+42=1 ∴52=1 ∴2=51 ∴=55±∴P (55,552)或P (55-,552-)……………………………………………………5分 (3)r =556或 4117≤<r …………………………………………………………7分。