(word完整版)人教版八年级数学上册第12章全等三角形中的动点问题专题练习(无答案)
- 格式:doc
- 大小:400.51 KB
- 文档页数:8
人教版八年级数学上册第十二章全等三角形综合压轴题专题训练1、如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若DE=13,BD=12,求线段AB的长.2、如图,点C在线段AB上,△DAC和△DBE都是等边三角形,求证:△DAB≌△DCE; DA∥EC.3、如图,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)求证:AE⊥CF;(3)若∠CAE=30°,求∠ACF度数.4、如图,AC=AB,AE=AD,B、E、D三点共线,∠1=∠2,求证:EA平分∠CED.5、如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC 于E,G为BC上一点,且∠BCG=∠ACD. 求证:CD=CG.6、两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.7、如图1,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.求证:BE=AD;用含α的式子表示∠AMB的度数;当α=90°时,取AD、BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.8、如图,∠C=90°,BC=AC,点D、E分别在BC和AC上,且BD=CE,M是AB的中点,连接CM,求证:(1)△CEM≌△BDM;(2)△MDE是等腰直角三角形.9、已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,⑴若点P在△ABC内部,求证BQ=CP;⑵若点P在△ABC外部,以上结论还成立吗?10、如图,在Rt△ABC中,∠CAB=90°,AB=AC,D为AC的中点,过点作CF⊥BD交BD的延长线于点F,过点作AE⊥AF于点.(1)求证:△ABE≌△ACF;(2)过点作AH⊥BF于点H,求证:CF=EH.11、在△ABC中,AB=AC,点D是直线BC上一点(不与B.C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90∘,则∠BCE= 度;(2)如图2,①说明:△ABD≌△ACE.②说明:CE+DC=BC.③设∠BAC =α,∠BCE =β.当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.12、如图①,点M为锐角三角形 AB C内任意一点,连接A(1)求证:△AMB ≌△ENB ; (2)若 A M+BM+CM 的值最小,则称点 M 为△ABC 的费尔马点.若点 M 为△ABC 的费尔马点,试求此时∠AMB 、∠BMC 、∠CMA 的度数。
精品资料·人教版初中数学三角形全等之动点问题(习题)➢ 例题示范例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB -BC -CD 方向运动,到达点D 时停止运动.连接AP ,DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为6.【思路分析】1.研究背景图形,标注四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°. 2.分析运动过程,分段①分析运动过程:动点P 的起点、终点、状态转折点,以及对应的时间范围.0≤t ≤62s2sDC(2/s) P :②根据状态转折点分为三段:02t ≤≤,24t <≤,46t <≤,需要对每一段分别进行分析. 3.表达线段长,建等式①当02t ≤≤时,即点P 在线段AB 上,PDCB A此时AP =2t ,AD =4,12ADP S AD AP =⋅⋅△,即16422t =⋅⋅,32t =,符合题意.PDC B A ABCDABCD②当24t <≤时,即点P 在线段BC 上,P DCB A此时1144822ADP S AD AB =⋅⋅=⨯⨯=△,不符合题意,舍去.③当46t <≤时,即点P 在线段CD 上,PAB CD此时DP =12-2t ,AD =4,12ADP S AD DP =⋅⋅△,即164(122)2t =⋅⋅-,92t =,符合题意. 综上,当t 的值为32或92时,△ADP 的面积为6.➢巩固练习1.已知:如图,在等边三角形ABC中,AB=6,D为BC边上一点,且BD=4.动点P从点C出发以每秒1个单位的速度沿CA向点A运动,连接AD,BP.设点P运动时间为t秒,求当t为何值时,△BPA≌△ADC.2.如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.3.已知:如图,在等边三角形ABC中,AB=10 cm,点D为边ABAPB D CCQBEPA DQC BDA上一点,AD=6 cm.点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q的运动速度.4.已知:如图,在△ABC中,AB=AC=12,BC=9,点D为AB的中点.(1)如果点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,则经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间,点P与点Q 第一次在△ABC的哪条边上相遇?5.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动.设点F的运动时间为t秒.(1)请用含t的式子表达△ABF的面积S.(2)是否存在某个t值,使得△ABF和△DCE全等?若存在,求出所有符合条件的t值;若不存在,请说明理由.➢思考小结1.动点问题的处理方法:①______________________;②______________________,________;③______________________,________.2.分析运动过程包括4个方面(四要素):①起点、________、__________;②_________________________;③根据_____________分段;④所求目标.3.当研究目标多变或问题情形复杂时,我们往往将问题拆解成几个较为简单的问题来进行考虑,动点问题也是如此.具体分析动点问题时,往往会先研究背景图形,再分析运动过程、分段,为最后表达线段长,建等式做好准备.因为动点运动方向的改变不仅会改变线段长的表达,还可能改变和动点相关的图形的形状,所以要先分段,然后逐段分析,表达线段长,建等式.【参考答案】1.当t为4秒时,△BPA≌△ADC2.当x为83秒时,△PBE≌△QBE3. ①当t 为52秒时,△BPD ≌△CPQ ,此时Q 的速度为85cm/s . ②当t 为3秒时,△BPD ≌△CQP ,此时Q 的速度为2cm/s . 4. (1)①全等②Q 的速度为4cm/s 时,能够使△BPD 与△CQP 全等 (2)经过24秒,点P 与点Q 第一次在BC 边上相遇. 5.(1)034351258432t s t t s t s t <=<=<<=-+≤≤,,,(2)t 为1秒或7秒时,△ABF 与△DCE 全等。
第12章全等三角形——动点全等模型专题训练1.综合与探究如图(1),AB=9cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=7cm.点P在线段AB上以2cm/s 的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.2.如图,在△ABC中,AB=AC=3,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=,∠AED=.(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.3.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=6cm,点P从点A出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段BP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.4.如图,已知△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以2cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)5.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动,若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由.6.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?7.如图,已知四边形ABCD中,AB=BC=8cm,CD=6cm,∠B=∠C,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,点Q运动的速度是每秒2cm,点P运动的速度是每秒acm(a ≤2),当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒.(1)BQ=,BP=.(用含a或t的代数式表示)(2)运动过程中,连接PQ,DQ,△BPQ与△CDQ能否全等?若能,请求出相应的t和a的值,若不能,说明理由.8.如图,AB=36米,CB⊥AB于点B,EA⊥AB于点A,已知CB=24米,点F从点B出发,以3米/秒的速度沿BA向点A运动(到达点A停止运动),设点F的运动时间为t秒.(1)如图,S△BFC=.(用t的代数式表示)(2)点F从点B开始运动,点D同时从点A出发,以x米/秒的速度沿射线AE运动,是否存在这样x的值,使得△AFD与△BCF全等?若存在,请求出x的值;若不存在,请说明理由.9.如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.(1)PC=cm(用含t的代数式表示).(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.10.如图,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2cm/s的速度沿射线AN方向运动,动点D以1cm/s的速度沿射线AM上运动;已知AC=6cm,设动点D,E的运动时间为t.(1)试求∠ACB的度数;(2)若S△ABD:S△BEC=2:3,试求动点D,E的运动时间t的值;(3)试问当动点D,E在运动过程中,是否存在某个时间t,使得△ADB与△BEC全等?若存在,请求出时间t的值;若不存在,请说出理由.11.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=厘米;②BP=厘米;③CP=厘米;④CQ=厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动.设运动的时间为t秒;直接写出t=秒时点P与点Q第一次相遇.12.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.13.如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,M为AC上一点且AM=BC,过A点作射线AN⊥CA,A为垂足,若一动点P从A出发,沿AN运动,P点运动的速度为2cm/秒.(1)经过几秒△ABC与△PMA全等;(2)在(1)的条件下,AB与PM有何位置关系,并加以说明.14.如图,在等边△ABC中,AB=AC=BC=10cm,DC=4cm.如果点M以2cm/秒的速度运动.(1)若点M在线段CB上由点C向点B运动,点N在线段BA上由点B向A点运动,它们同时出发,若点N的运动速度与点M的运动速度相等.①当t=时,MN∥AC;(直接写出答案)②经过3秒后,△BMN和△CDM是否全等?请说明理由.(2)如果点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,试求点N运动的速度.(直接写出答案)15.如图,在△ABC中,AB=AC=9,BC=12,∠B=∠C,点D从B出发以每秒2厘米的速度在线段BC上从B向C方向运动,点E同时从C出发以每秒2厘米的速度在线段AC上从C向A运动,连接AD、DE.(1)运动秒时,AE=DC(不必说明理由)(2)运动多少秒时,∠ADE=90°﹣∠BAC,并请说明理由.16.如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小明发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.。
2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1一、单选题1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2B.3C.4D.52.如图,已知Rt△ABC,∠C=90°,点D在AC上,CD=3,BD平分∠ABC,点P是AB 上一个动点,则下列结论正确的是()A.PD>3B.PD≥3C.PD≤3D.PD=33.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AD=3,若P是BC上的动点,则线段DP的最小值是()A.3B.2.4C.4D.54.如图所示,在△ABC中,∠ABC=68°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.118°B.125°C.136°D.124°5.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC→CD→DA向终点A运动,设点P的运动时间为t秒,当以A、B、P为顶点的三角形和△DCE全等时,t的值为( )A.1B.7C.1或2D.1或76.如图,在△ABC中,∠ACB>90°,△ABC的面积为18,AB=9,BD平分∠ABC,E,F分别是BD,BC上的动点,则CE+EF的最小值为( )A.4B.6C.7D.97.如图,四边形ABCD中,∠A=90°,AD=5,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.2B.3C.4D.5二、填空题10.如图,在正方形ABCD中,∠A=∠B=∠C=∠D=90°,动点动点Q以3cm/s的速度从点B止移动.设移动的时间为t(与△PAB全等.12.如图,CA⊥AB,垂足为点B,一动点E从A点出发,以随着E点运动而运动,且始终保持三角形与点A、B、C组成的三角形全等.13.如图,OP平分∠AOB,PC⊥OA值为.14.如图,∠ACB=90°,AC=/秒的速度沿射线AC运动,点Q秒时,△ABC与以点P,Q,C为顶点的三角形全等.三、解答题15.在平面直角坐标系中,A(−5,0),B(0,5).点C为x轴正半轴上一动点,过点A作AD⊥BC交y轴于点E.(1)如图①,若C(4,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OC<5.其它条件不变,连接DO,求证:DO 平分∠ADC.16.已知:△ABC中,AC=CB,∠ACB=90°,D 为直线BC上一动点,连接AD,在直线AC右侧作AE⊥AD,且AE=AD.(1)如图,当点D在线段BC上时,过点E 作EH⊥AC于H,连接DE,求证:EH=AC;(2)如图,当点D在线段BC的延长线上时,连接BE交CA的延长线于点M.求证:BM=EM.17.如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ 全等时,求t的值.18.定理:三角形任意两边之和大于第三边.(1)如图1,线段AD,BC交于点E,连接AB,CD,判断AD+BC与AB+CD的大小关系,并说明理由;(2)如图2,OC平分∠AOB,P为OC上任意一点,在OA,OB上截取OE=OF,连接PE,PF.求证:PE=PF;(3)如图3,在△ABC中,AB>AC,P为角平分线AD上异于端点的一动点,求证:PB−PC>BD−CD.19.如图,在△ABC中,D为AB的中点,AB=AC=10cm,BC=8cm,动点P从点B出发,沿BC方向以每秒3cm的速度向点C运动;同时动点Q从点C出发,沿CA方向以每秒3 cm的速度向点A运动,运动时间是t秒.(1)在运动过程中,当点C位于线段PQ的垂直平分线上时,求出t的值;(2)在运动过程中,是否存在某一时刻t,使△BPD和△CQP全等,若存在,求出t的值.若不存在,请说明理由.20.在△ABC中,AC=BC,∠ACB=90°,D是射线BA上一动点,连接CD,以CD为边作∠DCE=45°,CE在CD右侧,CE与过点A且垂直于AB的直线交于点E,连接DE.(1)当CD,CE都在AC的左侧时,如图①,线段BD,AE,DE之间的数量关系是_________;(2)当CD,CE在AC的两侧时,如图②,线段BD,AE,DE之间有怎样的数量关系?写出你的猜想,并给予证明;(3)当CD,CE都在AC的右侧时,如图③,线段BD,AE,DE之间有怎样的数量关系?直接写出你的猜想,不必证明.参考答案:1.B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,根据角平分线性质得出PQ=PA,求出即可.【详解】解:当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,PA=3,∴PQ=PA=3,故选:B.【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出使PQ最小时Q 的位置.2.B【分析】连接DP,根据角平分线的性质及垂线段最短解答即可.【详解】解:连接DP,如图所示:∵∠C=90°,BD平分∠ABC,∴当DP⊥AB时,DP=CD=3那么当DP不垂直AB时,DP>CD=3,∵垂线段最短,∴PD≥3,故选:B.【点睛】本题考查的是角平分线的性质及垂线段最短,熟知角的平分线上的点到角的两边的距离相等是解题的关键.3.A【分析】由垂线段最短可知当DP⊥BC时,DP最短,根据角平分线的性质即可得出结论.【详解】解:当DP⊥BC时,DP的值最小,∵BD平分∠ABC,∠A=90°,∵BD平分∠ABC,∠ABC=∠ABC ∴∠ABD=∠CBD=12∵BP=BP,∴△PBQ≌△PBE(SAS),∵∠AEB=90°,∠CBD=34°∴∠APB=∠AEB+∠CBD=∵BD平分∠ABC,PE⊥AB,EF⊥∴PE=EF,∴CP=CE+PE=CE+EF的最小值.即CE+EF的最小值为4,故选:A.【点睛】本题考查了轴对称-最短路线问题,关键是将CE+EF的最小值为转化为CP,题目具有一定的代表性,是一道比较好的题目.7.D【分析】根据等角的余角相等求出∠ABD=∠CBD,再根据垂线段最短可知DP⊥BC时DP最小,然后根据角平分线上的点到角的两边距离相等可得DP=AD.【详解】解:∵BD⊥CD,∠A=90°.∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=5.故选:D.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并判断出DP最小时的位置是解题的关键.8.D【分析】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP②当AP=BP,AE=BQ时,△AEP≅△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP,∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP,AE=BQ时,△AEP≅△BQP,∵AB=10cm,AE=6cm,∵BD平分∠ABC,∴∠N′BM=∠NBM,在△MBN′与△MBN中,{BN′=BN∠N′BM=∠NBM,BM=BM×AB×CN′,此时S△ABC=12×4×CN′,可得6=12可得CN′=3,∴CM+MN的最小值为3,故答案为:3.∵AB=AD,∠ABP=∴BP=AQ,∵AQ=AB−BQ=8−3t,BP=t,∴8−3t=t,∴t=2s,当点Q在边AD时,不能构成△QAD,当点Q在边CD上时,如图2,AB+AD+DQ=3t,BP=t,∴DQ=3t−16.要使△PAB和△QAD全等,只能是△PAB≌△QAD,∴BP=DQ,∴t=3t−16,∴t=8s,故答案为:2s或8s.【点睛】此题主要考查了正方形的性质,全等三角形的性质解本题的关键是分类讨论,用方程的思想解决问题.11.5【分析】由平行线的性质可得∠EBF=∠A,由ASA证明△BEF≌△AED,得到AD=BF,最后由BF+CD=AD+CD=AC即可得到答案.【详解】解:∵BF∥AC,∴∠EBF=∠A,∵E为AB中点,∴BE=AE,在△BEF和△AED中,{∠EBF=∠ABE=AE∠BEF=∠AED,∴△BEF≌△AED(ASA),∴AD=BF,∴BF+CD=AD+CD=AC=5,故答案为:5.【点睛】本题主要考查了平行线的性质、三角形全等的判定与性质,熟练掌握平行线的性质、三角形全等的判定与性质是解题的关键.12.0或2或6或8【分析】首先分两种情况:当E在线段AB上和当E在BN上,然后再分成两种情况AC=BE和AB=EB,分别进行计算,即可得出结果.【详解】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB−BE=4cm,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB+BE=12cm,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,∵AB=8cm,∴BE=8cm,∴AE=AB+BE=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E经过0秒或2秒或6秒或8秒时,由点D、E、B组成的三角形与点A、B、C 组成的三角形全等,故答案为:0或2或6或8.【点睛】本题考查了全等三角形的性质,解题的关键是注意分类讨论思想的运用.13.3【分析】过P作PE⊥OB交OB于E,当D于E重合时,PD=PE最小,即可求解.【详解】解:如图,过P作PE⊥OB交OB于E,∴当D于E重合时,PD=PE最小,∵OP平分∠AOB,PC⊥OA,∴PE=PC=3,∴PD的最小值为3,故答案:3.【点睛】本题考查了角平分线的性质定理,垂线段定理,掌握定理是解题的关键.14.1或3或4【分析】设点P运动时间为t秒,根据已知条件分△ABC≌△PQC,△ABC≌△QPC,两种情况,根据AC=PC=4和BC=PC=2列方程求出t值即可.【详解】解:∵AC=2BC=4,∴BC=2,设点P运动时间为t秒,∵∠ACB=∠PCQ=90°,PQ=AB,∴当△ABC≌△PQC时,AC=PC=4,∴|4−2t|=4,解得:t=0(舍)或t=4;当△ABC≌△QPC时,BC=PC=2,∴|4−2t|=2,解得:t=1或t=3;综上:1秒或3秒或4秒时,△ABC与以点P,Q,C为顶点的三角形全等,故答案为:1或3或4.【点睛】本题考查直角三角形全等的判定,关键是找到所有符合题意的情况.15.(1)点E 的坐标为(0,4);(2)见解析【分析】(1)可证明△AOE≌△BOC(ASA),从而得出OE =OC ,进而求得;(2)过O 作OM ⊥DA 于M ,ON ⊥DC 于N ,根据△AOE≌△BOC ,得S ΔAOE =S ΔBOC ,从而得出OM =ON ,进而得证.【详解】(1)解:如图,∵AD ⊥BC ,AO ⊥BO ,∴∠AOE =∠BDE =∠BOC =90°,∴∠OAE +∠ACD =90°,∠OBC +∠ACD =90°,∴∠OAE =∠OBC ,∵A (−5,0),B (0,5),∴OA =OB =5.在△AOE 和△BOC 中,{∠OAE =∠OBC OA =OB ∠AOE =∠BOC,∴△AOE≌△BOC(ASA),∴OE =OC ,∴点C 坐标为(4,0),∴OE =OC =4,∴E (0,4);(2)证明:如图,过O作OM⊥DA于M,ON⊥DC于由(1)知,△AOE≌△BOC,∴SΔAOE=SΔBOC,AE=BC,∴1 2×AE×OM=12×BC×ON,∴OM=ON,{∠AHE =∠C ∠AEH =∠DAC AE =DA,∴△AEH≌△DAC(AAS),∴EH =AC .(2)如图,作EF ⊥CM 交CM 的延长线于点F ,∵∠F =90°,∠ACD =180°−∠ACB =90°,∠DAE =90°,∴∠F =∠ACD =∠MCB ,∵∠FAE +∠CAD =90°,∠CDA +∠CAD =90°,∴∠FAE =∠CDA ,在△FAE 和△CDA 中,{∠F =∠ACD ∠FAE =∠CDA AE =DA,∴△FAE≌△CDA(AAS),∴EF =AC ,∵AC =CB ,∴EF =AC =BC ,在△BMC 和△EMF 中,{∠MCB =∠F ∠BMC =∠EMF BC =EF,∴△BMC≌△EMF(AAS),∵BM =EM .【点睛】此题考查了同角的余角相等、全等三角形的判定与性质等知识,难度较大,正确地作出辅助线是解题的关键.17.(1)6∵∠BOD=∠ACD,∴∠AOP=∠ACF,∵AO=CF,∴当OP=CQ时,△AOP≌△FCQ∵∠BOD=∠ACD,∴∠AOP=∠FCQ,∵AO=CF,∴当OP=CQ时,△AOP≌∴t=4t−6,∵AD是∠BAC的角平分线,∴∠EAP=∠CAP,在△APE和△APC中,{AE=AC(3)过点C作CF⊥CE,交AB于点F,如图,先证明△CBF≌△CAE,得到BF=AE,CF=CE,然后证明△DCE≌△DCF解题即可;【详解】(1)过点C作CF⊥CE,交AB延长线于点F,如图.∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=135°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD+BF=DF,∴BD+AE=DE.故答案为:BD+AE=DE.(2)图②的猜想:BD−AE=DE.证明:过点C作CF⊥CE,交AB于点F,如图②.∴∠ECF=∠ACB=90°.∴∠CBF=∠CAE.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.(3)过点C作CF⊥CE,交AB于点F,如图∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.故答案为:BD−AE=DE.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键.。
第十二章 全等三角形 解答题专题提高训练 (6)1.如图,点P 在y 轴上,⊙P 交x 轴于A ,B 两点,连接BP 并延长交⊙P 于点C ,过点C 的直线y =2x +b 交x 轴于点D ,且⊙P 的半径为5,AB =4.(1)求点B ,P ,C 的坐标;(2)求证:CD 是⊙P 的切线.2.如图,已知AD =BC ,AC =BD .求证:∠DAO=∠CBO.3.如图,在△ABD 和△ACE 中,AB =AC ,AD =AE ,∠1=∠2,求证:△ABD ≌△ACE .4.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC=___cm ;(用含t 的式子表示)(2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.5.如图,在ABC 和DCE 中,90,ACB DCE AC BC DC EC ∠=∠=︒==,.图中线段AE 和BD 有怎样的数量关系和位置关系?试证明你的结论.6.如图,F 、C 是AD 上两点,且AF=CD ,点E ,F 、G 在同一直线上,且FG//BC ,BC=EF , 求证:△ABC ≌△DEF .7.ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,交AD 于点F ,CE AD =.求证:AB CB =.8.已知:如图,在△ABC 中,AB CB =,∠ABC=90°,E 为CB 延长线上一点,点F 在AB 上,且AE CF =.()1求证:BE BF =;()2若∠CAE=60°,求∠ACF 的度数.9.如图AB =DC ,AC =DB ,求证:△ABC ≌△DCB .证明:在△ABC 和△DCB 中()()()AB AC BC ⎧=⎪=⎨⎪=⎩∴△ABC ≌△DCB10.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI.11.已知:如图(1)所示,在△ABC 中,BD 平分∠ABC , CD 平分∠ACB ,过D 点作EF ∥BC ,与AB 交于点E ,与AC 交于点F(1)若BE=3,CF=2,求EF的长;(2)如图(2)所示,若∠ABC的平分线BD与△ABC的外角∠ACG的平分线CD相交于点D,其它条件不变,请写出EF,BE,CF之间的数量关系,并说明理由.12.如图,△ABC是等边三角形,AN=BM,BN,MC相交于O,CH⊥BN于点H,求证:2OH=OC.13.已知△ABC中,AB=AC,∠BAC=90°.(1)如图,若CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究线段BE和CD 的数量关系,并证明你的结论(2)如图,若点D在线段BC延长上,BE⊥DE,垂足为E,DE与AB相交于点F.试探究线段BE和FD的数量关系,并证明你的结论.14.如图,画一个两条直角边相等的Rt△ABC,并过斜边BC上一点D作射线AD,再分别过B、C作射线AD的垂线BE和CF,垂足分别为E、F,量出BE、CF、EF的长,•改变D的位置,再重复上面的操作,你是否发现BE 、CF 、EF 的长度之间有某种关系?能说清其中的奥妙吗?15.如图,长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折点B 落在直线EF 上的点B′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A′处,得折痕EN ,求∠NEM 的度数,并直接写出∠B′ME 互余的角.16.已知:如图,四边形ABCD 中,90D C ∠=∠=︒,E 是DC 的中点,AE 平分DAB ∠,30DEA ∠=︒,求ABE ∠的度数.17.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图l ,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC=90︒+12∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线∴∠1=12∠ABC, ∠2=12∠ACB ∴∠l+∠2=12(∠ABC+∠ACB)= 12(180︒-∠A)= 90︒-12∠A ∴∠BOC=180︒-(∠1+∠2) =180︒-(90︒-12∠A)=90︒+12∠A (1)探究2;如图2中,O 是12∠ABC 与外角12∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系?请说明理由.(2)探究3:如图3中, O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC 与∠A有怎样的关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)18.如图,已知∠MON及线段a,点G是射线ON上的点,求作:点P,使点P到OM、ON 的距离相等,且PG=a。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)已知一个三角形的两条边长为1cm和2cm,一个内角为45°.(1)请你利用如图45°角,画出一个满足题设条件的三角形.(2)你是否还能画出既满足题设条件,又与(1)中所画的不全等的三角形?若能,请用“尺规作图”画出,若不能,请说明理由.(3)如果将题设条件改为“一个三角形的两条边长为3cm和4cm,一个内角为45°”,画出满足这一条件的,且彼此不全等的所有三角形.(要求在图中标记3cm和4cm的边长)【答案】(1)见解析;(2)不能,见解析;(3)见解析.【解析】【分析】(1)作AC=1cm,AB=2cm,连接BC,则△ABC就是要作的三角形;(2)若AB=2,则点B到∠A,则可判断BC边不能取1cm,于是可判断所画的三角形只能为1cm和2cm的两边夹45°;(3)分情况讨论:45°所对的边长为3cm;45°所对的边长为4cm;45°的邻边为3cm和4cm,分别作图即可.【详解】解:(1)如图1,△ABC为所作;(2)不能,理由:若AB=2,则点B到∠A,所以BC边不能取1,所以所画的三角形只能为1cm和2cm的两边夹45°;(3)如图,【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.62.如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB 交DE的延长线于点F.求证:△ADE≌△CFE.【答案】证明见解析.【解析】【分析】根据AAS或ASA证明△ADE≌△CFE即可. 【详解】证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,ADF FA ACF AE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△CFE(AAS).【点睛】此题考查全等三角形的判定,解题关键在于掌握AAS或ASA即可.63.如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:AD=AE【答案】见解析.【解析】【分析】根据ASA △ADC ≌△AEB ,即可得出结论.【详解】证明:在△ABE 和△ACD 中,A A AB AC B C ∠∠∠⎧⎪∠⎪⎨⎩=== ∴△ABE ≌△ACD (ASA )∴AE=AD【点睛】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.64.如图所示,△ABC 是等腰直角三角形,∠A =90°,AB =AC ,D 是斜边BC 的中点,E ,F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE =15,CF =8,求△AEF 的面积.【答案】60【解析】【分析】由“ASA ”可证△AED △△CFD ,可得AE =CF =8,可得AF =BE =15,即可求解.【详解】解:△在Rt △ABC 中,AB =AC ,AD 为BC 边的中线,△△DAC =△BAD =△C =45°,AD △BC ,AD =DC ,又△DE △DF ,AD △DC ,△△EDA+△ADF =△CDF+△FDA =90°,△△EDA =△CDF在△AED 与△CFD 中,EDA CDF AD CDEAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△AED △△CFD (ASA ).△AE =CF =8,△AB ﹣AE =AC ﹣CF ,△AF =BE =15,△△EAF =90°,△S △AEF =12×AE ×AF =60. 【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,求AE=CF 是本题的关键.65.如图,在ABC ∆中,AB AC =,D 为射线BC 上一动点(不与点C 、B 重合),在AD 的右侧作ADE ∆,使得AE AD =,DAE BAC α∠=∠=,连接CE .(1)当点D 从点B 开始运动时,BCE ∠的度数等于______(用含α的式子表示);(2)当点D 运动到线段CB 上何处时,AC DE ⊥,并说明理由;(3)当90α=时,若6BC =,2CD =,求DE 的值.【答案】(1)180°-α.;(2)当点D 运动到CB 中点时,AC ⊥DE ,证明见解析;(3)DE 的值为.【解析】【分析】(1)由DAE BAC α∠=∠=得知∠BAD=∠CAE ,结合AB=AC,AD=AE 证明△ABD 与△ACE 全等,所以∠ABC=∠ACE ,进一步得出∠BCE=∠ACB +∠ACE=∠ABC +∠ACB ,从而得出答案即可;(2)当点D 运动到CB 中点时,AC ⊥DE ,根据AB=AC 得知∠BAD=∠CAD ,再结合∠BAD=∠CAE 得出∠CAD=∠CAE ,最后根据AD=AE 即可证明出结论;(3)首先分D 点在线段BC 上以及在BC 延长线上两种情况分开讨论,其中利用△ABD 与△ACE 全等求出相应的边长,最后利用勾股定理求长即可.【详解】(1)∵DAE BAC α∠=∠=,∴∠BAD +∠DAC=∠DAC +∠CAE ,∴∠BAD=∠CAE ,又∵AB=AC 、AD=AE,∴△ABD ≌△ACE ,∴∠ABD=∠ACE ,∴∠BCE=∠ACE +∠ACB=∠ABD +∠ACB=180°-∠BAC ,即∠BCE=180°-α.(2)当点D 运动到CB 中点时,AC ⊥DE ,证明如下:∵AB=AC ,点D 是CB 中点,∴∠BAD=∠CAD,又∵∠BAD=∠CAE,∴∠CAD=∠CAE ,∵AD=AE,∴AC ⊥DE.(3)①当D 点在线段BC 上时,如图1,∵6BC =,2CD =,∴BD=BC -CD=4,由(1)得△ABD ≌△ACE ,∴BD=CE=4,∵DAE BAC α∠=∠==90°,∴∠BCE=180°-90°=90°,∴在Rt △DCE 中,;②当D 点在BC 延长线上时,如图2:∵6BC =,2CD =,∴BD=BC +CD=8,由(1)得△ABD ≌△ACE ,∴BD=CE=8,∵DAE BAC α∠=∠==90°,∴∠BCE=180°-90°=90°即∠ECD=90°,∴在Rt △DCE 中,综上所述,DE 的值为【点睛】本题主要考查了动点问题与全等三角形以及勾股定理的综合运用,熟练掌握相关概念是解题关键.66.如图,ABC 是等边三角形,点 D ,E 分别在 AB ,BC 边上,且 AD BE =,求证:CD AE =.【答案】详见解析【解析】【分析】根据已知推出△ADC ≌△BEA,即可求证CD AE =【详解】证明:在等边 ABC △ 中,AB AC =,BAC ABC ∠=∠ , 在 ADC 和 BEA △ 中,,{,,AD BE DAC EBA AC AB =∠=∠= ADC BEA ∴≅.(SAS )AE CD ∴=.【点睛】本题主要考查全等三角形的判定67.如图AE AF =,AB AC =,DE BA ⊥,点E 为垂足,DF AC ⊥,点F 为垂足,求证:BD CD =.【答案】见解析【解析】【分析】根据DE BA ⊥与DF AC ⊥,得90AED AFD ∠=∠=︒,证明()Rt AEC Rt AFD HL ∆∆≌,则有DE=DF ,再证明()BED CFD SAS ∆∆≌则可证明BD CD =.【详解】解: DE BA ⊥,DF AC ⊥90AED AFD ∴∠=∠=︒在Rt AED ∆和Rt AFD ∆中,AE AF AD AD =⎧⎨=⎩()Rt AEC Rt AFD HL ∆∆∴≌DE DF ∴= =AE AF ,AB AC =BE CF ∴=在BED ∆和CFD ∆中,BE CF E F DE DF =⎧⎪∠=∠⎨⎪=⎩()BED CFD SAS ∆∆∴≌BD CD ∴=【点睛】本题考查了全等三角形的判定与性质,熟练掌握判定三角形全等的判定定理是解题的关键.68.如图,C BDE ∠=∠,AE BE =,点D 在AC 边上,DEC BEA ∠=∠.(1)求证:AEC BED ∆∆≌;(2)若40DEC ∠=︒,则BDA ∠的度数.【答案】(1)见解析;(2)40︒【解析】【分析】(1)根据已知条件即可判断△AEC ≌△BED ;(2)由(1)可知:A B ∠=∠,根据DEC BEA ∠=∠,得=40BEA ∠︒,再根据三角形的外角的性质,从而可求出∠BDA 的度数;【详解】(1)证明:DEC BEA ∠=∠BED AEC ∠=∠∴在AEC ∆和BED ∆中,C BED AEC BED AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AEC BED AAS ∆∆∴≌(2)由AEC BED ∆∆≌可得A B ∠=∠,DEC BEA ∠=∠=40BEA ∠︒∴AOB ∠是AOD ∆和BOE ∆的外角AOB A ADO B BEO ∴∠=∠+∠=∠+∠A B ∠=∠40BDA BEA ∴∠=∠=︒【点睛】本题考查了全等三角形,熟练掌握全等三角形的性质与判定以及外角的性质是解题的关键.69.如图,A 、B 两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN ,且使MN AB ⊥于点B ,在BN 上截取BC CD =,过点D 作DE MN ⊥,使点A 、C 、E 在同一直线上,则DE 的长就是A 、B 两建筑物之间的距离,请说明理由.【答案】见解析【解析】【分析】根据已知条件证明在ABC ∆和EDC ∆全等,即可证明AB DE =.【详解】解:AB MN ⊥∵,=90ABC ∠︒∴,同理=90EDC ∠︒,=ABC EDC ∠∠∴,在ABC ∆和EDC ∆中,==ABC EDC BC CDBCA DCE ∠∠⎧⎪=⎨⎪∠∠⎩()ACB ECD ASA ∆∆∴≌,AB DE ∴=.【点睛】本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.70.在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,分别交直线AB 、AC 于点M 、N .(1)如图1,当α=90°时,求证:AM =CN ;(2)如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系,并证明;(3)如图3,当α=45°时,旋转∠MON ,问线段之间BM 、MN 、AN 有何数量关系?并证明.【答案】(1)证明见解析;(2)BM =AN +MN ,理由见解析;(3)MN=AN+BM.理由见解析.【解析】【分析】是一个等腰直角三角(1)根据题意AB=AC,∠BAC=90°,得出ABC形,再根据三线合一得出OA=OB=OC,从而∠ABO=∠ACO=∠BAO=∠CAO=45°,且AO⊥BC,从而得出∠MON=∠AOC=90°,再又因为等角的余角相等,所以∠AOM=∠CON,所以通过证明△AOM≌△CON得出AM=CN(2)根据题意,在BA上截取BG=AN,连接GO,AO,先证明△BGO≌△AON,再证明△GMO≌△NMO得出GM=MN,从而证明出BM =AN+MN(3)根据题意,过点O作OG⊥ON,连接AO,先证明△NAO≌△GBO,得到AN=GB,GO=ON,再证明△MON≌△MOG得到MN=MG,从而进一步证明出MN=AN+BM【详解】证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)BM=AN+MN,理由如下:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS)∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,且∠AOB=90°,∴∠MOG=∠MON=45°,且MO=MO,GO=NO,∴△GMO≌△NMO(SAS)∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA)∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS)∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.【点睛】本题主要考查了全等三角形的综合运用与证明,充分熟悉相关概念及作出正确的辅助线是关键。
初中数学人教版八年级上册实用资料三角形全等之动点问题(习题)➢ 例题示范例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB -BC -CD 方向运动,到达点D 时停止运动.连接AP ,DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为6.【思路分析】1.研究背景图形,标注四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°. 2.分析运动过程,分段①分析运动过程:动点P 的起点、终点、状态转折点,以及对应的时间范围.0≤t ≤62s2sDC(2/s) P :②根据状态转折点分为三段:02t ≤≤,24t <≤,46t <≤,需要对每一段分别进行分析. 3.表达线段长,建等式①当02t ≤≤时,即点P 在线段AB 上,PDCB A此时AP =2t ,AD =4,12ADP S AD AP =⋅⋅△,即16422t =⋅⋅,32t =,符合题意.PDC B A AB CDABCD②当24t <≤时,即点P 在线段BC 上,P DCB A此时1144822ADP S AD AB =⋅⋅=⨯⨯=△,不符合题意,舍去.③当46t <≤时,即点P 在线段CD 上,PAB CD此时DP =12-2t ,AD =4,12ADP S AD DP =⋅⋅△,即164(122)2t =⋅⋅-,92t =,符合题意. 综上,当t 的值为32或92时,△ADP 的面积为6.➢巩固练习1.已知:如图,在等边三角形ABC中,AB=6,D为BC边上一点,且BD=4.动点P从点C出发以每秒1个单位的速度沿CA向点A运动,连接AD,BP.设点P运动时间为t秒,求当t为何值时,△BPA≌△ADC.2.如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.3.已知:如图,在等边三角形ABC中,AB=10 cm,点D为边ABAPB D CCQBEPA DA上一点,AD=6 cm.点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q的运动速度.4.已知:如图,在△ABC中,AB=AC=12,BC=9,点D为AB的中点.(1)如果点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,则经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间,点P与点Q 第一次在△ABC的哪条边上相遇?5.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动.设点F的运动时间为t秒.(1)请用含t的式子表达△ABF的面积S.(2)是否存在某个t值,使得△ABF和△DCE全等?若存在,求出所有符合条件的t值;若不存在,请说明理由.➢思考小结1.动点问题的处理方法:①______________________;②______________________,________;③______________________,________.2.分析运动过程包括4个方面(四要素):①起点、________、__________;②_________________________;③根据_____________分段;④所求目标.3.当研究目标多变或问题情形复杂时,我们往往将问题拆解成几个较为简单的问题来进行考虑,动点问题也是如此.具体分析动点问题时,往往会先研究背景图形,再分析运动过程、分段,为最后表达线段长,建等式做好准备.因为动点运动方向的改变不仅会改变线段长的表达,还可能改变和动点相关的图形的形状,所以要先分段,然后逐段分析,表达线段长,建等式.【参考答案】1.当t为4秒时,△BPA≌△ADC2.当x为83秒时,△PBE≌△QBE3. ①当t 为52秒时,△BPD ≌△CPQ ,此时Q 的速度为85cm/s . ②当t 为3秒时,△BPD ≌△CQP ,此时Q 的速度为2cm/s . 4. (1)①全等②Q 的速度为4cm/s 时,能够使△BPD 与△CQP 全等 (2)经过24秒,点P 与点Q 第一次在BC 边上相遇. 5.(1)034351258432t s t t s t s t <=<=<<=-+≤≤,,,(2)t 为1秒或7秒时,△ABF 与△DCE 全等。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案)如图,ABC和DBE都是等腰直角三角形,AD CE.试猜想线段AD和,,,BD BEABC BA BC DBE∠==∠=9090=,连接,CE之间的数量关系和位置关系,并加以证明.【答案】,=⊥,证明见解析.AD CE AD CE【解析】【分析】根据已知条件利用SAS证明△ABD≌△CBE即可得到=∠=∠∴,延长AD交CE于,F AF交BC于G,利用AD CE BAD BCE,∠=∠,即可证得AD⊥CE.∠+∠+∠=︒,BGA FGC180BAD BGA ABC【详解】AD CE AD CE=⊥,,证明:延长AD交CE于,F AF交BC于G,由于ABC和DBE都是等腰直角三角形,∴==∠=∠=,BA BC BD BE ABC DBE,,90∴∠-∠=∠-∠,ABC DBC DBE DBC∴∠=∠,ABD CBE在ABD △和CBE △中BA BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩, ()ABD CBE SAS ≌,,AD CE BAD BCE =∠=∠∴.由于180BAD BGA ABC ∠+∠+∠=︒,180BCE FGC CFG ∠+∠+∠=︒,BGA FGC ∠=∠,FCG ABC ∴∠=∠,90FCG ∴∠=,AD CE ∴⊥,所以,AD CE AD CE =⊥.【点睛】此题考查等腰直角三角形的性质,旋转的性质,三角形全等的判定及性质,三角形内角和,对顶角相等.82.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:将△ABD绕点A逆时针旋转60°得到△ACE,可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.【答案】(1)DA=DB+DC;(2DA=DB+DC,证明见解析;【解析】【分析】(1)结论:DA=DB+DC.理由:由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,再证△ADE是等边三角形得DA=DE=DC+CE=DC+DB.(2.理由:延长DC到点E,使CE=BD,连接AE,先证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,据此可得∠DAE=∠BAC=90°,由勾股定理知DA2+AE2=DE2,继而可得2DA2=(DB+DC)2;【详解】(1)结论DA=DB+DC.理由如下:如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB;(2)结论: DA=DB+DC.理由如下:如图,将△ABD绕点A逆时针旋转90°得到△ACE∴AE =AD ,CE =BD ,∠ABD =∠ACE ,∠DAE =90°,∵∠BAC =90°,∠BDC =90°,∴∠ABD +∠ACD =180°,∵∠ABD =∠ACE ,∴∠ACE +∠ACD =180°,∴点D 、C 、E 在同一条直线上.∵∠DAE =90°,DA =EA∴△ADE 是等腰直角三角形,∴DA 2+AE 2=DE 2,∴2DA 2=( DB +DC )2DA =DB +DC .【点睛】考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,解题关键是添加常用辅助线构造全等三角形.83.如图,已知BAD CAE ∠=∠,AB AD =,AC AE =.求证:B D ∠=∠.【答案】证明见解析.【解析】【分析】根据题意证明BAC DAE ∆≅∆即可求解.【详解】证明:∵BAD CAE ∠=∠∵BAD DAC CAE DAC ∠+∠=∠+∠,即:BAC DAE ∠=∠在ABC ∆和DAE ∆中AB AD BAC ADE AC AE =⎧⎪∠=∠⎨⎪=⎩∵()BAC DAE SAS ∆≅∆∵B D ∠=∠【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.84.如图,已知AE AB ⊥,AF AC ⊥,AE AB =,AF AC =.(1)求证:AEC ABF ∆∆≌;(2)求证:EC BF ⊥.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据垂直的定义和等式的基本性质可得∠EAC=∠BAF ,然后利用SAS 即可证出AEC ABF ∆∆≌;(2)设AB 与EC 的交点为O ,根据全等三角形的性质可得∠AEC=∠ABF ,然后根据对顶角相等可得∠AOE=∠BOM ,再根据三角形的内角和定理和等量代换即可求出∠OMB=90°,最后根据垂直的定义即可证明.【详解】解:(1)∵AE AB ⊥,AF AC ⊥,∴∠EAB=∠CAF=90°∴∠EAB +∠BAC=∠CAF +∠BAC∴∠EAC=∠BAF在△AEC 和△ABF 中AE AB EAC BAF AC AF =⎧⎪∠=∠⎨⎪=⎩∴AEC ABF ∆∆≌(SAS )(2)设AB 与EC 的交点为O ,如下图所示∵AEC ABF ∆∆≌∴∠AEC=∠ABF∵∠AOE=∠BOM∴∠OMB=180°-∠ABF -∠BOM=180°-∠AEC -∠AOE=∠EAB=90°∴EC BF ⊥【点睛】此题考查的是全等三角形的判定及性质、对顶角的性质和垂直的判定,掌握全等三角形的判定及性质、对顶角相等和垂直的定义是解决此题的关键.85.(问题)在ABC ∆中,AC BC =,90ACB ∠=︒,点E 在直线BC 上(,B C 除外),分别经过点E 和点B 作AE 和AB 的垂线,两条垂线交于点F ,研究AE 和EF 的数量关系.(探究发现)某数学兴趣小组在探究AE ,EF 的关系时,运用“从特殊到一般”的数学思想,他们发现当点E 是BC 中点时,只需要取AC 边的中点G (如图1),通过推理证明就可以得到AE 和EF 的数量关系,请你按照这种思路直接写出AE 和EF 的数量关系;(数学思考)那么点E 在直线BC 上(,B C 除外)(其他条件不变),上面得到的结论是否仍然成立呢?请你从“点E 在线段BC 上”“点E 在线段BC 的延长线上”“点E 在线段BC 的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.【答案】(1)AE EF =;(2)AE EF =;(3)仍然成立AE EF =..【解析】【分析】(1)【探究发现】取AC 中点G ,连接EG ,根据三角形全等的判定即可证明EAG FEB ∆≅∆()ASA ,即可得出AE 和EF 的数量关系;(2)【数学思考】分三种情况讨论:①若点E 在线段BC 上, 在AC 上截取CG CE =,连接GE ;②若点E 在线段BC 的反向延长线上,在AC 反向延长线上截取CG CE =,连接GE ;③若点E 在线段BC 的延长线上,在AC 延长线上截取CG CE =,连接GE ; 根据三角形全等的判定即可证明EAG FEB ∆≅∆()ASA ,即可得出AE 和EF 的数量关系.【详解】(1)AE 和EF 的数量关系为:AE EF =.理由:如图1,取AC 中点G ,连接EG ,ABC ∆中,AC BC =,90ACB ∠=︒,45ABC ∴∠=︒,AG BE =,CEG ∆ 是等腰直角三角形,45CGE ∴∠=︒,135EGA ∠=︒,AE EF ⊥,AB BF ⊥,135EBF ∴∠=︒,EAG FEB ∠=∠,在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆,AE EF ∴=.(2)①如图2,若点E 在线段BC 上,在AC 上截取CG CE =,连接GE ,9045,,,90ACB CGE CEG AE EF AB BF AEF ABF ACB ∠=︒∴∠=∠=︒⊥⊥∴∠=∠=∠=︒FEB AEF AEB EAC ACB ∴∠+∠=∠=∠+∠,,,,45,135,FEB EAC CA CB AG BE CBA CAB AGE EBF ∴∠=∠=∴=∠=∠=︒∴∠=∠=︒在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆,AE EF ∴=.②如图3,若点E 在线段BC 的反向延长线上,在AC 反向延长线上截取CG CE =,连接GE ,9045,,,90ACB CGE CEG AE EF AB BF AEF ABF ACB ∠=︒∴∠==︒⊥⊥∴∠=∠=∠=︒,FEB AEF AEC EAG C AECFEB EAGCA CB ∠=∠+∠∠=∠+∠∴∠=∠=,45,45,AG BE CBA CAB AGE EBF ∴=∠=∠=︒∴∠=∠=︒在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆AE EF ∴=.③如图4,若点E 在线段BC 的延长线上,在AC 延长线上截取CG CE =,连接GE ,9045,,,90ACB CGE ABC AE EF AB BF AEF ABF ∠=︒∴∠=∠=︒⊥⊥∴∠=∠=︒+=90=+45FEB AEB EAG AEB EBF GFEB EAGCA CB ∴∠∠︒∠∠∠=︒=∠∴∠=∠=,在EAG ∆和FEB ∆中EAG FEB AG BEEGA FBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAG FEB ASA ∴∆≅∆AE EF ∴=.【点睛】通过做辅助线得到CG CE =,利用等腰直角三角形的性质,全等三角形的判定定理,即可得出AE 和EF 的数量关系,运用“从特殊到一般”的数学思想,利用图形,数形结合推理论证即可,注意情况的分类.86.阅读下面材料:小明遇到这样一个问题:如图1,在ABC ∆中,AD 平分BAC ∠,2ABC C ∠=∠.求证:AC AB BD =+ 小明通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如图2,在AC 上截取AE ,使得AE AB =,连接DE ,可以得到全等三角形,进而解决问题方法二:如图3,延长AB 到点E ,使得BE BD =,连接DE ,可以得到等腰三角形,进而解决问题(1)根据阅读材料,任选一种方法证明AC AB BD =+(2)根据自己的解题经验或参考小明的方法,解决下面的问题:如图4,四边形ABCD 中,E 是BC 上一点,EA ED =,2DCB B ∠=∠,90DAE B ∠+∠=︒,探究DC 、CE 、BE 之间的数量关系,并证明【答案】(1)证明见解析;(2)BE DC CE =+,证明见解析【解析】【分析】(1)方法一,在AC 上截取AE ,使得AE AB =,连接DE ,用SAS 定理证明ABD AED ∆≅∆,然后得到BD ED =,2AED ABC C ∠=∠=∠,从而得到EDC C ∠=∠,然后利用等角对等边求证ED EC =,使问题得解;方法二,延长AB 到点E ,使得BE BD =,连接DE ,利用三角形外角的性质得到∠ABC=2∠E ,从而得到∠E=∠C ,利用AAS 定理证明△AED ≌△ACD ,从而求解;(2)在EB 上截取EF ,使得EF DC =,连接AF ,利用三角形外角的性质求得AEB AED CDE AED ∠+∠=∠+∠,从而得到AEB CDE ∠=∠,利用SAS 定理证明AEF EDC ∆≅∆,然后利用全等三角形的性质求解.【详解】解:(1)方法一:如图2,在AC 上截取AE ,使得AE AB =,连接DE ,∵AD 平分BAC ∠,∴BAO EAO ∠=∠又∵AB AE =,AD AD =∴ABD AED ∆≅∆∴BD ED =,2AED ABC C ∠=∠=∠∵AED C EDC ∠=∠+∠∴EDC C ∠=∠∴ED EC =∴BD EC =∴AC AE EC AB BD =+=+方法二:如图3,延长AB 到点E ,使得BE BD =,连接DE ,∵AD 平分BAC ∠,∴BAO EAO ∠=∠∵BE BD =∴∠ABC=2∠E又∵2ABC C ∠=∠∴∠E=∠C∵AD=AD∴△AED ≌△ACD∴AC=AE=AB+BE=AB+BD(2)在EB 上截取EF ,使得EF DC =,连接AF∵EA ED =∴EAD EDA ∠=∠∴2180DAE AED ∠+∠=︒∵90DAE B ∠+∠=︒∴22180DAE B ∠+∠=︒∴2AED B C ∠=∠=∠∵BED CDE C ∠=∠+∠∴AEB AED CDE AED ∠+∠=∠+∠∴AEB CDE ∠=∠∴AEF EDC ∆≅∆∴EC AF =,2AFE C B ∠=∠=∠∵AFE B BAF ∠=∠+∠∴ABF BAF ∠=∠∴BF AF =∴BF CE =∴BE EF BF DC CE =+=+.【点睛】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.87.如图,E 是AB 上一点,DE 与AC 交于点F ,AF CF =,//AB DC .线AE 与DC 有怎样的数量关系,证明你的结论.【答案】AE DC =,证明详见解析【解析】【分析】利用平行线的性质求得A DCF ∠=∠,然后利用ASA 定理证明AEF CDF ∆≅∆,从而使问题求解.【详解】证明: ∵//AB DC∵A DCF ∠=∠又∵AFE DFC ∠=∠,AF CF =∵AEF CDF ∆≅∆(ASA )∴AE DC =【点睛】本题考查平行线的性质,全等三角形的判定和性质,题目比较简单,掌握两直线平行,内错角相等及ASA定理证明三角形全等是解题关键.88.如图,利用尺规,在△ABC的边AC下方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD=AB.(尺规作图要求保留作图痕迹,不写作法)【答案】作图见解析,证明见解析.【解析】【分析】根据作一个角等于已知角的作法画出∠CAE并截取AD=BC即可画出图形,利用SAS即可证明△ACB≌△CAD,可得CD=AB.【详解】如图所示:∵AC=CA,∠ACB=∠CAD,AD=CB,∴△ACB≌△CAD(SAS),∴CD=AB.【点睛】本题考查尺规作图——作一个角等于已知角及全等三角形的判定与性质,正确作出图形并熟练掌握全等三角形的判定定理是解题关键.⊥,垂足分别是89.如图,点E、F是线段AB上的点,DE AD⊥,CF BC点D 和点C ,DE CF =,AF BE =,求证://AD BC .【答案】见解析【解析】【分析】先根据“HL ”证明△ADE ≌△BCF ,可证∠A=∠B ,然后根据内错角相等,两直线平行即可解答.【详解】∵DE AD ⊥,CF BC ⊥,∴∠D=∠C=90°.∵AF BE =,∴AE=BF .在△ADE 和△BCF 中,∵AE=BF ,DE CF =,∴△ADE ≌△BCF(HL),∴∠A=∠B ,∴//AD BC .【点睛】本题主要考查了平行线的判定,全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.90.如图,在等边ABC ∆中,10AB AC BC ===厘米,4DC =厘米,如果点M 以3厘米/的速度运动.(1)如果点M 在线段CB 上由点C 向点B 运动.点N 在线段BA 上由B 点向A 点运动,它们同时出发,若点N 的运动速度与点M 的运动速度相等:①经过“2秒后,BMN ∆和CDM ∆是否全等?请说明理由.②当两点的运动时间为多少秒时,BMN ∆刚好是一个直角三角形?(2)若点N 的运动速度与点M 的运动速度不相等,点N 从点B 出发,点M 以原来的运动速度从点C 同时出发,都顺时针沿ABC ∆三边运动,经过25秒时点M 与点N 第一次相遇,则点N 的运动速度是__________厘米/秒.(直接写出答案)【答案】(1)①BMN CDM ∆≅∆,理由详见解析;②当209t =秒或109t =秒时,BMN ∆是直角三角形;(2)3.8或2.6.【解析】【分析】(1)①根据题意得CM=BN=6cm ,所以BM=4cm=CD .根据“SAS ”证明△BMN ≌△CDM ;②设运动时间为t 秒,分别表示CM 和BN .分两种情况,运用特殊三角形的性质求解:I .∠NMB=90°;Ⅱ.∠BNM=90°;(2)点M 与点N 第一次相遇,有两种可能:∵.点M 运动速度快;②.点N 运动速度快,分别列方程求解.【详解】解:(1)∵BMN CDM ∆≅∆.理由如下:3N M V V ==厘米/秒,且2t =秒,236()CM cm ∴=⨯=236()BN cm =⨯=1064()BM BC CM cm =-=-=BN CM ∴=4()CD cm =BM CD ∴=60B C ∠=∠=︒,BMN CDM ∴∆≅∆.(SAS)∵设运动时间为t 秒,BMN ∆是直角三角形有两种情况:∵.当90NMB ∠=︒时,60B ∠=︒,90906030BNM B ∴∠=-∠=-︒=︒︒︒,2BN BM ∴=,32(103)t t ∴=⨯-209t ∴=(秒); ∵.当90BNM ∠=︒时,60B ∠=︒,90906030BMN B ∴∠=-∠=-︒=︒︒︒.2BM BN ∴=,10323t t ∴-=⨯109t ∴=(秒) ∴当209t =秒或109t =秒时,BMN ∆是直角三角形; (2)分两种情况讨论:∵.若点M 运动速度快,则3251025N V ⨯-=,解得 2.6N V =; ∵.若点N 运动速度快,则2520325N V -=⨯,解得 3.8N V =. 故答案是3.8或2.6.【点睛】本题考查等边三角形的性质和特殊直角三角形的性质及列方程求解动点问题,两次运用分类讨论的思想,难度较大.三、填空题。
第12章《全等三角形》同步练习班级 学号 姓名 得分一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 3.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC=_________.4.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_________ cm .5.如图,已知AB 、CD 相交于点E ,过E 作∠AEC 及∠AED 的平分线PQ 与MN ,则直线MN 与PQ 的关系是_________.6.三角形内一点到三角形的三边的距离相等,则这个点是三角形_________的交点. 7.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,且BD :CD =3:2,BC =15cm ,则点D 到AB 的距离是__________. 8.角平分线的性质定理: 角平分线上的点_____________________________. 9.(1)如图,已知∠1 =∠2,DE ⊥AB , DF ⊥AC ,垂足分别为E 、F ,则DE ____DF . (2)已知DE ⊥AB ,DF ⊥AC ,垂足分别 为E 、F ,且DE = DF ,则∠1_____∠2.10.直角三角形两锐角的平分线所夹的钝角为_______度.二、选择题(每题3分,共24分)11.如图,OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D .下列结论中错误的是( )A .PC = PDB .OC = OD C .∠CPO = ∠DPO D .OC = PC12.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm13.到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点(第3题) (第4题) (第5题)21A BCDEF(第9题)A BCDO P(第11题)EDCBA(第14题)14. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 15.给出下列结论,正确的有( )①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题 A .1个 B .2个 C .3个 D .4个 16.已知,Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D到AB 的距离为( ) A .18 B .16 C .14 D .12 17.两个三角形有两个角对应相等,正确说法是( )A .两个三角形全等B .两个三角形一定不全等C .如果还有一角相等,两三角形就全等D .如果一对等角的角平分线相等,两三角形全等18.如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB,ON 平分∠COD ,若∠MON =α,∠BOC=β,则表示∠AOD 的代数式为( ) A .2α-β B .α-βC .α+βD .2α三、解答题(共46分)19.(7分)如图,已知OE 、OD 分别平分∠AOB 和∠BOC ,若∠AOB =90°,∠EOD =70°,求∠BOC的度数.20.(7分)已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留画图痕迹)(第18题)21.(8分)如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF 于F . 求证:CE = CF22.(8分)已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + AD23.(8分)如图,PB 和PC 是△ABC 的两条外角平分线. ①求证:∠BPC =90°-12∠BAC . ②根据第①问的结论猜想:三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?24.(8分)如图,BP 是△ABC 的外角平分线,点P 在∠BAC 的角平分线上.求证:CP 是△ABC 的外角平分线.F A B E CD D A P C B A DE参考答案一、填空题1.这个角的平分线上2.1.5cm 3.30°4.8 5.MN⊥PQ 6.三条角平分线7.6cm 8.到角的两边的距离相等9.(1)=(2)= 10.135二、选择题11.D 12.B 13.D 14.D 15.B 16.C 17.D 18.A三、解答题19.50°20.画两个角的角平分线的交点P 21.略22.提示:过点D做DM⊥BC 23.①略;②锐角三角形24.提示:过P作三边AB、AC、BC的垂线段PD、PE、PF。
人教版八年级数学上册数学动点问题专题练习(详细参考答案附后)1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;2、点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB 于点E,交CA的延长线于点F。
(1)如图(1),请观察AF与AE,它们相等吗?并证明你的猜想。
(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明。
3、如图,己知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点。
如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3)。
(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD 与△CQP全等?人教版八年级数学上册数学动点问题专题练习参考答案1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;解:(1)根据三角形三边之间的关系可知AB> BC -AC AB<AC+BC∴AB> 12 -9 AB<12+9即:3<AB<21(2)①∵PC=AC=9 t=v÷s=9÷2=4.5(秒)②△ABC的周长一半=(AB+ AC+BC)÷2=(15+9+12)÷2=36÷2=18(cm)当P从点C往点B运动至9cm处时,点P与点A的连线恰好将△ABC的周长分成相等的两部分。
八年级上册数学《第十二章全等三角形》专题全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB=8,BC=10,CD为射线,∠B=∠C,点P从点B出发沿BC向点C运动,速度为1个单位/秒,点Q从点C出发沿射线CD运动,速度为x个单位/秒;若在某时刻,△ABP能与△CPQ全等,则x= .2.(2022秋•攸县期末)如图,在四边形ABCD中,∠DAB=∠ABC,AB=5cm,AD=BC=3cm,点E在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或35.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或236.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.67.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或68.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.14.如图,在等腰△ABC中,AB=AC=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C 运动,设点P的运动时间为ts.(1)PC= cm.(用t的代数式表示)(2)当点P从点B开始运动,同时,点Q从点C出发,以vcm/s的速度沿CA向点A运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B ﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.24.(2022春•华容县期中)如图,已知正方形ABCD的边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等.请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?相遇点在何处?25.如图,AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在射线AB上以1cm/s的速度由点A出发沿射线AB方向运动,同时,点Q在射线DB上由点D出发沿射线DB方向运动.它们运动的时间为t (s).(1)若点Q的运动速度是点P的运动速度的2倍,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)设点Q的运动速度为xcm/s(x≠2),是否存在实数x,使△ACP与△BPQ全等?若存在,请画出示意图,将全等的三角形用符号表示出来,并直接写出相应的x,t的值;若不存在,请说明理由.26.(2022秋•沭阳县校级月考)如图①,线段BC=6,过点B、C分别作垂线,在其同侧取AB=4,另一条垂线上任取一点D.动点P从点B出发,以每秒2个单位的速度沿BC向终点C运动;同时动点Q从点C出发,以每秒a个单位的速度沿射线CD运动,当点P停止时,点Q也随之停止运动.设点P的运动的时间为t (s).(1)当t=1,CP= ,用含a的代数式表示CQ的长为 ;(2)当a=2,t=1时,①求证:△ABP≌△PCQ;②求证:AP⊥PQ;(3)如图②,将“过点B、C分别作垂线”改为“在线段BC的同侧作∠ABC=∠DCB”,其它条件不变.若△ABP与△PCQ全等,直接写出对应的a的值.27.(2022秋•日照期末)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t (s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.28.在直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,①如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E.求证:△ACD≌△CBE;②如图2,过点A作AD⊥直线l于点D,点B与点F关于直线l对称,连接BF交直线l于E,连接CF.求证:DE=AD+EF.(2)当AC=8cm,BC=6cm时,如图3,点B与点F关于直线l对称,连接BF、CF.点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M、N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒.当△MDC与△CEN全等时,求t的值.29.(2022秋•浠水县期中)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为 ,CE与AD的数量关系为 ;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.30.(2022秋•原平市校级期中)如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=23CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值,若不存在,请说明理由.。
人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、在正方形ABCD中,E、F分别为BC、CD边上的两个动点,∠EAF=45°,下列几个结论中:①EF=BE+DF;②MN2=BM2+DN2;③FA平分∠DFE;④连接MF,则△AMF为等腰直角三角形;⑤∠AMN=∠AFE. 其中一定成立的结论有()A.2个B.3个C.4个D.5个2、已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围是()A. B. C.D.3、如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC4、如图,为等边三角形,是边上一点,在上取一点,使,在边上取一点,使,则的度数为()A. B. C. D.5、如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E 为垂足,连接DF,则∠CDF=()A.50°B.40°C.30°D.15°6、AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△=7,DE=2,AB=4,则AC长是()ABCA.4B.3C.6D.27、如图,△ABC和△DEF中,AB=DE,∠B=∠DEF,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AC=DFB.AC∥DFC.∠A=∠DD.∠ACB=∠F8、两个直角三角形全等的条件是()A.一个锐角对应相等B.一条边对应相等C.两条直角边对应相等 D.两个角对应相等9、如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≌△ABD.补充下列其中一个条件后,不一定能推出△ABC≌△ABD的是()A.BC=BDB.AC=ADC.∠ACB=∠ADBD.∠CAB=∠DAB10、如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是( )A. ACB. ABC. BCD. AB11、如图,是的角平分线,,垂足为E,,,,则长为()A. B. C. D.12、如图,在Rt△ABC中,∠ACB=90°,AE为△ABC的角平分线,且ED⊥AB,若AC=6,BC=8,则BD的长()A.2B.3C.4D.513、如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x -1,若这两个三角形全等,则x等于()A. B.3 C.4 D.514、下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形15、下列命题中正确的命题有()个①两个全等的三角形一定关于某直线对称;②等腰三角形的高、中线、角平分线互相重合;③等腰三角形的对称轴是顶角的平分线④顶角和底边对应相等的两个等腰三角形全等;A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是________.17、如图,已知≌,点B,E,C,F在同一条直线上,若,则=________.18、如图,∠C=∠D=90º,添加一个条件:________ (写出一个条件即可),可使 Rt△ABC 与Rt△ABD 全等.19、如图,△ABC,点E是AB上一点,D是BC的中点,连接ED并延长至点F,使DF=DE,连接CF,则线段BE与线段CF的关系为________.20、如图(1)~(12)中全等的图形是________ 和________ ;________ 和________ ;________ 和________;________ 和________ ;________和________ ;________ 和________ ;(填图形的序号)21、如图,D为等边△ABC中边BC的中点,在边DA的延长线上取一点E,以CE 为边、在CE的左下方作等边△CEF,连结AF.若AB=4,AF=,则CF的值为________.22、如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q,PQ=3,EP=1,则DA的长是________.23、如图,在平面直角坐标系中,经过点A的双曲线同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则的值为________.24、如图,点P是的平分线上一点,PB AB与B,且PA=5cm,AC=12cm,则的面积是________ .25、如图, AB = 4cm , AC = BD = 3cm . ∠CAB = ∠DBA ,点 P 在线段 AB 上以1cm / s 的速度由点 A 向点 B 运动,同时,点Q 在线段 BD 上由点 B 向点 D 运动.设运动时间为t(s) ,则当点Q 的运动速度为________cm / s 时, DACP 与DBPQ 全等.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:DF=BE.28、如图,AB∥CD,AB=CD,点E、F在AD上,且AE=DF.求证:△ABE≌△DCF.29、提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P 在对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,求证:PB=PE分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.30、写出命题:“等腰三角形两腰上的高相等”的逆命题,并证明其逆命题是真命题.(要求写出已知、求证和证明过程).参考答案一、单选题(共15题,共计45分)1、D2、A3、A4、C5、C6、B7、A8、C9、B10、C11、B12、C13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
《全等三角形》专题练习一.选择题1.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D2.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 3.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°4.两条平行线a、b被第三条直线c所截得的同旁内角的平分线的交点到直线c的距离是2cm,则a、b之间的距离是()A.3cm B.4cm C.5cm D.6cm5.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°6.AD是△ABC中BC边上的中线,若AB=3,AC=5,则AD的取值范围是()A.AD>1 B.AD<4 C.1<AD<4 D.2<AD<87.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS8.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中正确的有()①∠ACD=∠B②CH=CE=EF③AC=AF④CH=HD⑤BE=CH.A.1 B.2 C.3 D.4二.填空题11.如图,△ABE≌△ACD,∠A=58°,∠B=24°,则∠DOE的度数为°.12.如图△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCA的度数为度.13.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为.14.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.15.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4=.16.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6cm,则线段OP=cm.三.解答题17.如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB﹣AD.18.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC (点C、F不重合),并说明理由.19.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD、CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)如图(1),若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(2)如图(2),若∠BAC=∠DAE=60°,求∠BFC的度数;(3)如图(3),若∠BAC=∠DAE=α,直接写出∠BFC的度数.(不需说明理由)20.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.21.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.参考答案一.选择题1.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.2.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.3.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.4.解:如图,过点P作EF⊥b,∵a∥b,∴EF⊥a,∴EF就是a、b之间的距离,∵P到直线c的距离是2,即PD=2cm,点P是同旁内角的平分线的交点,∴PE=PD,PF=PD,(角平分线上的点到角的两边的距离相等),∴EF=PE+PF=2+2=4cm.故选:B.5.解:A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.故选:A.6.解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,∵,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=5,∴5﹣3<AE<5+3,即2<2AD<8,∴1<AD<4,故选:C.7.解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.8.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:①∵CD是斜边AB上的高,∠ACB=90°,∴∠CDB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴①正确;②∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠C=90°,EF⊥AB,∴CE=FE,∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B,∵∠ACD=∠B,∴∠CHE=∠CEA,∴CH=CE,即:CH=CE=EF,∴②正确;③∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF,∴Rt△ACE≌Rt△AFE,∴AC=AF,∴③正确;④∵CH=EF,∴CH≠HD,∴④错误;⑤∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误.故选:C.二.填空题(共6小题)11.解:∵△ABE≌△ACD,∠A=58°,∠B=24°,∴∠BEC=∠BDC=∠A+∠B=58°+24°=72°,∴∠DOE=∠B+∠BDC=72°+24°=106°.故答案为:106.12.解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,∴∠DCA=65°﹣40°=25°.故答案为:25.13.解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.14.解:∵AC平分∠DCB,∴∠BCA=∠DCA,又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.15.解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180°.16.解:在Rt△OMP和Rt△ONP中,OM=ON,OP=OP,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∵∠AOB=60°,∴∠MOP=∠NOP=30°,∵∠OMP=90°,∴OP=2MP,OM=MP=6cm,∴MP=2cm,∴OP=4cm,故答案为:4.三.解答题(共5小题)17.证明:(1)∵AD∥BC,∴∠DAE=∠F,∠ADE=∠FCE,又∵DE=CE,∴△ADE≌△FCE(AAS),∴AE=EF;(2)∵AE=EF,BE⊥AF,∴AB=BF,∵△ADE≌△FCE,∴AD=CF,∴AB=BC+CF=BC+AD,∴BC=AB﹣AD.18.证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.19.①BD与CE相互垂直,BD=CE.证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°∴BD⊥CE.解:②由题①得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=60°,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=60°.③∠BFC=α.20.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.21.证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.。
三角形全等之动点问题(讲义)➢课前预习已知:如图,AB=18 cm,动点P从点A出发,沿AB以2 cm/s的速度向点B运动,动点Q从点B出发,沿BA以1 cm/s的速度向点A运动.P,Q两点同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间为t秒,请解答下列问题:(1)AP=_______,QB=_______(含t的式子表达);(2)在P,Q相遇之前,若P,Q两点相距6 cm,则此时t的值为_______.➢知识点睛由点(___________)的运动产生的几何问题称为动点问题.动点问题的解决方法:1.研究_____________;2.分析_____________,分段;3.表达_____________,建等式.➢精讲精练1.已知:如图,在矩形ABCD中,AB=4,AD=10,点E为边AD上一点,且AE=7.动点P从点B出发,以每秒2个单位的速度沿BC向点C运动,连接AP,DP.设点P运动时间为t秒.A E DA E D(1)当t =1.5时,△ABP 与△CDE 是否全等?请说明理由;(2)当t 为何值时,△DCP ≌△CDE .2. 已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =12,BC =24,动点P 从点A 出发以每秒1个单位的速度沿AD 向点D 运动,动点Q 从点C 出发以每秒2个单位的速度沿CB 向点B 运动,P ,Q 同时出发,当点P 停止运动时,点Q 也随之停止,连接PQ ,DQ .设点P 运动时间为x 秒,请求出当x 为何值时,△PDQ ≌△CQD .QP DCB A3. 已知:如图,在△ABC 中,AB =AC =10 cm ,BC =8 cm ,点D 为AB 的中点.点P 在线段BC 上以每秒3 cm 的速度由点B 向点C 运动,同时点Q 在线段CA 上由点C 向点A 运动.设点P 运动时间为t 秒,若某一时刻△BPD 与△CQP 全等,求此时t 的值及点Q 的运动速度.D CBA4. 已知:如图,正方形ABCD 的边长为10 cm ,点E 在边AB 上,且AE =4 cm ,点P 在线段BC 上以每秒2 cm 的速度由点B 向点C 运动,同时点Q 在线段CD 上由点C 向点D 运动.设点P 运动时间为t 秒,若某一时刻△BPE 与△CQP 全等,求此时t 的值及点Q 的运动速度.A5. 已知:如图,在长方形ABCD 中,AB =DC =4,AD =BC =5.延长BC 到E ,使CE =2,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC -CD -DA 向终点A 运动,设点P 运动时间为t 秒. (1)请用含t 的式子表达△ABP 的面积S .(2)是否存在某个t 值,使得△DCP 和△DCE 全等?若存在,请求出所有满足条件的t 值;若不存在,请说明理由.DA6.ADCB【参考答案】➢课前预习(1)2t,t(2)4s➢知识点睛速度已知1.研究背景图形,标注;2.分析运动过程,分段;3.表达线段长,建等式.➢精讲精练1.解:(1)当t=1.5时,△ABP≌△CDE.理由如下:如图,由题意得BP=2t∴当t=1.5时,BP=3∵AE=7,AD=10∴DE=3∴BP=DE在矩形ABCD中AB=CD,∠B=∠CDE在△ABP 和△CDE 中AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CDE (SAS ) (2)如图,由题意得BP =2t ∵BC =10 ∴CP =10-2t若使△DCP ≌△CDE ,则需CP =DE即10-2t =3,t =72∴当t =72时,△DCP ≌△CDE .2. 解:如图,由题意得AP =x ,CQ =2x∵AD =12 ∴DP =12-x要使△PDQ ≌△CQD ,则需DP =QC 即12-x =2x ,x =4∴当x =4时,△PDQ ≌△CQD .3. 解:如图,由题意得BP =3t∵BC =8 ∴PC =8-3t∵AB =10,D 为AB 中点 ∴BD =12AB =5①要使△BDP ≌△CPQ , 则需BD =CP ,BP =CQ 即5=8-3t ,t =1 ∴CQ =3t =3则Q 的速度为Q v =s t =31=3(cm/s )即当t =1,Q 的速度为每秒3cm 时,△BDP ≌△CPQ . ②要使△BDP ≌△CQP ,则需BP =CP ,BD =CQ 即3t =8-3t ,CQ =5 ∴t =43则Q 的速度为Q v =s t=5×34=154(cm/s ) 即当t =43,Q 的速度为每秒154cm 时,△BDP ≌△CQP .综上所述,当t =1,Q 的速度为每秒3cm 或t =43,Q 的速度为每秒154cm 时,△BPD 与△CQP 全等.4. 解:如图,由题意得BP =2t∵正方形ABCD 的边长为10cm ∴AB =BC =10 ∴PC =10-2t ∵AE =4 ∴BE =10-4 =6①要使△BEP ≌△CPQ , 则需EB =PC ,BP =CQ 即6=10-2t ,CQ =2t ∴t =2,CQ =4则点Q 的速度为Q v =s t =42=2(cm/s )即当t =2,Q 的速度为每秒2cm 时,△BEP ≌△CPQ . ②要使△BEP ≌△CQP , 则需BP =CP ,BE =CQ 即2t =10-2t ,CQ =6∴t =52则点Q 的速度为Q v =s t=6×25=125(cm/s )即当t =52,Q 的速度为每秒125cm 时,△BEP ≌△CQP .综上所述,当t =2,Q 的速度为每秒2cm 或t =52,Q 的速度为每秒125cm 时,△BEP 与△CQP 全等.5. 解:(1)①当P 在BC 上时,如图,由题意得BP =2t (0<t ≤2.5)1214224ABP S AB BP t t∆=⋅=⨯⨯=∴②当P 在CD 上时,(2.5<t ≤4.5)12145210ABP S AB BC∆=⋅=⨯⨯=∴ ③当P 在AD 上时,由题意得AP =14-2t (4.5<t <7)12141422284ABP S AB APt t ∆=⋅=⨯⨯=∴--() (2)①当P 在BC 上时, 如图,由题意得BP =2t要使△DCP ≌△DCE ,则需CP =CE ∵CE =2 ∴5-2t =2,t =1.5即当t =1.5时,△DCP ≌△DCE②当P 在CD 上时,不存在t 使△DCP 和△DCE 全等 ③当P 在AD 上时,由题意得BC +CD +DP =2t ∵BC =5,CD =4, ∴DP =2t -9要使△DCP ≌△CDE ,则需DP =CE 即2t -9=2,t =5.5即当t =5.5时,△DCP ≌△CDE .综上所述,当t =1.5或t =5.5时,△DCP 和△DCE 全等.6. 解:(1)①当Q 在CD 上时,如图,由题意得CQ =2t ,BP=t ∴CP=5-t (0<t ≤1.5)2121(5)22 5CPQ S CP CQt t t t ∆=⋅=-⋅=-∴11 ②当Q 在DA 上时,(1.5<t ≤4)121(5)327.5 1.5CPQ S CP CDt t∆=⋅=⨯=∴--③当Q 在AB 上时,由题意得BQ =11-2t (4<t <5) 2121(5)(112)2215522CPQ S CP BQt t t t ∆=⋅=-⨯-=-+∴(2)①当Q 在CD 上时,不存在t 使△ABP 和△CDQ 全等 ②当Q 在AD 上时,如图,由题意得DQ =2t -3要使△ABP ≌△CDQ ,则需BP =DQ∵DQ =2t -3,BP =t∴t =2t -3,t =3即当t =3时,△ABP ≌△CDQ .③当Q 在AB 上时,不存在t 使△ABP 和△CDQ 全等 综上所述,当t =3时,△ABP 和△CDQ 全等.。
三角形全等之动点问题(习题)➢ 例题示范例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB -BC -CD 方向运动,到达点D 时停止运动.连接AP ,DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为6.【思路分析】1.研究背景图形,标注四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°. 2.分析运动过程,分段①分析运动过程:动点P 的起点、终点、状态转折点,以及对应的时间范围.0≤t ≤62s2sDC(2/s) P :②根据状态转折点分为三段:02t ≤≤,24t <≤,46t <≤,需要对每一段分别进行分析. 3.表达线段长,建等式①当02t ≤≤时,即点P 在线段AB 上,PDCB A此时AP =2t ,AD =4,12ADP S AD AP =⋅⋅△,即16422t =⋅⋅,32t =,符合题意.②当24t <≤时,即点P 在线段BC 上,PDC B A AB CDABCDP DCB A此时1144822ADP S AD AB =⋅⋅=⨯⨯=△,不符合题意,舍去.③当46t <≤时,即点P 在线段CD 上,PAB CD此时DP =12-2t ,AD =4,12ADP S AD DP =⋅⋅△,即164(122)2t =⋅⋅-,92t =,符合题意. 综上,当t 的值为32或92时,△ADP 的面积为6.➢ 巩固练习1. 已知:如图,在等边三角形ABC 中,AB =6,D 为BC 边上一点,AP且BD=4.动点P从点C出发以每秒1个单位的速度沿CA向点A运动,连接AD,BP.设点P运动时间为t秒,求当t为何值时,△BPA≌△ADC.2.如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.3.已知:如图,在等边三角形ABC中,AB=10 cm,点D为边AB上一点,AD=6 cm.点P在线段BC上以每秒2 cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设CQBEPA DA点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q 的运动速度.4.已知:如图,在△ABC中,AB=AC=12,BC=9,点D为AB的中点.(1)如果点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,则经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,则当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过多长时间,点P与点Q 第一次在△ABC的哪条边上相遇?5.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动.设点F的运动时间为t秒.(1)请用含t的式子表达△ABF的面积S.(2)是否存在某个t值,使得△ABF和△DCE全等?若存在,求出所有符合条件的t值;若不存在,请说明理由.➢思考小结1.动点问题的处理方法:①______________________;②______________________,________;③______________________,________.2.分析运动过程包括4个方面(四要素):①起点、________、__________;②_________________________;③根据_____________分段;④所求目标.3.当研究目标多变或问题情形复杂时,我们往往将问题拆解成几个较为简单的问题来进行考虑,动点问题也是如此.具体分析动点问题时,往往会先研究背景图形,再分析运动过程、分段,为最后表达线段长,建等式做好准备.因为动点运动方向的改变不仅会改变线段长的表达,还可能改变和动点相关的图形的形状,所以要先分段,然后逐段分析,表达线段长,建等式.【参考答案】1.当t为4秒时,△BPA≌△ADC秒时,△PBE≌△QBE2.当x为833. ①当t 为52秒时,△BPD ≌△CPQ ,此时Q 的速度为85cm/s .②当t 为3秒时,△BPD ≌△CQP ,此时Q 的速度为2cm/s . 4. (1)①全等②Q 的速度为4cm/s 时,能够使△BPD 与△CQP 全等 (2)经过24秒,点P 与点Q 第一次在BC 边上相遇. 5.(1)034351258432t s tt s t s t <=<=<<=-+≤≤,,,(2)t 为1秒或7秒时,△ABF 与△DCE 全等。
A
B
C
E F
全等三角形中的动点问题
1、如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF=.
2、在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).
3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2011次,点P依次落在点P1,P2,P3,P4,…,P2007的位置.试写出P1,P3,P50,P2011的坐标.
4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.
(1)求证:△ADF≌△CEF
(2)试证明△DFE是等腰直角三角形
5、如图,在等边ABC
∆的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问(1)在爬行过程中,CD和BE始终相等
吗?
(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中CQE
CQE
∠60
∠的大小条件不变,求证:︒
=
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确
6、如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN 是等边三角形.
(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;
(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.
7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.
(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与
CQP △全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?
A
Q
C
D
B
图1 图2 图3
8、如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ).
(1)若m = n 时,如图,求证:EF = AE ;
(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.
9.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .
(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.
①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.
A
E
E
A
C C
D D B
B
图1 图2 A
A
备用图
备用图
A
B
C
D
E F
G
H K
M
N
1
2
3
45
678
10.如图, 直线l 与x 轴、y 轴分别交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 出发,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 出发,以每秒2个单位长度的速度沿O →M 的方向运动.已知点QP 、同时出发,当点Q到达点M 时,QP 、两点同时停止运动, 设运动时间为
t 秒.
(1)设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范围. (2)当t 为何值时,QP 与l 平行?
11、如图,AC 为正方形ABCD 的一条对角线,点E 为DA 边延长线上的一点,连接BE ,在BE 上
取一点F ,使BF BC =,过点B 作BK BE ⊥于B ,交AC 于点K ,连接CF ,交AB 于点H ,交BK 于点G . (1)求证:BG BH =; (2)求证:AE BG BE +=
12、已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题: (1)当t 为何值时,△PBQ 是直角三角形? (2)设四边形APQC 的面积为y (cm 2),求y 与t 的
关系式;是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;
13、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.
C P
Q
A
M
N C
P
Q
B
A M N C
P
Q
B
A M N
B
Q
14、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?
(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.
15、在ABC ∆中,,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。
过点P 作PE ∥BC 交AD 于点E ,连结EQ 。
设动点运动时间为x 秒。
(1)用含x 的代数式表示AE 、DE 的长度;
(2)当点Q 在BD (不包括点B 、D )上移动时,设EDQ ∆的面积为2()y cm ,求y 与月份x 的函数关系式,并写出自变量x 的取值范围; (3)当x 为何值时,EDQ ∆为直角三角形。
16. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12 cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
设运动时间为t 秒。
(1)求证:当t =2
3
时,四边形
APQD 是平行四边形;
P
(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。
B
P。