实验五FIR滤波器实验
- 格式:doc
- 大小:91.50 KB
- 文档页数:3
fir滤波器设计实验报告fir滤波器设计实验报告引言:滤波器是数字信号处理中常用的工具,它能够对信号进行去噪、频率分析和频率选择等处理。
其中,FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,具有线性相位和稳定性等优点。
本实验旨在设计一个FIR滤波器,并通过实际测试验证其性能。
一、实验目的本实验的目的是通过设计一个FIR滤波器,掌握FIR滤波器的设计方法和性能评估。
具体包括以下几个方面:1. 了解FIR滤波器的基本原理和特点;2. 学习FIR滤波器的设计方法,如窗函数法、最小二乘法等;3. 掌握MATLAB等工具的使用,实现FIR滤波器的设计和性能评估;4. 通过实际测试,验证所设计FIR滤波器的性能。
二、实验原理FIR滤波器是一种非递归滤波器,其输出仅依赖于当前和过去的输入样本。
其基本原理是将输入信号与一组滤波器系数进行卷积运算,得到输出信号。
FIR滤波器的频率响应由滤波器系数决定,通过调整滤波器系数的值,可以实现不同的滤波效果。
在本实验中,我们采用窗函数法设计FIR滤波器。
窗函数法是一种常见的FIR滤波器设计方法,其基本思想是通过对滤波器的频率响应进行窗函数加权,从而实现对信号频率的选择。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等。
三、实验过程1. 确定滤波器的要求:根据实际需求,确定滤波器的截止频率、通带衰减和阻带衰减等参数。
2. 选择窗函数:根据滤波器的要求,选择合适的窗函数。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等,不同窗函数有不同的性能特点。
3. 计算滤波器系数:根据所选窗函数的特性,计算滤波器的系数。
这一步可以使用MATLAB等工具进行计算,也可以手动计算。
4. 实现滤波器:使用MATLAB等工具,将计算得到的滤波器系数应用于滤波器的实现。
可以使用差分方程、卷积等方法实现滤波器。
5. 评估滤波器性能:通过输入不同的信号,观察滤波器的输出,并评估其性能。
FIR滤波器设计实验报告实验报告:FIR滤波器设计一、实验目的:本实验旨在通过设计FIR滤波器,加深对数字信号处理中滤波器原理的理解,掌握FIR滤波器的设计方法和调试技巧。
二、实验原理:在窗函数法中,常用的窗函数有矩形窗、三角窗、汉明窗和黑曼窗等。
根据实际需求选择适当的窗口函数,并通过将窗口函数应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
三、实验步骤:1.确定滤波器的阶数和截止频率。
2.选择适当的窗口函数,如汉明窗。
3.计算出理想低通滤波器的冲激响应。
4.将选定的窗口函数应用到理想低通滤波器的冲激响应中。
5.得到FIR滤波器的冲激响应。
四、实验结果:假设要设计一个阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz。
1.选择汉明窗作为窗口函数。
2.根据采样频率和截止频率计算出理想低通滤波器的冲激响应。
假设截止频率为f_c,则理想低通滤波器的冲激响应为:h(n) = 2f_c * sinc(2f_c * (n - (N-1)/2))其中,sinc(x)为正弦函数sin(x)/x。
3.将汉明窗应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
具体计算过程如下:h(n) = w(n) * h_ideal(n)其中,w(n)为汉明窗:w(n) = 0.54 - 0.46 * cos(2πn/(N-1))h_ideal(n)为理想低通滤波器的冲激响应。
4.计算得到FIR滤波器的冲激响应序列。
五、实验总结:本次实验通过设计FIR滤波器,加深了对数字信号处理中滤波器原理的理解。
掌握了FIR滤波器的设计方法和调试技巧。
通过设计阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz的实例,了解了窗函数法设计FIR滤波器的具体步骤,并得到了滤波器的冲激响应。
【备注】以上内容仅为参考,具体实验报告内容可能根据实际情况有所调整。
实验5 FIR滤波器设计与实现以下为参考中文实验指导,原文请参见:\GuideSlide\DSP_Primer\chinese\print下:Xilinx_DSP_workbook_A4.pdf5.FIR滤波器在这一部分中,我们将利用多种不同方法实现FIR滤波器。
为了说明问题,首先来看一下如下图所示的简单的四抽头FIR滤波器:滤波器的系数按如下选择:w0= -10,w1= 20,w2= 50,w3= 80 [5.1] 这些系数并不是针对某个具体的频率响应而设计的,如此选择只是为了说明问题。
5.1.字长增长为了说明字长效应的影响,我们当然只能选择有限精度的信号。
在本例中,我们让输入信号为2位整数。
因此信号x[k]的范围在-2和1之间。
在下面各实验中,我们将考虑滤波器系数为8位的情况,即w的范围在-128和+127之间实验 5.1简单FIR滤波器打开以下系统:\filter\cut_set\FIR1\FIR1.mdl(a)在上图中画出关键路径,并回答在关键路径上共有多少乘法单元和加法单元。
答:(b)运行该系统并在示波器中观察其冲激响应。
(c) 观察加法链上的字长变化并验证字长由8位增长到10位。
(d) 使用System Generator 模块生成所需ISE 工程文件。
打开ISE 工程,对该设计经行时序模拟以及布局与布线(Place & Route ),然后完成下列表格。
(注意在本例中并没有使用到内嵌乘法器)实验 5.2 时序变更(Retiming)打开以下系统:\filter\cut_set\FIR2\FIR2.mdl对图中上面的系统应用cut sets 分割得到的割集进行适当变换便得到了下面的系统。
变换后的系统的关键路径长度被大大缩减。
但同时需要注意的是,系统的延迟增加了。
(a) 运行该系统并在示波器中观察其冲激响应。
可以看出该系统与之前的系统相比其关键路径大大缩短。
新系统的关键路径长度是多少? 答:(b) 使用System Generator 模块生成所需ISE 工程文件。
数字信号处理实验报告姓名:寇新颖 学号:026 专业:电子信息科学与技术实验五 FIR 数字滤波器的设计一、实验目的1.熟悉FIR 滤波器的设计基本方法2.掌握用窗函数设计FIR 数字滤波器的原理与方法,熟悉相应的计算机高级语言编程。
3.熟悉线性相位FIR 滤波器的幅频特性和相位特性。
4.了解各种不同窗函数对滤波器性能的影响。
二、实验原理与方法FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d eH ,其对应的单位脉冲响应)(n h d 。
1.用窗函数设计FIR 滤波器的基本方法设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。
设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。
以低通线性相位FIR 数字滤波器为例。
⎰∑--∞-∞===ππωωωωωπd e e Hn h e n he H jn j dd jn n dj d )(21)()()()(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。
要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。
按照线性相位滤波器的要求,h(n)必须是偶对称的。
对称中心必须等于滤波器的延时常数,即⎩⎨⎧-==2/)1()()()(N a n w n h n h d 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。
为了消除吉布斯效应,一般采用其他类型的窗函数。
2.典型的窗函数(1)矩形窗(Rectangle Window))()(n R n w N =其频率响应和幅度响应分别为:21)2/sin()2/sin()(--=N j j eN e W ωωωω,)2/sin()2/sin()(ωωωN W R =(2)三角形窗(Bartlett Window)⎪⎩⎪⎨⎧-≤<----≤≤-=121,122210,12)(N n N N n N n N n n w其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωωωω(3)汉宁(Hanning)窗,又称升余弦窗)()]12cos(1[21)(n R N n n w N --=π其频率响应和幅度响应分别为:)]12()12([25.0)(5.0)()()]}12()12([25.0)(5.0{)()21(-++--+==-++--+=---N W N W W W e W eN W N W W e W R R R aj N j R R R j πωπωωωωπωπωωωωω(4)汉明(Hamming)窗,又称改进的升余弦窗)()]12cos(46.054.0[)(n R N n n w N --=π其幅度响应为:)]12()12([23.0)(54.0)(-++--+=N W N W W W R R R πωπωωω (5)布莱克曼(Blankman)窗,又称二阶升余弦窗)()]14cos(08.0)12cos(5.042.0[)(n R N n N n n w N -+--=ππ 其幅度响应为:)]14()14([04.0)]12()12([25.0)(42.0)(-++--+-++--+=N W N W N W N W W W R R R R R πωπωπωπωωω(6)凯泽(Kaiser)窗10,)())]1/(21[1()(020-≤≤---=N n I N n I n w ββ其中:β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。
课程名称DSP原理与应用实验序号实验5实验项目FIR滤波器实验地点实验学时实验类型指导教师实验员专业班级学号姓名年月日成绩:一、实验目的及要求1、掌握数字滤波器的设计过程;2、了解FIR 的原理和特性;3、熟悉设计FIR 数字滤波器的原理和方法。
4、对带有噪声的不同输入信号(正弦波、三角波)进行FIR 滤波,观看滤掉噪声后的波形。
二、实验原理与内容1、有限冲击响应数字滤波器( FIR)FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:N 为FIR 滤波器的阶数。
在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。
为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。
这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为由上可见,FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n) 输出。
因此,FIR 实际上是一种乘法累加运算。
而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。
2、本实验中FIR 的算法公式三、实验软硬件环境SEED—DTK67实验箱,CCS软件,接口线Filter 实验,包含文件1. FIR_Filter.c:音频芯片各控制寄存器的初始化,采样程序,FIR_Filter 子程序。
2. FIR_function.c :滤波算法实现程序。
3. main.c: 实验的主程序,包含了系统初始化.4. linker.cmd:声明了系统的存储器配置与程序各段的连接关系。
5. DEC6437.gel:系统初始化程序四、实验过程(实验步骤、记录、数据、分析)1. 将DSP 仿真器与计算机连接好;2. 将DSP 仿真器的JTAG 插头与SEED-DEC6437 单元的J9 相连接;3. 打开SEED-DTK6437 的电源。
fir滤波器实验报告fir滤波器实验报告引言:滤波器是信号处理中常用的工具,它可以对信号进行频率选择性处理。
在数字信号处理中,FIR(Finite Impulse Response)滤波器是一种常见的滤波器类型。
本实验旨在通过设计和实现FIR滤波器,探索其在信号处理中的应用。
一、实验目的本实验的主要目的有以下几点:1. 了解FIR滤波器的基本原理和特性;2. 掌握FIR滤波器的设计方法;3. 实现FIR滤波器并对信号进行处理,观察滤波效果。
二、实验原理1. FIR滤波器的原理FIR滤波器是一种非递归滤波器,其输出仅依赖于输入和滤波器的系数。
它的基本原理是将输入信号与滤波器的冲激响应进行卷积运算,得到输出信号。
FIR滤波器的冲激响应是有限长度的,因此称为有限脉冲响应滤波器。
2. FIR滤波器的设计方法FIR滤波器的设计方法有很多种,常用的包括窗函数法、频率采样法和最小二乘法。
在本实验中,我们将使用窗函数法进行FIR滤波器的设计。
具体步骤如下:(1)选择滤波器的阶数和截止频率;(2)选择适当的窗函数,如矩形窗、汉宁窗等;(3)根据选择的窗函数和截止频率,计算滤波器的系数;(4)利用计算得到的系数实现FIR滤波器。
三、实验步骤1. 确定滤波器的阶数和截止频率,以及采样频率;2. 选择合适的窗函数,并计算滤波器的系数;3. 利用计算得到的系数实现FIR滤波器;4. 准备待处理的信号,如音频信号或图像信号;5. 将待处理的信号输入FIR滤波器,观察滤波效果;6. 调整滤波器的参数,如阶数和截止频率,观察滤波效果的变化。
四、实验结果与分析在实验中,我们选择了一个音频信号作为待处理信号,设计了一个10阶的FIR滤波器,截止频率为1kHz,采样频率为8kHz,并使用汉宁窗进行滤波器系数的计算。
经过滤波处理后,观察到音频信号的高频部分被有效地滤除,保留了低频部分,使得音频信号听起来更加柔和。
通过调整滤波器的阶数和截止频率,我们可以进一步调节滤波效果,使得音频信号的音色发生变化。
实验五FIR数字滤波器的设计
FIR数字滤波器的设计可以分为以下几个步骤:
1.确定滤波器的类型和规格:根据实际需求确定滤波器的类型(如低通、高通、带通等)以及滤波器的截止频率、通带衰减以及阻带衰减等规格。
2.选择滤波器的窗函数:根据滤波器的规格,选择合适的窗函数(如矩形窗、汉宁窗、布莱克曼窗等)。
窗函数的选择会影响滤波器的频率响应以及滤波器的过渡带宽度等特性。
3.确定滤波器的阶数:根据滤波器的规格和窗函数的选择,确定滤波器的阶数。
通常来说,滤波器的阶数越高,滤波器的性能越好,但相应的计算和处理也会更加复杂。
4.设计滤波器的频率响应:通过在频率域中设计滤波器的频率响应来满足滤波器的规格要求。
可以使用频率采样法、窗函数法或优化算法等方法。
5. 将频率响应转换为差分方程:通过逆Fourier变换或其他变换方法,将频率响应转换为滤波器的差分方程表示。
6.量化滤波器的系数:将差分方程中的连续系数离散化为滤波器的实际系数。
7.实现滤波器:使用计算机编程、数字信号处理芯片或FPGA等方式实现滤波器的功能。
8.测试滤波器性能:通过输入一组测试信号并观察输出信号,来验证滤波器的性能是否符合设计要求。
需要注意的是,FIR数字滤波器的设计涉及到频率域和时域的转换,以及滤波器系数的选择和调整等过程,需要一定的信号处理和数学背景知识。
FIR滤波器实验(一)实验目的熟悉数字滤波的基本原理和实现方法;熟悉线性相位FIR数字滤波器特性;通过观察对实际信号的滤波作用,获得对数字滤波的感性认识。
(二)实验原理FIR 滤波器算法的函数表达式:short oflag = fir (DA TA *x, DA TA *h, DA TA *r, DA TA **dbuffer,ushort nh, ushort nx) (定义于fir.asm)参数说明使用系数向量h,计算实数的FIR滤波。
输入数据存于向量x中。
该例程使用一个缓冲内存d,来保存前一次的输入值。
可以进行块滤波操作,或者单个数据滤波(nx=1)。
算法r[j] =∑=-nhkkjxkh][][0 <=j <=nx(三)实验步骤(1)用MA TLAB设计软件设计出FIR数据文件,可采用随机光盘里WA VE文件夹中的数据文件。
(2)启动CCS,编写实验程序代码(可参考随机光盘中的alldsp4\Simulator\ hpassfir例程),进行编译并加载到DSP中。
(3)采用单步运行或执行到光标处,或全速运行,并打开波形观察窗口,跟踪观察其执行过程和滤波效果。
此处举例介绍随机光盘里的例程低通滤波器的程序运行,以及如何观察滤波效果:①先打开项目,然后编译、加载实验程序,然后点击菜单debug—Go main 就进入实验程序test.c(如图一)。
图一程序②然后我们打开波形观察窗口,路径是V iew—Graph—Time/Frequence,将出现如下图二所示的图形属性框,因为本程序编写的是输入向量放在x 中,而滤波后的输出向量放在r中,因此图形属性框应选择:在Display Type 一栏中选择Dual Time 项;Interleaved Data Sources一栏中选择No项; Start Address-upper display一栏中输入x,Start Address-upper display 一栏中输入r;Acquistition Buffer Size 一栏中输入256;Display Data Size 一栏中输入256;DSP Data Type一栏中选择16-bit signed integer项;其他为默认值,然后点击“OK”就可打开图形观察窗口如图三。
实验 用窗函数设计FIR 滤波器一、实验目的1、熟悉FIR 滤波器设计的基本方法。
2、熟悉线性相位FIR 滤波器的幅频特性和相位特性。
3、掌握用窗函数设计FIR 数字滤波器的原理及方法,了解各种不同窗函数对滤波器性能的影响。
二、实验原理1、FIR 滤波器的设计 在前面的实验中,我们介绍了IIR 滤波器的设计方法并实践了其中的双线性变换法,IIR 具有许多诱人的特性;但与此同时,也具有一些缺点。
例如:若想利用快速傅立叶变换技术进行快速卷积实现滤波器,则要求单位脉冲响应是有限长的。
此外,IIR 滤波器的优异幅度响应,一般是以相位的非线性为代价的,非线性相位会引起频率色散。
FIR 滤波器具有严格的相位特性,这对于许多信号的处理和数据传输是很重要的。
目前FIR 滤波器的设计方法主要有三种:窗函数法、频率采样法和切比雪夫等波纹逼近的最优化设计方法。
窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。
它是从时域出发,用一个窗函数截取理想的[]d h n 得到[]h n ,以有限长序列[]h n 近似理想的[]d h n ;如果从频域出发,用理想的[]j d h e ω在单位圆上等角度取样得到[]H k ,根据[]H k 得到[]H z 将逼近理想的[]d h z ,这就是频率采样法。
2 、窗函数设计法同其他的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对滤波器提出性能指标。
一般是给定一个理想的频率响应[]j d H e ω,使所设计的FIR 滤波器的频率响应[]j H e ω去逼近所要求的理性的滤波器的响应[]j d H e ω。
窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数1()[]N j j nn H e h n e ωω--==∑ (4.1)去逼近[]j d H e ω。
我们知道,一个理想的频率响应[]j d H e ω的傅立叶反变换201[]()2j j n d d h n H e e d πωωωπ=⎰(4.2)所得到的理想单位脉冲响应[]d h n 往往是一个无限长序列。
fir数字滤波器设计实验报告FIR数字滤波器设计实验报告概述数字滤波器是数字信号处理中的重要组成部分,广泛应用于音频、图像、视频等领域。
其中,FIR数字滤波器是一种常见的数字滤波器,具有线性相位、稳定性好、易于实现等优点。
本实验旨在设计一种基于FIR数字滤波器的信号处理系统,实现对信号的滤波和降噪。
实验步骤1. 信号采集需要采集待处理的信号。
本实验采用的是模拟信号,通过采集卡将其转换为数字信号,存储在计算机中。
2. 滤波器设计接下来,需要设计FIR数字滤波器。
为了实现对信号的降噪,我们选择了低通滤波器。
在设计滤波器时,需要确定滤波器的阶数、截止频率等参数。
本实验中,我们选择了8阶低通滤波器,截止频率为500Hz。
3. 滤波器实现设计好滤波器后,需要将其实现。
在本实验中,我们采用MATLAB 软件实现FIR数字滤波器。
具体实现过程如下:定义滤波器的系数。
根据滤波器设计的公式,计算出系数值。
利用MATLAB中的filter函数对信号进行滤波。
将采集到的信号作为输入,滤波器系数作为参数,调用filter函数进行滤波处理。
处理后的信号即为滤波后的信号。
4. 结果分析需要对处理后的信号进行分析。
我们可以通过MATLAB绘制出处理前后的信号波形图、频谱图,比较它们的差异,以评估滤波器的效果。
结果显示,经过FIR数字滤波器处理后,信号的噪声得到了有效的降低,滤波效果较好。
同时,频谱图也显示出了滤波器的低通特性,截止频率处信号衰减明显。
结论本实验成功设计并实现了基于FIR数字滤波器的信号处理系统。
通过采集、滤波、分析等步骤,我们实现了对模拟信号的降噪处理。
同时,本实验还验证了FIR数字滤波器的优点,包括线性相位、稳定性好等特点。
在实际应用中,FIR数字滤波器具有广泛的应用前景。
实验五:FIR 数字滤波器设计与软件实现
颜平 222011315220096
1.实验目的
(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。
(3)掌握FIR 滤波器的快速卷积实现原理。
(4)学会调用MA TLAB 函数设计与实现FIR 滤波器。
2. 实验内容及步骤
(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR 数字滤波器的原理; (2)调用信号产生函数xtg 产生具有加性噪声的信号xt ,如figure1所示;
(3)请设计低通滤波器,从高频噪声中提取xt 中的单频调幅信号,要求信号幅频失真小于0.1dB ,将噪声频谱衰减60dB 。
先观察xt 的频谱,确定滤波器指标参数。
(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N ,调用MATLAB 函数fir1设计一个FIR 低通滤波器。
并编写程序,调用MATLAB 快速卷积函数fftfilt 实现对xt 的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MA TLAB 函数remezord 和remez 设计FIR 数字滤波器。
并比较两种设计方法设计的滤波器阶数。
3.matlab 仿真实验结果
利用树上的方法首先产生一个在高频上有噪声的信号,然后在经过两种不同方法设计的FIR 滤波器进行滤波处理。
如下图,为原始输入信号:
0.02
0.04
0.06
0.08
0.10.120.140.16
0.18
0.2
-10-505
10t/s
x (t )
(a) 信号加噪声波形
050100150200
250300350400450500
0.5
1
(b) 信号加噪声的频谱f/Hz
幅度
Figure1. 具有加性噪声的信号x(t)及其频谱如图
利用blackman 窗函数进行设计的低通滤波器,其损耗函数和经滤波后输出信号和输出频谱如下图:
0.2
0.4
0.6
0.8
1 1.2
1.4
1.6
1.8
2
-150
-100-500损耗函数图
ω/π
-A (f )/d
B
0.1
0.2
0.3
0.4
0.50.60.70.80.91
-101
0.2
0.4
0.6
0.8
1 1.2
1.4
1.6
1.8
2
0200
400yt 的FFT
ω/π
y 2k
Figure2.经 Blackman 窗函数法IIR 滤波器之后的信号
利用等波纹法进行设计的低通滤波器,其损耗函数和经滤波后输出信号和输出频谱如下图:
0.2
0.4
0.6
0.8
1 1.2
1.4
1.6
1.8
2
-500
损耗函数图
ω/π
-A (f )/d B
0.1
0.2
0.3
0.4
0.50.6
0.7
0.8
0.9
1
-10
10
0.2
0.4
0.6
0.8
1 1.2
1.4
1.6
1.8
2
0200400
yt 的FFT
ω/π
y 2k
Figu
re3.经等波纹法IIR 滤波器之后的信号
由figure2和3可知,经过低通数字滤波器之后,高频噪声被滤除了,只剩下两个所需的信号频率。
损耗函数的特性都达到了要求。
两种方法设计的滤波器都能有效地从噪声
中提取信号,但等波纹最佳逼近法设计的滤波器阶数低得多,当然滤波实现的运算量以及时延也小得多,从图Figure3可以直观地看出时延差别。
窗函数法实现的滤波器比用等波纹逼近法实现的滤波器阶数高。
但是窗函数法的截止衰减比邓博文更大,滤波效果更好。
4. DSP 实现IIR 滤波效果图 当输入信号为24,...,06
)
1.0cos()25
sin(
)(=++
=n n n x x πππ
时,经窗函数法
设计的IIR 滤波器之后的输出信号如下图所示;
Figure4.原始信号和经DSP 之后的信号
5. 思考题
(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤.
① 根据阻带衰减和过渡带的指标要求,选择窗函数的类型,并估计窗函数的长度N 。
② 构造希望逼近的频率响应函数。
③ 计算h(n),然后再加窗。
(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。
答:希望逼近的理想带通滤波器的截止频率cl cu ωω和分别为:
cl sl pl cu su pu ()/2, ()/2ωωωωωω=+=+
(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 答:①用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;
② 几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。
所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕。
如本实验所选的blackman 窗函数,其阻带最小衰减为74dB,而指标仅为60dB 。
③ 用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等波纹特性,且通带最大衰减和阻带最小衰减可以分别控制,所以其指标均匀分布,没有资源浪费,所以期阶数低得多。