【解析】湖北省鄂州市2018-2019学年高二下学期期末考试数学(理)试题
- 格式:pdf
- 大小:32.49 KB
- 文档页数:2
湖北省鄂州市高二下学期数学期末考试试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知()A . 1B . ﹣1C . 3D .2. (2分)设是虚数单位,如果复数的实部与虚部互为相反数,那么实数的值为()A .B .C . 3D .3. (2分)用8个数字1,1,2,2,3,3,4,4可以组成不同的四位数个数是()A . 168B . 180C . 204D . 4564. (2分) (2016高二下·清流期中) 已知圆上有均匀分布的8个点,从中任取三个,能够成锐角三角形的个数为()A . 8B . 24C . 36D . 125. (2分) (2017高二下·中山期末) 已知X的分布列为X﹣101P设y=2x+3,则E(Y)的值为()A .B . 4C . ﹣1D . 16. (2分)(2017·荆州模拟) 设随机变量η服从正态分布N(1,σ2),若P(η<﹣1)=0.2,则函数没有极值点的概率是()A . 0.2B . 0.3C . 0.7D . 0.87. (2分)求由抛物线与直线所围成的曲边梯形的面积时,将区间[ 等分成个小区间,则第个区间为()A .B .C .D .8. (2分)有4名优秀的大学毕业生被某公司录用,该公司共有5个部门,由公司人事部分安排他们去其中任意3各部门上班,每个部门至少安排一人,则不同的安排方法为()A . 120B . 240C . 360D . 4809. (2分)在图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是()A .B .C .D .10. (2分) (2017高二下·宜春期中) 已知函数y=f(x)的导函数y=f′(x)的图象如图,则()A . 函数f(x)有1个极大值点,1个极小值点B . 函数f(x)有2个极大值点,2个极小值点C . 函数f(x)有3个极大值点,1个极小值点D . 函数f(x)有1个极大值点,3个极小值点11. (2分)先阅读下面的文字:“求的值时,采用了如下方法:令 =x,则有x= ,两边同时平方,得1+x=x2 ,解得x= (负值已舍去)”可用类比的方法,求得1+的值等于()A .B .C .D .12. (2分) (2017高二下·临淄期末) 设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是()A . f(a)<eaf(0)B . f(a)>eaf(0)C .D .二、填空题 (共4题;共4分)13. (1分)已知 x,y 是实数,且(其中i是虚数单位),则 =________.14. (1分) (2018高二下·黑龙江期中) ,则________.15. (1分)一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是________.16. (1分)在计算1×2+2×3+3×4+…+n(n+1)时,某同学想到了如下一种方法:改写第k项:k(k+1)=[k(k1)(k+2)﹣(k﹣1)k(k+1)],再相加求和得1×2+2×3+3×4…+n(n+1)= [n(n+1)(n+2)],类比上述方法请计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为________.三、解答题 (共6题;共55分)17. (5分) f(x)=﹣sinx﹣cosx,其中f′(x)为f(x)的导函数,且f′(B)=,B∈(0,).(Ⅰ)求B;(Ⅱ)求sin(B+10°)[1﹣tan(B﹣10°)]的值.18. (15分) (2016高二下·咸阳期末) 从4名男生,3名女生中选出三名代表,(1)不同的选法共有多少种?(2)至少有一名女生的不同的选法共有多少种?(3)代表中男、女生都有的不同的选法共有多少种?19. (10分)已知数列(n∈N*).(1)证明:当n≥2,n∈N*时,;(2)若a>1,对于任意n≥2,不等式恒成立,求x的取值范围.20. (10分)(2017·邯郸模拟) “开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手大多在以下两个年龄段:21~30,31~40(单位:岁),统计这两个年龄段选手答对歌曲名称与否的人数如图所示.(参考公式:K2= ,其中n=a+b+c+d)(1)写出2×2列联表,并判断是否有90%的把握认为答对歌曲名称与否和年龄有关,说明你的理由.(下面的临界值表供参考)(2)在统计过的参考选手中按年龄段分层选取9名选手,并抽取3名幸运选手,求3名幸运选手中在21~30岁年龄段的人数的分布列和数学期望.21. (10分)已知.(1)若a=1时,求曲线在点x=1处的切线方程;(2)若,求函数的单调区间.22. (5分)(2017·黑龙江模拟) 某厂每日生产一种大型产品2件,每件产品的投入成本为1000元.产品质量为一等品的概率为0.5,二等品的概率为0.4,每件一等品的出厂价为5000元,每件二等品的出厂价为4000元,若产品质量不能达到一等品或二等品,除成本不能收回外,每生产1件产品还会带来1000元的损失.(Ⅰ)求在连续生产的3天中,恰有两天生产的2件产品都为一等品的概率;(Ⅱ)已知该厂某日生产的这种大型产品2件中有1件为一等品,求另1件也为一等品的概率;(Ⅲ)求该厂每日生产这种产品所获利润ξ(元)的分布列和期望.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、第11 页共11 页。
2018年7月襄阳市普通高中调研统一考试高二数学(理工类)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z 满足1iz i i++=(i 为虚数单位),则z = A. 12i -+ B. 12i -- C. 12i + D.12i -2. .双曲线()222104x y a a -=>的一个焦点与抛物线2y =的焦点重合,则双曲线的渐近线方程是 A. 14y x =±B. 12y x =± C. 2y x =± D.4y x =± 3. 一动圆与定圆()22:21F x y ++=相外切,且与直线:1l x =相切,则动圆圆心的轨迹方程为A. 24y x =B. 22y x =C. 24y x =-D. 28y x =- 4.下列说法错误的是A. 命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”B.若p q ∧为假命题,则,p q 均为假命题C.“1x =”是“2320x x -+=”的充分不必要条件D.若命题:,p x R ∃∈使得210x x ++<,则:,p x R ⌝∀∈都有210x x ++≥5. 直线l 与椭圆22:184x y C +=相交于A,B 两点,若直线l 的方程为210x y -+=,则线段AB 的中点坐标是 A. 11,32⎛⎫--⎪⎝⎭ B. 11,33⎛⎫- ⎪⎝⎭ C. ()1,1 D. 11,33⎛⎫- ⎪⎝⎭6.广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表:(单位:万元)由上表可得回归直线方程为ˆˆ10.2yx a =+,据此模型,预测广告费为10万元时的销售额约为A. 111.2B. 108.8C. 101.2D.118.27.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:参照上表,得到的结论是A. 有99%的把握认为“爱好该项运动与性别有关”B.有99%的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”8. 双曲线()2222:10,0x y C a b a b-=>>的离心率为2,则双曲线C 的焦距等于A. 9. 已知函数()sin f x x x =-,则不等式()()1220f x f x ++->的解集是 A. 1,3⎛⎫-∞- ⎪⎝⎭ B. 1,3⎛⎫-+∞ ⎪⎝⎭C. ()3,+∞D. (),3-∞10.抛物线2:12C y x =的准线与轴交于点P ,A 是抛物线C 上的一点,F 是抛物线C 的焦点,若AP =,则点A 的横坐标为A. 4B. 3C. 11.已知()2168ln 2f x x x x =-+在[],1m m +上不是单调函数,则实数m 的取值范围是 A. ()1,2 B. ()3,4 C. (][)1,23,4 D. ()()1,23,4 12. 关于函数()2ln f x x x=+,下列说法错误的是 A. 2x =是()f x 的最小值点B. 函数()y f x x =-有且只有1个零点C. 存在正实数k ,使得()f x kx >恒成立D.对任意两个不相等的正实数12,x x ,若()()12f x f x =,则124x x +> 二、填空题:本大题共4小题,每小题5分,共20分.13.曲线3ln 2y x x =++在点P 处的切线方程为410x y --=,则点P 的坐标为 .14.若椭圆22164x y +=的两个焦点为12,F F ,P 是椭圆上的一点,若12PF PF ⊥,则12PF F ∆的面积为 .15.已知函数()32693,0ln ,0x x x x f x a x x ⎧+++≤=⎨>⎩在[]2,2-上的最小值为-1,则实数a 的取值范围为 .16. 我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不能割,则与圆合体而无所失矣”它体现了一种无限与有限转化过程.比如在表达式1111x +++中“ ”即代表无限次重复,但原式却是个定值,它可以通过方程()110x x x +=>求得x == . 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分) 已知()3222.f x x ax a x =+-+(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调区间.18.(本题满分12分)已知命题()21:,2102p x R x m x ∃∈+-+≤,命题:q “曲线222:128x y C m m +=+表示焦点在x 轴上的椭圆”,命题:s “曲线22:11x y C m t m t +=---表示双曲线”(1)若“p q ∧”是真命题,求m 的取值范围; (2)若q 是s 的必要不充分条件,求t 的取值范围.19.(本题满分12分)如图,在长方体1111ABCD A BC D -中,,AC BD 相交于点O ,2AB BC ==异面直线DB 与1D C 所(1)求此长方体的体积;(2)求截面1D AC 和底面ABCD 所成锐二面角的余弦值;(3)在棱1BB 上找一点P ,使得DP ⊥平面1D AC .20.(本题满分12分)已知ABC ∆的两个顶点,A B 的坐标分别为()()0,1,0,1-,且边,AC BC 所在直线的斜率之积等于()0.m m ≠(1)求顶点C 的轨迹E 的方程,并判断轨迹E 的曲线类型; (2)当12m =-时,过点()1,0F 的直线l 交曲线E 于M,N 两点,设点N 关于x 轴的对称点为Q (,M Q 不重合),求证:直线MQ 与x 轴的交点为定点,并求出该定点的坐标.21.(本题满分12分)记{}max ,m n 表示,m n 中的最大值,如{max =(){}()22221max 1,2ln ,max ln ,24.2f x x x g x x x x a x a a ⎧⎫⎛⎫=-=+-+-++⎨⎬ ⎪⎝⎭⎩⎭(1)设()()()21312h x f x x x ⎛⎫=--- ⎪⎝⎭,求函数()h x 在(]0,1上的零点个数; (2)试探究是否存在实数()2,a ∈-+∞,使得()342g x x a <+对()2,x a ∈++∞恒成立?若存在,求a 的取值范围;若不存在,说明理由.22.(本题满分10分)已知双曲线22:14x C y -=,P 是C 上的任意一点. (1)求证:点P 到C 的两条渐近线的距离之积是一个常数; (2)设点A 的坐标为()5,0,求PA 的最小值.2017年7月襄阳市普通高中调研统一测试高二数学(理工类)参考答案及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分。
2019-2020学年湖北省鄂州市2018级高二上学期期末考试数学试卷★祝考试顺利★(解析版)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线20200x -=的倾斜角为( )A. 0B. 3πC. 2πD. 不存在 【答案】C【解析】垂直于y 轴的直线倾斜角为2π. 【详解】20200x -=表示一条垂直于y 轴的直线,故倾斜角为2π. 故选:C 2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A. 101B. 808C. 1212D. 2012 【答案】B试题分析:由分层抽样的定义可得,解得,答案选B . 3.圆22240x y x y ++-=的半径为( )A. 335 D. 5【答案】C试题分析:22240x y x y ++-=变形为()()22212555x y r r ++-=∴=∴=考点:圆的方程4.已知直线12:220,:410l x y l ax y +-=++=, 若12l l ⊥, 则a 的值为( )A. 2-B. 2C. 12-D. 8【答案】A【解析】 两直线垂直,斜率相乘等于1- .【详解】由题意得,直线1l 的斜率是2-,直线2l 的斜率是4a -, 因为直线12l l ⊥,所以()214a ⎛⎫-⨯-=- ⎪⎝⎭,解得2a =-. 故选A.5.椭圆2214x y +=的短轴长是( ) A. 4B. 2C. 1D. 12【答案】B【解析】求出b ,短轴长为2b . 【详解】椭圆2214x y +=的短轴长为2b =2. 故选:B6.已知集合{}1,1A =-,在平面直角坐标系xOy 中,点集{(,)|,}K x y x A y A =∈∈,在K中随机取出两个不同的元素,则这两个元素中恰有一个元素在圆22(2)(2)10x y -++=的内部的概率为( ) A. 14 B. 12 C. 34 D. 13【答案】B【解析】列举法表示出集合K ,判断集合K 中在圆内部的点,从而利用古典概型计算公式求解即可.【详解】{(1,1),(1,1),(1,1),(1,1)}K =----,点(1,1)-在圆22(2)(2)10x y -++=内部在K中随机取出两个不同的元素共有6种可能,。
湖北省鄂州市数学高二下学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知直线l的斜率为2,且过点A(-1,-2),B(3,m),则m的值为()A . 6B . 10C . 2D . 02. (2分)设函数f(x)满足f(x+2π)=f(x),f(0)=0,则f(4π)=()A . 0B . πC . 2πD . 4π3. (2分)(2019·河南模拟) 命题“ ,5-3x0≥0”的否定是()A . 不存在x0∈R,5-3x0<0B . ,5-3x0<0C . ,5-3x≤0D . ,5-3x<04. (2分)分配4名水暖工去3个不同的居民家里检查暖气管道,要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有()A . 种B . A33A31种C . C41C31种D . C42A33种5. (2分)下列选项中,两个变量具有相关关系的是()A . 正方形的面积与周长B . 匀速行驶车辆的行驶路程与时间C . 人的身高与体重D . 人的身高与视力6. (2分) (2017高二下·临泉期末) (x4tanx+x3+1)dx的值为()A . 3B . 2C .D . 07. (2分) (2019高三上·双流期中) 已知圆 ,在圆中任取一点 ,则点的横坐标小于的概率为()A .B .C .D . 以上都不对8. (2分)已知为不重合的两个平面,直线那么“”是“”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件9. (2分) (2016高一下·普宁期中) 若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A . (﹣∞,+∞)B . (﹣2,+∞)C . (0,+∞)D . (﹣1,+∞)10. (2分) (2018高二下·中山月考) 某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖.在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队的获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学中只有两位预测结果是对的,则获得一等奖的团队是()A . 甲B . 乙C . 丙D . 丁11. (2分)甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数的期望为()A .B .C .D .12. (2分)(2018·山东模拟) 设直线与椭圆交于A、B两点,过A、B两点的圆与E交于另两点C、D,则直线CD的斜率为()A . -B . -2C .D . -4二、填空题 (共4题;共4分)13. (1分) (2019高二上·扶余期中) 若复数为纯虚数,则 ________.14. (1分)给出下列演绎推理:“自然数是整数,________ ,所以,2是整数”,如果这个推理是正确的,则其中横线部分应填写________15. (1分) (2016高二下·郑州期末) 把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.16. (1分) (2017高二下·如皋期末) 已知函数f(x)= ax3﹣x2+x在区间(0,2)上是单调增函数,则实数a的取值范围为________.三、解答题 (共7题;共70分)17. (10分)求的展开式中的常数项.18. (10分)(2017·江西模拟) 在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角,,平面ABCD⊥平面ABFE.(1)求证:DB⊥EC;(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.19. (10分)(2018·郑州模拟) 为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如下:(1)若甲单位数据的平均数是122,求;(2)现从如图的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为,,令,求的分布列和期望.20. (10分)(2018·郑州模拟) 已知椭圆的左、右焦点分别为,以为直径的圆与直线相切.(1)求椭圆的离心率;(2)如图,过作直线与椭圆分别交于两点,若的周长为,求的最大值.21. (10分)(2016·新课标Ⅱ卷理) 已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.22. (10分)(2016·海南模拟) (选修4﹣4:坐标系与参数方程)已知曲线C的参数方程是(φ为参数,a>0),直线l的参数方程是(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.(1)求曲线C普通方程;(2)若点在曲线C上,求的值.23. (10分) (2019高二下·上海月考) 已知椭圆的左、右两个顶点分别为、,曲线是以、两点为顶点,焦距为的双曲线,设点在第一象限且在曲线上,直线与椭圆相交于另一点 .(1)求曲线的方程;(2)设、两点的横坐标分别为、,求证为一定值;(3)设△ 与△ (其中为坐标原点)的面积分别为与,且,求的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、18-1、18-2、19-1、19-2、20-1、21-2、22-1、22-2、23-1、23-2、23-3、。
湖北鄂州18-19高二下年末考试-理数高二数学〔理科〕本卷须知1、答卷前,考生务必将自己的姓名、考号、学校写在答题卡上。
2、选择题的每题选出答案后,把答案代码填在答题卡前面的选择题答题表内,不能答在试卷上。
3、填空题和解答题应在指定的地方作答,否那么答案无效。
【一】选择题:本大题10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1、复数1312i z i-+=+,那么z 的虚部为 A 、-iB 、iC 、-1D 、12、不等式21x x-≤的解集为 A 、1[,1]3B 、1(,1)3C 、1(,)(1,)3-∞⋃+∞D 、∅3、盒中装有6件产品,其中4件一等品、2件二等品,从中不放回地取两次,每次取1件,第二次取的为一等品,那么第一次取的是二等品的概率是A 、35B 、310C 、12D 、254、随机变量x ~2(3,)x N σ,那么(3)P x <A 、15B 、14C 、13D 、125、x ~1(6,)3xB ,那么(31)D x +=A 、13B 、12C 、5D 、46、2cos 2y x x =的导数为A 、22cos22sin 2y x x x x '=-B 、22cos22sin 2y x x x x '=+C 、22cos2sin 2y x x x x'=-D 、4sin 2y x x'=-7、()ln 1f x x x =+,假设0()2f x '=,那么()f x 在点00(,)x y 处的切线方程为A 、210x y e --+=B 、210x y e +-+=C 、210x y e ---=D 、210x y e +--=8、设a R ∈,假设函数x y e ax =+,x R ∈有大于零的极值点,那么A 、1a <-B 、10a -<<C 、a e <-D 、0e a -<<9、积分2cos sin x x dx π-=⎰A 、B 、2C 、2D 、210、()f x 为R 上的可导函数,且0)(')(2>+x xf x f ,那么A 、()0f x >B 、()0f x ≥C 、()0f x <D 、()0f x ≤【二】填空题〔本大题共5小题,每题5分,共25分,请将答案填在答题卡中横线上〕 11、假设事件A 与B 相互独立,那么事件A 、B 、A 、B 中相互独立的共有________对、 12那么K =____________、 13、函数y =______________、14、观看以下等式 12=1 12-22=-3 12-22+32=612-22+32-42=-10由以上等式推测到一个一般的结论,关于n N *∈2222121234(1)n n +-+-+-=________________、15、假设01,a b c R ≤≤∈、且1+a+b-c +2+++2+1++2+a b c a b c M≥恒成立,那么常数M 的最大值为_____________、【三】解答题(本大题共6小题,共75分、解答须写出文字说明、证明过程和演算步骤) 16、〔本小题总分值12分〕a 、b 、c 均为正数,且b 2≥ac ,2x =a +b ,2y =b +C 、求证:a x +c y≤2、17、〔本小题总分值12分〕某品牌汽车的4S 店,对最近100位采纳分期付款的购车者进行了统计,统计结果如下表示:分3期付款的频率为0.2且4S 店经销一辆该品牌的汽车,顾客分期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5分3期付款”的概率P (A );⑵求η的分布列及数学期望E (η)、 18、〔本小题总分值12分〕四凌锥P —ABCD 的底面ABCD 为菱形,∠ABC =60,PA =AD =2,且PA ⊥面ABCD 、。
湖北省鄂州市2019-2020学年数学高二第二学期期末学业水平测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.已知32,43,23a b c ===,则,,a b c 的大小关系为( ) A .a b c << B .b c a <<C .b a c <<D .c a b <<【答案】A 【解析】分析:由32a =,43b =,23c =,可得34log 2,log 3a b ==,2log 3c =,则01,01,1a b c <<<,利用做差法结合基本不等式可得结果.详解:34log 2,log 3a b ==,2log 3c =,则01,01,1a b c <<<222lg 2lg 4lg 3lg 2lg3lg 2lg 4lg 320lg3lg 4lg3lg 4lg3lg 4a b +⎛⎫- ⎪⋅-⎝⎭-=-=≤=<⋅⋅, 即a b < , 综上a b c <<,故选A.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用. 2.设{}n a 是等差数列.下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +< C .若120a a <<,则2a > D .若10a <,则()()21230a a a a -->【答案】C 【解析】 【分析】 【详解】先分析四个答案,A 举一反例1232,1,4a a a ==-=-,120a a +>而230a a +<,A 错误,B 举同样反例1232,1,4a a a ==-=-,130a a +<,而120a a +>,B 错误,D 选项,2132,,a a d a a d -=-=-22132()()0,a a a a d ∴--=-≤故D 错,下面针对C 进行研究,{}n a 是等差数列,若120a a <<,则10,a >设公差为d ,则0d >,数列各项均为正,由于22213111()(2)a a a a d a a d -=+-+22221111220a a d d a a d d =++--=>,则故选C.考点:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重 点是对知识本质的考查.3.已知函数()()()2121x f x e a x a x =---+在()1,2上单调,则实数a 的取值范围为()A .211,,24e e ⎛⎫--⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U B .211,,24e e ⎡⎫--⎛⎤-∞-+∞⎪ ⎢⎥⎝⎦⎣⎭U C .211,,24e e ⎛⎫--⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭U D .211,,24e e ⎡⎫--⎛⎤-∞+∞⎪ ⎢⎥⎝⎦⎣⎭U 【答案】D 【解析】 【分析】求得导数()21xf x e ax '=--,根据()f x 在()1,2上单调,得出()0f x '≥或()0f x '≤在()1,2上恒成立,分离参数构造新函数,利用导数求得新函数的单调性与最值,即可求解。
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列中,,则()A. 20B. 30C. 40D. 50【答案】A【解析】等差数列中,,,.故选:A.2.已知中,,则满足此条件的三角形的个数是 ( )A. 0B. 1C. 2D. 无数个【答案】C【解析】由正弦定理得即即,所以符合条件的A有两个,故三角形有2个故选C点睛:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,会根据三角函数值求对应的角.3.函数,如果,且,则()A. B. C. D. 1【答案】C【解析】根据图象可知,,所以,所以,所以,因为图象经过,所以代入解析式可得,解得,所以。
因为,所以这个区间内函数的对称轴为,又,所以,所以。
故本题正确答案为C。
点睛:本题主要考查的正弦型三角函数的图像和性质,根据三角函数的“五个关键点”可以从图像中得到,,求得函数的解析式,由,可知即得结果.4.数列中,,(),那么()A. 1B. -2C. 3D. -3【答案】A【解析】∵,∴,即,∴,∴,∴是以6为周期的周期数列.∵2019=336×6+3,∴.故选B.5.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A. ,的最小值为B. ,的最小值为C. ,的最小值为D. ,的最小值为【答案】A【解析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.6.在边长为1的正中,,是边的两个三等分点(靠近于点),等于()A. B. C. D.【答案】C【解析】试题分析:如图,,是边的两个三等分点,故选C.考点:平面向量数量积的运算7.若等差数列的前项和满足,,则()A. B. 0 C. 1 D. 3【答案】B【解析】根据等差数列的性质仍成等差数列,则,则,,选B.8.如图,一货轮航行到处,测得灯塔在货轮的北偏东,与灯塔相距,随后货轮按北偏西的方向航行后,又测得灯塔在货轮的东北方向,则货轮的速度为()A. B.C. D.【答案】B【解析】由题意可知:,与正东方向的夹角为,与正东方向的夹角为,,中利用正弦定理可得货轮的速度故选9.若均为单位向量,且,则的最小值为()A. B. 1 C. D.【答案】A【解析】则当与同向时最大,最小,此时=,所以=-1,所以的最小值为,故选A点睛:本题考查平面向量数量积的性质及其运算律,考查向量模的求解,考查学生分析问题解决问题的能力,求出,表示出,由表达式可判断当与同向时,最小.10.已知向量,满足,,则向量在向量方向上的投影为()A. 0B. 1C. 2D.【答案】D【解析】试题分析:在方向上的投影为,故选D.考点:向量的投影.11.如图,在中,.是的外心,于,于,于,则等于()A. B.C. D.【答案】D【解析】由正弦定理有 ,三角形外接圆半径,所以,在中, ,同理,所以 ,选D.12.若函数在上单调递增,则实数的取值范围为()A. B. C. D.【答案】D【解析】因为,由题设可得在上恒成立,令,则,又,且,故,所以问题转化为不等式在上恒成立,即不等式在上恒成立。
湖北省鄂州市数学高二下学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高二下·湛江期中) 在极坐系中点与圆的圆心之间的距离为()A . 2B .C .D .2. (2分) (2020高二下·长春期中) 已知随机变量服从二项分布,则()A .B .C .D .3. (2分)(2017·长春模拟) 据统计,某城市的火车站春运期间日接送旅客人数X(单位:万)服从正态分布X~N(6,0.82),则日接送人数在6万到6.8万之间的概率为()(P(|X﹣μ|<σ)=0.6826,P(|X﹣μ|<2σ)=0.9544,P(|X﹣μ|<3σ)=0.9974)A . 0.6826B . 0.9544C . 0.9974D . 0.34134. (2分) (2020高一上·黄陵期末) 直线与直线的位置关系是()A . 平行B . 垂直C . 相交但不垂直D . 不能确定5. (2分)(2020·桐乡模拟) 已知随机变量X的分布列如下:若随机变量Y满足,则Y的方差()A .B .C .D .6. (2分)用反证法证明命题:若整系数一元二次方程有有理数根,那么a,b,c中至少有一个是偶数,下列假设中正确的是()A . 假设a,b,c都是偶数B . 假设a,b,c都不是偶数C . 假设a,b,c至多有一个偶数D . 假设a,b,c至多有两个偶数7. (2分)设(1+x)8=a0+a1x+…+a8x8 ,则a0 , a1 ,…,a8中奇数的个数为()A . 2B . 3C . 4D . 58. (2分) (2016高一下·滁州期中) 已知a、b∈R,且ab≠0,则下列结论恒成立的是()A . a+b≥2B . + ≥2C . | + |≥2D . a2+b2>2ab9. (2分)某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有()A . 种B . 种C . 种D . 种10. (2分)(2012·四川理) (1+x)7的展开式中x2的系数是()A . 42B . 35C . 28D . 2111. (2分)下列结论正确的是()A . sinx<x,x∈(﹣π,π)B . x﹣x2>0,x∈(0,2)C . ex>1+x,x∈RD . lnx≤x﹣1,x∈(0,+∞)12. (2分) (2020高二下·武汉期中) 将三枚质地均匀的骰子各掷一次,设事件“三个点数之和等于15”,b=“至少出现一个5点”,则概率等于()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2018·淮北模拟) 已知随机变量的分布列如下表,又随机变量,则的均值是________.14. (1分)设直线参数方程为(t为参数),则它的普通方程为________.15. (1分) (2018高二下·滦南期末) 平面直角坐标系中,若点经过伸缩变换后的点Q ,则极坐标系中,极坐标与Q的直角坐标相同的点到极轴所在直线的距离等于________.16. (1分) (2018高二下·滦南期末) 设,则与的大小关系是________.三、解答题 (共6题;共60分)17. (10分) (2018高二下·枣庄期末) 为了增强环保意识,某社团从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:优秀非优秀总计男生402060女生203050总计6050110附: =p(K2≥k)0.5000.4000.1000.0100.001K0.4550.7082.7066.63510.828(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;(2)为参加市举办的环保知识竞赛,学校举办预选赛,现在环保测试优秀的同学中选3人参加预选赛,已知在环保测试中优秀的同学通过预选赛的概率为,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.18. (10分)(2017·上饶模拟) 某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为1,2,3,4,5的五批疫苗,供全市所辖的A,B,C三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;(2)记A,B,C三个区选择的疫苗批号的中位数为X,求 X的分布列及期望.19. (15分)(2020·东海模拟) 棋盘上标有第0、1、2、、100站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第99站或第100站时,游戏结束.设棋子位于第n站的概率为 .(1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和X的分布列与数学期望;(2)证明:;(3)求、的值.20. (10分) (2018高三上·长春期中) 已知直线l在直角坐标系xOy中的参数方程为(t 为参数,α为倾斜角),曲线C的极坐标方程为ρ=4cos θ(其中坐标原点O为极点,x轴非负半轴为极轴,取相同单位长度).(1)写出曲线C的直角坐标方程;(2)若曲线C与直线l相交于不同的两点M,N,设P(4,2),求|PM|+|PN|的取值范围.21. (5分) (2018高三上·邹城期中) 设分别为的三个内角的对边,且.(Ⅰ)求内角的大小;(Ⅱ)若,试求面积的最大值.22. (10分)(2018·孝义模拟) 已知函数 .(1)解不等式;(2)若关于的不等式只有一个正整数解,求实数的取值范围.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:。
湖北省鄂州市2018-2019学年高二数学下学期期末考试试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、班级、考场、座位号填写清楚。
2.选择题的每小题选出答案后,把答案代码填在答题纸前面的选择题答题表内,不能答在试卷上。
3.填空题和解答题应在指定的地方作答,否则答案无效。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡指定区域内作答.1.为了了解全校1740名学生的身高情况,从中抽取140名学生进行测量,下列说法正确的是A. 总体是1740B. 个体是每一个学生C. 样本是140名学生D. 样本容量是140【答案】D【解析】【分析】在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象是全校学生的身高,从而找出总体、个体,接着根据被收录数据的这一部分对象找出样本,最后根据样本确定样本容量。
【详解】解:本题考查的对象是1740名学生的身高情况,故总体是1740名学生的身高情况;个体是每个学生的身高情况;样本是140名学生的身高情况;故样本容量是140.所以选D。
【点睛】本题主要考查了总体、个体、样本与样本容量四个比较容易混淆的概念。
2.已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是A. 63、64、66B. 65、65、67C. 65、64、66D. 64、65、64【答案】B 【解析】 【分析】①在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;②中位数是所有小长方形的面积和相等的分界线;③平均数是各小长方形底边中点的横坐标与对应频率的积的和。
【详解】解:由频率直方图可知,众数=60+70=652; 由100.03+50.04=0.5⨯⨯,所以面积相等的分界线为65,即中位数为65; 平均数=550.3+650.4+750.15+850.1+950.05=67⨯⨯⨯⨯⨯。
故选B 。
【点睛】本题主要考查频率直方图的众数、中位数、平均数,需理解并牢记公式。