《等腰三角形和性质》教学设计
- 格式:doc
- 大小:70.50 KB
- 文档页数:5
初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。
等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。
等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。
同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。
2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。
如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
4、教学重、难点:重点:等腰三角形性质的探索与应用。
难点:等腰三角形性质的探索及证明。
5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。
二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。
等腰三角形性质教学设计教学目标:1.了解等腰三角形的定义;2.掌握等腰三角形的性质;3.能够利用等腰三角形的性质解决相关问题。
教学重点:1.等腰三角形的性质;2.等腰三角形的判定;3.等腰三角形相关问题的解决。
教学难点:1.等腰三角形性质的推理;2.等腰三角形相关问题的解答思路。
教学准备:1.多边形拼图图板;2.教师准备的教材;3.学生准备的笔记本。
教学过程:步骤一:导入新知识(5分钟)教师可以通过展示一些图形和问题,激发学生对等腰三角形的兴趣和好奇心。
例如,教师可以画出一个等腰三角形,并提问学生:“你能否解释一下什么是等腰三角形?”或者提问学生:“你能发现等腰三角形有哪些特点或性质?”步骤二:学习等腰三角形的定义和性质(10分钟)教师向学生讲解等腰三角形的定义和性质。
等腰三角形是指具有两边相等的三角形。
教师可以使用多边形拼图图板,用不同颜色的多边形拼图来构造一个等腰三角形,并强调两条边是相等的。
然后,教师可以提供一些示例来说明等腰三角形的性质,例如:性质1:等腰三角形的底角(底边对应的角)相等;性质2:等腰三角形的高(从顶点到底边的垂直线段)是底边的中线;性质3:等腰三角形的周长等于底边和两条等边的和。
步骤三:等腰三角形的判定(15分钟)教师可以与学生一起探讨如何判定一个三角形是否为等腰三角形。
教师可以提供一些判定等腰三角形的方法,并通过示例来说明这些方法。
例如:方法1:通过边长判定。
如果一条边与另外两条边相等,则这个三角形是等腰三角形;方法2:通过角度判定。
如果一个三角形的两个角相等,则这个三角形是等腰三角形。
教师可以让学生自己尝试使用这些方法判定一些图形是否为等腰三角形,并给予反馈和指导。
步骤四:解决等腰三角形相关问题(20分钟)教师向学生提供一些等腰三角形相关的问题,并指导学生使用等腰三角形的性质来解决这些问题。
例如:问题1:如果一个等腰三角形的底角等于80°,求其顶角的度数是多少?问题2:在一个等腰三角形中,底边的长度是10厘米,两条等边的长度分别为8厘米,求其周长是多少?问题3:在一个等腰三角形中,顶角的度数是50°,底边的长度是12厘米,求其高是多少?教师可以请学生分组讨论解决这些问题,并给予相应的指导和辅导。
八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。
以下是我为大家整理的,感谢您的欣赏。
八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。
《等腰三角形》教学设计一、教学目标1、知识与技能目标学生能够理解等腰三角形的定义,掌握等腰三角形的性质和判定方法,并能运用这些知识解决简单的几何问题。
2、过程与方法目标通过观察、操作、猜想、证明等活动,培养学生的逻辑推理能力、动手操作能力和创新思维能力。
3、情感态度与价值观目标让学生在探索等腰三角形的性质和判定过程中,感受数学的严谨性和逻辑性,激发学生对数学的兴趣,培养学生的合作精神和探究精神。
二、教学重难点1、教学重点等腰三角形的性质和判定方法。
2、教学难点等腰三角形性质和判定的证明及应用。
三、教学方法讲授法、讨论法、探究法、直观演示法。
四、教学过程1、导入新课通过展示一些生活中常见的等腰三角形的图片,如等腰三角形的建筑、饰品等,引导学生观察这些图形的共同特征,从而引出本节课的主题——等腰三角形。
2、新课讲授(1)等腰三角形的定义结合图片,给出等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(2)等腰三角形的性质①让学生拿出事先准备好的等腰三角形纸片,通过对折,观察并猜想等腰三角形的性质。
②引导学生从边、角、线段(中线、高线、角平分线)等方面进行猜想。
③对猜想进行证明。
例如,证明等腰三角形的两个底角相等。
已知:在△ABC 中,AB = AC。
求证:∠B =∠C。
证明:作底边 BC 的中线 AD。
因为 AB = AC,BD = CD,AD = AD,所以△ABD ≌△ACD(SSS)。
所以∠B =∠C。
通过类似的方法,证明等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合(三线合一)。
(3)等腰三角形的判定引导学生思考:如果一个三角形有两个角相等,那么这两个角所对的边是否相等?已知:在△ABC 中,∠B =∠C。
求证:AB = AC。
证明:作∠BAC 的平分线 AD。
因为∠BAD =∠CAD,∠B =∠C,AD = AD,所以△ABD ≌△ACD(AAS)。
等腰三角形的性质的教学设计教学设计:等腰三角形的性质一、教学目标通过本堂课的学习,学生能够:1. 了解等腰三角形的定义和性质;2. 能够判断一个三角形是否为等腰三角形,并说明理由;3. 掌握等腰三角形的基本性质;4. 运用等腰三角形的性质解决问题。
二、教学准备1. 教师准备:(1) 相关教学课件;(2) 等腰三角形模型;(3) 图形板书。
2. 学生准备:(1) 笔记本和书写工具;(2) 教材和练习册。
三、教学过程步骤一:导入(5分钟)教师利用课件中的图片展示一些常见的图形,引出等腰三角形的概念。
并通过提问的方式,激发学生对等腰三角形的认知。
步骤二:概念讲解(10分钟)教师讲解等腰三角形的定义:在一个三角形中,如果两边边长相等,我们称这个三角形为等腰三角形。
然后,教师通过教材的例题,引导学生发现等腰三角形内部的角度特点。
步骤三:性质总结(15分钟)教师引导学生通过观察和分析,总结出等腰三角形的性质,并进行板书整理。
学生可以利用教材上的例题、练习题,并和同伴进行讨论,加深对等腰三角形性质的理解。
步骤四:性质应用(15分钟)教师通过一些实际问题,引导学生运用等腰三角形的性质解决问题。
学生可以在小组内探讨解题思路,并进行展示和讨论。
教师可以通过个别辅导,帮助学生理解和掌握解题方法。
步骤五:拓展延伸(10分钟)教师可以给学生一些较难的拓展题目,让学生运用所学等腰三角形的性质解决。
教师可以利用课件和实物模型进行演示,帮助学生理解和掌握。
步骤六:归纳总结(5分钟)教师和学生共同总结课堂所学内容,强化学生对等腰三角形的定义和性质的记忆。
四、课堂小结通过本堂课的学习,我们了解了等腰三角形的定义和性质。
我们已经学会如何判断一个三角形是否为等腰三角形,并且掌握了等腰三角形的基本性质。
我们还学会了如何运用等腰三角形的性质解决问题。
五、课后作业请完成教材上的相关练习题,加深对等腰三角形性质的掌握和运用。
六、教学反思教师在本节课中,通过引导学生观察和分析,让学生主动发现等腰三角形的性质。
人教版数学八年级上册《等腰三角形的性质》教学设计一. 教材分析等腰三角形的性质是初中数学中的重要内容,人教版八年级上册《几何》第三单元“三角形”的第二节。
本节课的主要内容是让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过实例引入等腰三角形的性质,然后通过学生自主探究活动,让学生总结出等腰三角形的性质,最后通过巩固练习,让学生加深对等腰三角形性质的理解。
二. 学情分析学生在七年级已经学习了三角形的有关知识,对三角形的基本概念、性质有一定的了解。
但等腰三角形的性质较为抽象,需要学生通过动手操作、观察、推理等方法,自主探究并掌握。
此外,学生可能对等腰三角形的判定和性质容易混淆,需要老师在教学中进行区分和引导。
三. 教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。
2.过程与方法目标:通过学生自主探究活动,培养学生的观察能力、推理能力、动手操作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的运用。
四. 教学重难点1.重点:等腰三角形的性质。
2.难点:等腰三角形性质的推导和运用。
五. 教学方法1.情境教学法:通过实例引入等腰三角形的性质,让学生在实际问题中感受数学的价值。
2.自主探究法:让学生通过动手操作、观察、推理等方法,自主探究等腰三角形的性质。
3.合作学习法:学生在小组内进行讨论、交流,共同完成学习任务。
4.讲解法:老师对等腰三角形性质进行讲解,引导学生理解并掌握。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、剪刀、彩纸等。
2.学具:学生手册、练习册、彩笔、剪刀、彩纸等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的等腰三角形图片,如:金字塔、蜡烛等,引导学生观察并提问:“这些图形有什么共同的特点?”学生通过观察,发现这些图形都是等腰三角形。
教师总结等腰三角形的定义,并提问:“等腰三角形有哪些性质呢?”从而引出本节课的主题。
等腰三角形的性质教学设计一等奖(精选13篇)等腰三角形的性质教学设计一等奖(精选一三篇)作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的等腰三角形的性质教学设计一等奖(精选一三篇),希望对大家有所帮助。
等腰三角形的性质教学设计一等奖1一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。
使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。
等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。
由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。
《等腰三角形及其性质》教学设计
一、内容和内容解析
1.内容
等腰三角形.
2.内容解析
本节教材是在学生学习了三角形的有关知识、全等三角形的性质及判定和轴对称的有关知识的基础上,来研究等腰三角形的性质.它不仅是对前面所学知识的综合应用,也是后面研究等边三角形等内容的预备知识,同时也是今后证明角相等、线段相等及两直线垂直的重用手段.因此本节课具有承前启后的作用.
教材先通过一个“探究”栏目,让学生自己剪出一个等腰三角形,再通过一个“探究”栏目,把剪出的等腰三角形沿折痕对折,找出重合的线段和角,借助等腰三角形的轴对称发现等腰三角形的性质,并获得添加辅助线证明性质的方法,最后利用三角形全等证明这两个性质.
基于以上分析,本节课的教学重难点是:探索并证明等腰三角形的性质.
二、目标和目标解析
1.教学目标
(1)探索并证明等腰三角形的两个性质.
(2)能利用等腰三角形的性质证明两个角或两条线段相等.
(3)结合等腰三角形性质的探究与证明过程,体会轴对称在研究几何问题中的作用.2.教学目标解析
(1)学生在动手剪等腰三角形的过程中,借助等腰三角形的对称性发现等腰三角形的性质,能用文字语言和符合语言准确表述性质的含义,能用三角形全等证明这两个性质.(2)学生能在等腰三角形的情境中,自觉运用等腰三角形的性质证明两个角或两条线段相等,体会其证明的简捷性和计算的简便性.
(3)学生知道等腰三角形是轴对称图形,能借助轴对称性发现等腰三角形的性质,并获得添加辅助线证明性质的方法.
三、教学问题诊断分析
学生通过沿折痕对折自己剪出的等腰三角形,很容易发现等腰三角形的性质1:等腰三角形的两个底角相等.对于等腰三角形的性质2:等腰三角形的顶角平分线、底边上的中线、
底边上的高互相重合.学生不容易发现,需要教师加以引导.对性质2的理解,学生也容易出现错误,需教师引导学生将性质2分解为三个命题逐一证明.
本节课的教学难点是:性质2的探索与证明.
四、教学过程设计
1.创设情境,引入新知
问题1 观察下面的图片,图中有哪些你熟悉的图形?
师生活动:学生观察得出,图中有三角形.
追问:什么样的三角形是等腰三角形?
师生活动:学生说出有两边相等的三角形是等腰三角形.教师小结:等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质外,还具有哪些特殊的性质呢?今天这节课我们就来探究等腰三角形的性质.(板书课题)
设计意图:从学生熟悉的图片引入课题,激发学生的学习兴趣,让学生感到数学就在我们身边.
2.动手操作,发现性质
问题2 如图,把一张长方形的纸板按图中虚线对折,并剪下阴影部分,再把它展开,所得到的三角形是什么三角形?为什么?
师生活动:学生动手操作,剪出等腰三角形,然后小组交流.
设计意图:让学生利用轴对称性剪出等腰三角形,为等腰三角形的性质探究作准备.问题 3 仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?
师生活动:学生独立思考,尝试说出等腰三角形纸片的的特征,并全班交流.如果学生不能说出等腰三角形的特征,或说得不全面,教师作如下提示:把剪出的等腰三角形纸片沿折痕对折,找出其中重合的线段和角,由此概括出等腰三角形的特征.
设计意图:让学生通过等腰三角形的轴对称性发现其性质.
追问1:剪下来的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?
师生活动:学生相互比较,得出结论.
追问2:在一张白纸上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?
师生活动:学生动手操作,互动交流,概括出性质1和性质2.教师给出性质的简写形式,并分析“三线和一”的含义.
设计意图:学生通过丰富的感性材料,经历由特殊到一般的过程,在反复比较的过程中发现等腰三角形的性质,培养学生的抽象概括能力.
3.逻辑推理,证明性质
问题4 你能通过严格的逻辑推理证明性质1吗?
师生活动:教师引导学生根据结论画出图形,写出已知、求证,学生独立完成证明.追问:你还有其他方法证明性质1吗?
师生活动:学生尝试用多种方法证明,可以作底边的中线、底边的高或顶角平分线,然后交流.
设计意图:让学生在运用不同的方法证明性质1的过程中提高思维的深刻性和广阔性.问题5 性质2可以分解为哪三个命题?请你证明“等腰三角形底边上的中线也是底边上的高和顶角平分线”.
师生活动:在教师的引导下,学生把性质2分解成3个命题:“等腰三角形底边上的中线也是底边上的高和顶角平分线;等腰三角形底边上的高也是底边上的中线和顶角平分线;等腰三角形顶角平分线也是底边上的中线和高”.然后,学生根据结论画出图形,写出已知、求证并证明.
设计意图:引导学生把性质2分解成三个命题,加深学生对性质2的理解,让学生证明其中的一个命题,进一步体会命题证明的完整过程,提高证明命题的能力.追问1:在等腰三角形性质的探索过程和证明过程中,“折痕”和“辅助线”发挥了非常重要的作用,由此你发现等腰三角形是什么图形?
师生活动:学生回答:等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.
设计意图:让学生理解等腰三角形的轴对称性,并体会它在探索和证明等腰三角形性质的过程中的重要作用.
追问2:等腰三角形的性质有什么作用?
师生活动:学生回答:可以用来证明两个角相等、两条线段相等及线段的垂直关系.
设计意图:让学生理解探究等腰三角形性质的意义,在以后的证明和计算中自觉地加以运用.
4.应用性质,巩固新知
练习1 填空:
(1)如图1,△ABC中,AB=AC, ∠A=36°,则∠B= °;
(2)如图2,△ABC中,AB=AC, ∠B=35°,则∠A= °;
(3)已知等腰三角形的一个内角为80°,则它的另外两个内角的度数分别是.
练习2
如图,△ABC 是等腰直角三角形(AB =AC,∠BAC =90°),AD 是底边BC 上的高,标出∠B,∠C,∠BAD,∠DAC 的度数,并写出图中所有相等的线段.
师生活动:学生回答,相互补充,说明理由.
设计意图:加深学生对等腰三角形性质的理解,增强知识的应用意识.
练习3
例1 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
师生活动:学生独立解答,相互交流,教师适时点拨.
设计意图:用设未知数的方法求出等腰三角形角的度数,体现方程思想,让学生初步体会用代数的知识来解决几何问题.
5.回顾反思,梳理新知
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)本节课学习了哪些主要内容?
(2)我们是怎么探究等腰三角形的性质的?
(3)本节课你学到了哪些证明线段相等或角相等的方法?
师生活动:学生自由小结,教师适时点评、补充.
设计意图:用设未知数的方法求出等腰三角形角的度数,体现方程思想,让学生初步体会用代数的知识来解决几何问题.
6.布置作业:
教科书习题13.3第1,2,4,6题.
五、目标检测设计
1.判断下列说法是否正确.
(1)在△ABC中,若AB=AC,则∠A=∠B.()
(2)等腰三角形的角平分线、中线、高相互重合.()
设计意图:本题主要考查学生对等腰三角形性质的理解.
2.若等腰三角形的底角为50°,则它的顶角为____°;若顶角为50°,则它的底角为______°.
设计意图:本题主要考查学生对等腰三角形性质及三角形内角和的理解.
3.等腰三角形的一个角为20°,它的另外两个角为;等腰三角形的一个角为100°,它的另外两个角为.
设计意图:本题主要考查等腰三角形的性质,三角形内角和定理及分类讨论的思想.4.已知,如图AB=AC,AD=AE.求证:BD=CE.
设计意图:本题主要让学生体会,在证线段相等时不一定要证全等,条件允许时,用等腰三角的性质来证明更简便.。