人教版初中数学七年级上册1.2有理数教案(2)
- 格式:doc
- 大小:96.50 KB
- 文档页数:3
课堂教学设计1、复习、导入大于0 的数叫正数,小于0的数叫负数0既不是正数,也不是负数正数的符号用+ 表示,书写时可以省略负数的符号用-表示,书写时不能省略(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。
汽车向北行驶75km,记做______km(或____km),汽车向南行驶100km,记做________km;(2)如果向银行存入50元记为50元,那么-30.50元表示______________________;复习巩固话题迅速将学生的注意力吸引到课堂上来。
使学生生认知冲突,渴艺望了解其中的奥秘从而调动了学生学习的积极性。
2、精讲新课在小学阶段和上一节中,我们认识了很多数。
回想一下,到目前为止,我们认识了哪些数? 你能举几个例子吗?写在黑板上。
观察黑板上的这些数,能否将所写的数按如下类型进行归类呢?有限小数:0.5 0.25 0.125 1.3 -0.5进一步地,正整数可以写成正分数的形式,可以写成分数形式的数称为有理数(rational number)有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数辨析学生自己尝试分类时,可能会很大略,教师赐予引导和鼓励,划分数的种类要从文字所表示的意义上去引导,这样学生易于理角军有限小数或无限循环小数都可以化成分数,为下-问题做好铺垫,通过将三者进行比较,归纳得出有理数是一个整数和-个非零整数的比的本质特征,让学生深入理解有理数的概念在多媒体上展示有理数的分类表,分分类的标准要引导学生去体会2、精讲新课小故事:有理数其实并不比别的数更“有道理”,事实上是一个翻译失误。
有理数(rational number)一词从西方传来,rational通常的意义是“理性的”,所以被误译为有理数。
但这个词实际上来源于古希腊,在古希腊语中是比率的意思。
所以意义也很明显,就是整数的“比”。
毕达哥拉斯学派认为,世界上一切对象都是由整数或整数之间的商组成,这就是“万物皆数”理论,也是人类对有理数最早的认识和总结。
1.2 有理数-第一课时(参考课时:2课时)1 教学目标1.1 知识与技能:①使学生理解整数、分数、有理数的概念。
并会判断一个给定的数是整数或分数或有理数。
②会初步对有理数进行分类,培养学生观察、比较和概括的思维能力。
③使学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数。
④能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。
1.2 过程与方法:①采用启发式教学,设法引导学生去归纳、整理。
②引导同学动笔画,学生自主探索去观察、比较、交流1.3 情感态度与价值观:①在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。
②向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
2 教学重点/难点/易考点2.1 教学重点①整数、分数、有理数的概念。
②数轴的三要素和有理数在数轴上的表示方法教学。
2.2 教学难点①给一个数能正确说出它属于的集合。
②有理数与数轴上点的对应关系。
3 专家建议“数学教学是数学活动的教学”。
我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。
也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。
这一节课,从数的分类,到数轴的介绍,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。
4 教学方法情境引入——引导同学进行数的分类——有理数概念介绍——有理数的分类——集合概念初步——数轴介绍及画法——数轴与有理数对应关系——课程小结——巩固练习5 教学用具6 教学过程6.1 情境引入2004年雅典奥运会中国队战绩辉煌。
在男子110米栏决赛中,中国选手刘翔以12.91秒的成绩夺得金牌,这个成绩打破了12.96的奥运会纪录,平了世界纪录,实现了中国男子田径金牌0的突破。
人教版七年级第一章第二节 有理数 教案【教学目标】知识技能1. 进一步加深对负数的认识。
2. 掌握有理数的概念,会对有理数按照一定的标准进行分类, 初步了解“集合”的含义。
过程方法体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。
情感态度通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。
【教学重点】正确理解有理数的概念。
【教学难点】正确理解分类的标准和按照定的标准进行分类。
【复习引入】1. 我们知道,所有的分数都可以写成两个整数的比.有限小数0.37可以写成两个整数的比吗?无限循环小数•3.0也可以写成两个整数的比吗?所有的有限小数都是分数吗? 所有的无限循环小数呢?结论:所有的有限小数和无限循环小数都是分数.想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?你能确定小数3.14159265…是不是分数吗?2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同? 对,还有负整数。
结论:正整数﹑零﹑负整数统称整数.3. 下列负数哪些是负分数?-12, 73-, -0.33, •-3.5. 【教学过程】 1. 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -3.88, 0, 3.14159265, 237-, ••32.0. 正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}分数集合:{ …}(注意:大括号内的省略号表示什么?)数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……2.归纳概念:整数:正整数、0、负整数统称为整数。
课题1.2.1 有理数的概念教学评一致性教学设计时间2024年9月1日节次第1课时来源人民教育出版社2024年版初中数学七年级上册7~8页课型新授课授课对象七年级()班设计曾正祥广南县莲城镇北宁中心学校课标分析一、《义务教育数学课程标准》与本节课有关的要求:①理解有理数的意义.二、课标分解1.学什么理解有理数的概念,包括正整数、零、负整数、正分数、负分数。
掌握有理数的两种分类方法:按定义分类和按性质符号分类。
2.学到什么程度能够准确识别给定的数属于哪一类有理数,并能清晰阐述理由。
能熟练运用有理数的分类方法,对一组数进行正确分类,不出差错。
能在实际问题情境中,判断所涉及的数是否为有理数,并进行合理分类。
3.怎么学1通过教师讲解、举例示范,初步理解有理数的概念和分类方法。
参与课堂练习、小组讨论,在实际操作中巩固有理数分类的知识。
完成课后作业,进一步强化对有理数分类的掌握和应用。
结合生活中的实际例子,如温度、海拔高度等所涉及的数字,加深对有理数分类的理解和运用。
教材分析教材地位和作用:有理数的分类是人教版初中数学七年级上册第一章第二节的第一课时内容。
它是在学生已经学习了正数、负数的基础上,对数的范围进行的进一步扩充和分类。
这部分内容不仅是后续学习有理数运算的重要基础,也有助于学生建立起对数的系统认识,培养学生的分类思想和概括能力。
教材内容组织:教材首先通过一些实际例子,如正整数、负整数、正分数、负分的模型,将数的范围扩展到有理数。
然后,详细阐述了有理数的两种常见分类方式:1. 按正负性分类,可分为正有理数、零和负有理数。
其中正有理数包括正整数和正分数;负有理数包括负整数和负分数。
2. 按定义分类,分为整数和分数,而整数又包含正整数、零和负整数;分数包含正分数和负分数。
2学情分析执教这节课之前,对全班()名学生进行前测1. 下列各数中,哪些是整数?哪些是分数?哪些是正数?哪些是负数?- 5,-3,0,,-1.5,20%,-100。
人教版七年级数学上册:1.2.1《有理数》说课稿一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,本节课的内容主要包括有理数的定义、分类及有理数的大小比较。
这部分内容是整个初中数学的基础,对于学生掌握数学知识体系,培养学生的逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,对于数学概念和运算规律有一定的理解。
但学生在学习有理数时,可能会对有理数的分类和大小比较感到困惑。
因此,在教学过程中,要注重引导学生理解和掌握有理数的概念,并通过实例让学生体会有理数在实际生活中的应用。
三. 说教学目标1.知识与技能目标:使学生理解有理数的定义,掌握有理数的分类及大小比较方法。
2.过程与方法目标:通过自主学习、合作探讨,培养学生分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 说教学重难点1.教学重点:有理数的定义、分类及大小比较。
2.教学难点:有理数的大小比较,特别是符号规律的掌握。
五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨、教师讲解相结合的方法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具。
六. 说教学过程1.导入新课:通过生活中的实际例子,引导学生思考和探讨有理数的概念。
2.自主学习:让学生自主阅读教材,理解有理数的定义和分类。
3.合作探讨:学生分组讨论,总结有理数大小比较的方法。
4.教师讲解:讲解有理数大小比较的符号规律,并通过实例进行分析。
5.练习巩固:布置练习题,让学生独立完成,检验学习效果。
6.课堂小结:总结本节课所学内容,强调重点和难点。
7.课后作业:布置课后作业,巩固所学知识。
七. 说板书设计板书设计如下:1.定义:分数和整数统称为有理数。
2.分类:正有理数、负有理数和零。
3.大小比较:a.正数 > 零 > 负数b.两个正数,绝对值大的较大;c.两个负数,绝对值大的较小。
人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。
“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。
【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。
【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。
【教法、学法设计】:分层教学,讲授、练习相结合。
【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。
2.1.2 有理数的减法第1课时有理数的减法教学目标课题 2.1.2 第1课时有理数的减法授课人素养目标1.经历用转化的数学思想探究有理数减法法则的过程,体会有理数减法与加法的关系,强化推理能力.2.理解并掌握有理数减法法则,增强运算能力.3.能利用有理数减法法则解决简单问题,增强应用意识教学重点体会有理数减法与加法的关系,理解并掌握有理数减法法则. 教学难点理解并掌握有理数减法法则.教学活动教学步骤师生活动活动一:知识回顾,导入新课【回顾导入】有理数加法法则是什么?我们小学学过正数的加、减法,如2+3= 5 ,5-3=2 ,5-2= 3 ,现在我们学习了有理数加法法则,引入了负数,知道(-2)+3= 1 ,联想加法与减法之间的关系,1-3=-2 ,1-(-2)= 3 .那么3-(-3)又该怎么计算呢?接下来我们就来学习有理数的减法. 【教学建议】学生口答,带学生回顾有理数加法法则与小学学过的加、减法,让学生明确减法是加法的逆运算,最后留下疑问.设计意图带学生回顾旧知识,为学习有理数的减法做铺垫,并留下疑问,引发学生思考,激发学习兴趣.活动二:问题引入,合作探究探究点有理数减法法则问题北京某一天的气温是-3~3 ℃,这一天的温差(最高气温减最低气温)是多少?应该怎么列式呢?这一天的温差列式为3-(-3).思考:1.要如何计算3-(-3)呢?减法是加法的逆运算,计算3-(-3),就是要求出一个数,使得它与-3相加得 3 .因为 6 与-3相加得3,所以这个数应该是6,即3-(-3)=6 .①另一方面,我们知道3+(+3)=6 .②由①②,得3-(-3)=3+(+3).③2.从③式能看出减-3相当于加哪个数吗?把3分别换成0,-1,-5,用上面的方法再试试看.从③式能看出减-3相当于加 3 .(1)因为0-(-3)=3 ,0+(+3)= 3 ,所以0-(-3)=0+(+3).(2)因为(-1)-(-3)=2 ,【教学建议】结合温度计,通过数格子的方式,可以直观地得到3 ℃比-3 ℃高 6 ℃.对于(-5)-(-3),也可以结合温度计,由-5 ℃在-3 ℃下方两个格子处,得到(-5)-(-3)=-2.设计意图通过实例(温差的计算)引出有理数的减法,再从减法是加法的逆运算出发,通过一些具体算式,以类比和分类的方式探究两个有理数的差,最后归纳出有理数减法法则,提高学生的推理、概括、运算能力.(-1)+(+3)= 2 , 所以(-1)-(-3)=(-1)+(+3).(3)因为(-5)-(-3)= -2 , (-5)+(+3)= -2 ,所以(-5)-(-3)=(-5)+(+3).由此,我们得到:减去一个负数,等于加这个负数的相反数 .3.计算下面几对式子看看.(1)因为9-8= 1 ,9+(-8)= 1 ; 所以9-8=9+(-8).(2)因为15-7= 8 ,15+(-7)= 8 , 所以15-7=15+(-7). 从中有什么发现?减去一个正数,等于加这个正数的相反数. 4.再计算下面几对式子看看.(1)因为4-0= 4 ,4+0= 4 ;所以4-0=4+ 0 . (2)因为(-2)-0=-2 ,(-2)+0=-2 , 所以(-2)-0=(-2)+ 0 .从中又有什么发现? 减去0等于加 0 .由以上探究可以发现,有理数的减法可以转化为加法来进行.归纳总结:有理数减法法则:减去一个数,等于加这个数的相反数.也可以表示成 a -b =a +(-b )注意:减法在转化为加法运算时有2个要素要发生变化:(1)减号变为加号; (2)减数变为它的相反数.显然,两个有理数相减,差是一个有理数. 例1 (教材P31例4)计算:(1)(-3)-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5)(-312)-514. 解:(1)(-3)-(-5)=(-3)+5=2; (2)0-7=0+(-7)=-7;(3)2-5=2+(-5)=-3;【教学建议】 带学生分情况探究有理数的减法,引导学生一步步归纳出不同情况下与加法的关系,最后总结出有理数减法法则.【教学建议】指定学生代表上台解答,其他同学在纸上作答,教师巡堂,酌情指出问题.让学生注意归纳有理数减法的运算规律,不要只简单机械地将减法化成加法,可引导学生总结:(1)0减去一个数,等于这个数的(4)7.2-(-4.8)=7.2+4.8=12;(5)(-312)-514=(-312)+(-514)=-834.思考:在小学,只有当a 大于或等于b 时(其中a ,b 是0或正数),我们才能计算a -b (如2-1,1-1).现在,当a 小于b 时,你能计算a -b (如1-2,(-1)-1)吗?一般地,在有理数范围内,较小的数减去较大的数,所得差的符号是什么?结合数轴和一些算式实例可以发现:较小的数减去较大的数,所得差的符号是负号.归纳总结:【对应训练】教材P32练习第1题.相反数;(2)小数减大数,等于大数减小数的差的相反数. 若用竖向的数轴理解减法,就是将减数看作运动起点,被减数看作运动终点,运动的方向和距离就是差的结果,借此可让学生理解小数减大数所得的差是负数,因为在数轴上,大数在小数上方,所以大数必须往下运动才能到达小数,也就是差一定是负数.活动三:知识升华,巩固提升 例2 全班学生分为五个组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分.游戏结束时,各组的分数如下:(1)第一名超出第四名多少分? (2)第五名比第四名少多少分?解:由上表可以看出,第一名得了350分,第四名得了-100分,第五名得了-400分.(1)350-(-100)=450. 答:第一名超出第四名450分. (2)(-100)-(-400)=300. 答:第五名比第四名少300分. 【对应训练】1.教材P32练习第2题.2.矿井下A ,B ,C 三处的高度分别是-32.4 m ,-139.8 m ,-91.3 m ,那么A 处比B 处高多少米?C 处比B 处高多少米?A 处比C 处高多少米?解:A 处比B 处高(-32.4)-(-139.8)=107.4【教学建议】提醒学生:在实际问题中,要注意“超出”“高、低”“多、少”等关键词,这往往表示需要用到减法.例2中先带学生回顾有理数比较大小的方法,将分数从大到小排序,得到对应的排名与分数,然后利用有理数减法法则进行计算得到结果.设计意图 将新知识应用到实际问题中,学以致用,加深学生对有理数减法意义的体会,提高运算能力与应用意识.(m );C 处比B 处高(-91.3)-(-139.8)=48.5(m ); A 处比C 处高(-32.4)-(-91.3)=58.9(m ). 活动四:随堂训练,课堂总结【随堂训练】 见《创优作业》“随堂小练”册子相应课时训练. 【课堂总结】 师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.有理数减法法则是什么?2.大数减小数得到的差是正数还是负数?小数减大数呢? 【知识结构】【作业布置】1.教材P 34习题2.1第3,4,6,10,11题. 2.《创优作业》主体本部分相应课时训练.板书设计2.1.2 有理数的减法 第1课时 有理数的减法1.有理数减法法则:减去一个数,等于加这个数的相反数,即a -b=a +(-b )2.两数大小与差的符号之间的关系:若a >b ,则a -b >0;若a <b ,则a -b <0;若a =b ,则a -b =03.有理数减法的实际应用教学反思先带学生回顾有理数加法,并铺垫加法与减法的关系,再通过对现实生活中温差的计算引出本节课的目标和重点.探究过程中通过计算各种算式,分类归纳后发现规律,得出减法向加法转化的方法,然后总结出有理数减法法则,有效提高了学生的推理能力、运算能力.后续进一步将新知识应用到实际问题中,加深学生对减法的理解,增强应用意识.解题大招 利用有理数减法法则进行计算有理数减法的运算步骤①把减号变为加号;②把减数变为它的相反数;③按照有理数加法法则及运算律进行运算一般性结论 (1)大数减小数,差为正数;(2)小数减大数,差为负数;(3)0减去一个数等于这个数的相反数注意 减法没有交换律,被减数与减数的位置不能交换.若交换被减数和减数的位置,则所得的差与原来的差互为相反数(1)12-21-9; (2)(3-9)-(21-3); (3)0-4-(-5)-(-6);(4)|(-114 )-(-213 )|-(-112 ); (5)(-32)-(-12)-5-(-15);(6)(-323 )-(-123 )-(-1.75)-(-234).解:(1)原式 =12+(-21)+(-9)=12+[(-21)+(-9)] =12+(-30) =-18;(2)原式 =(-6)-18=(-6)+(-18) =-24;(3)原式 =(-4)+5+6=(-4)+11 =7;(4)原式 =|(-114 )+213 |+112=(-114 )+213 +112=[(-114 )+112 ]+213=14 +213 =2712 ; (5)原式 =(-32)+12+(-5)+15=[(-32)+(-5)]+(12+15) =(-37)+27=-10;(6)原式 =(-323 )-(-123 )-(-134 )-(-234 )=(-323 )+123 +134 +234=[(-323 )+123 ]+(134 +234 )=(-2)+412=212 .培优点 利用分类讨论思想计算有理数的减法 例 已知有理数x ,y 满足|x |=5,|y |=6. (1)若x >0,y <0,则x -y 的值为 11 ;(2)若|x +y |=x +y ,则x -y 的值为 -1或-11 .解析:因为|x |=5,所以x =5或-5.因为|y |=6,所以y =6或-6. (1)当x >0,y <0时,x =5,y =-6,所以x -y =5-(-6)=11. (2)因为|x +y |=x +y ,所以x +y 是正数或0.只有当x=5或-5,y=6时x+y才是正数或0,所以分两种情况讨论:①当x=5,y=6时,x-y=5-6=-1;②当x=-5,y=6时,x-y=(-5)-6=-11.综上,x-y的值为-1或-11.。
1.2 有理数
第一课时
三维目标
一、知识与能力
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零.
二、过程与方法
经历对有理数进行分类的探索过程,初步感受分类讨论的思想.
三、情感态度与价值观
通过对有理数的学习,体会到数学与现实世界的紧密联系.
教学重难点及突破
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开.
教学准备
用电脑制作动画体现有理数的分类过程.
教学过程
四、课堂引入
1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?
2.举例说明现实中具有相反意义的量.
3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别.
5.数0表示的意义是什么?
二、自主探究
在学生讨论的基础上,引导学生自己进行有理数的分类,我们学过的数就可以分为以下几类:
正整数,如1,2,3,…;
零:0;
负整数,如-1,-2,-3,…;
正分数,如1
3
,
22
7
,4.5(即4
1
2
);
负分数,如-1
2
,-2
2
7
,-0.3(即-
3
10
),-
3
5
……
正整数、零和负整数统称整数,正分数、负分数统称分数,整数和分数统称有理数.
回答下列各题:
(1)0是不是整数?0是不是有理数?
(2)-5是不是整数?-5是不是有理数?
(3)-0.3是不是负分数?-0.3是不是有理数?
2.你能对以上各种数作出一张分类表吗(要求不重复不遗漏)?
让学生把自己作出的分类表进行分类,可以根据不同需要,用不同的分类标准,•但必须对讨论对象不重不漏地分类.把一些数放在一起,就组成一个数的集合,•简称数集.所有的有理数组成的数集叫做有理数集.类似的,•所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,如此等等.
五、题例精解
例把下列各数填入表示它所在的数集的圈子里:-18,22
7
,3.1416,0,•2001,•-
3
5
,•0.142857,
95%
六、随堂练习
一、判断
1.自然数是整数.() 2.有理数包括正数和负数.() 3.有理数只有正数和负数.() 4.零是自然数.() 5.正整数包括零和自然数.()6.正整数是自然数.() 7.任何分数都是有理数.() 8.没有最大的有理数.() 9.有最小的有理数.()
七、课堂小结:(提问式)
1.有理数按正、负数,应怎样分类?
2.有理数按整数、分数,应怎样分类?
3.分类的原则是什么?
八、课后作业:
1.课本第14页习题1.2第1题.
九、板书设计:
1.2 有理数
第一课时
1、复习巩固,例题讲解。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。