煤层瓦斯赋存与流动理论
- 格式:pdf
- 大小:276.14 KB
- 文档页数:3
瓦斯赋存渗流的主要通道瓦斯赋存渗流是指在地下煤层或其他矿层中,由于煤层中的瓦斯在地下水或者其他介质的影响下,通过渗透、扩散等方式向煤层周围的空间中移动的过程。
瓦斯赋存渗流的主要通道包括裂隙、孔隙和煤体内部。
裂隙是瓦斯赋存渗流的重要通道之一。
地下煤层或其他岩石中常常存在着裂隙,这些裂隙可以是由地壳运动、岩层变形、岩石破碎等因素造成的。
瓦斯通过这些裂隙的连接,可以在煤层或岩石中自由移动。
裂隙的存在对瓦斯赋存渗流起到了促进作用。
孔隙也是瓦斯赋存渗流的重要通道之一。
地下煤层或其他岩石中常常存在着孔隙,这些孔隙可以是由于煤层或岩石的沉积、溶蚀等过程形成的。
瓦斯通过这些孔隙的连接,可以在煤层或岩石中自由移动。
孔隙的存在对瓦斯赋存渗流也起到了促进作用。
煤体内部也是瓦斯赋存渗流的重要通道之一。
煤层中的煤体具有较大的比表面积和较高的孔隙度,这使得瓦斯在煤体内部可以形成一种较为复杂的渗流网络。
瓦斯可以通过煤层中的孔隙、裂隙等通道,沿着煤体的纵向和横向方向进行渗流。
煤体内部的通道对瓦斯赋存渗流起到了重要的作用。
瓦斯赋存渗流的通道不仅受到煤层或岩石的物理性质的影响,还受到地下水和其他介质的影响。
地下水可以通过渗流的方式,进入煤层或岩石中,与瓦斯发生相互作用,影响瓦斯的运移和分布。
瓦斯也可以通过扩散的方式,向地下水中释放,从而影响地下水的品质。
地下水和其他介质对瓦斯赋存渗流的通道和路径具有一定的控制作用。
瓦斯赋存渗流的主要通道的研究对于煤层气的开发利用和瓦斯灾害的防治具有重要意义。
通过深入研究瓦斯赋存渗流的通道特征和运移规律,可以为煤层气的高效开发提供科学依据和技术支撑。
同时,研究瓦斯赋存渗流的通道对于预测和评估煤层气和瓦斯灾害的发生概率和危害程度,以及制定相应的防治措施具有重要意义。
瓦斯赋存渗流的主要通道包括裂隙、孔隙和煤体内部,这些通道在瓦斯的运移和分布过程中起到了重要的作用。
研究瓦斯赋存渗流的通道特征和运移规律,对于煤层气的开发利用和瓦斯灾害的防治具有重要意义。
煤矿瓦斯赋存和运移的力学机制及应用研究瓦斯既是煤矿重要的致灾因素之一,又是重要的清洁能源。
导致瓦斯灾害频发的根本原因是瓦斯赋存规律认识不清,而直接原因是瓦斯运移规律认识不清。
针对此问题,运用瓦斯地质学、岩石力学、渗流力学和数值仿真等理论,采用理论分析、数值分析和现场实验相结合的研究方法,以受力分析及力的作用结果为主线,围绕煤矿瓦斯赋存和运移的力学机制及应用开展研究,取得了一些有意义的成果。
基于前人的研究成果,提出了瓦斯赋存地质构造逐级控制的力学解释:瓦斯赋存受地质构造及其演化控制;构造应力场的性质控制着构造的性质、范围和强度,高级别构造应力场控制低级别构造应力场;通过研究各期构造运动应力场及现代构造应力对构造形成与性质、煤体物理力学性质等的影响,分离出构造挤压剪切区、拉张裂陷区;构造挤压剪切,易破坏煤体形成构造煤,煤层透气性低,利于瓦斯保存和瓦斯富集,控制着瓦斯突出危险区分布;拉张裂陷,应力释放,煤岩层透气性好,有利于瓦斯逸散。
系统研究了现代应力作用下断层、褶皱构造对瓦斯赋存尤其瓦斯突出的影响。
断层附近是否具有突出危险性主要取决于断层走向与现代应力的关系及构造煤的厚度。
断层走向与最大主应力平行时,利于应力释放,有利于瓦斯释放,但断层尖灭端出现应力集中,瓦斯保存条件相对较好,需预防瓦斯事故:随着断层走向与主应力方向夹角的增大,挤压应力影响范围随之增大,突出危险范围也随之增大;断层走向与最大主应力垂直时,有利于断层形成应力闭合空间,煤层渗透性低,从而形成大范围的瓦斯富集区,突出危险性最大。
背斜两翼一定范围内剪应力集中,可能是造成该带瓦斯突出严重的原因。
建立了矿井瓦斯涌出量反演瓦斯含量及含量取值方法,提出了基于瓦斯地质图的瓦斯资源量计算方法,已被应用到国家能源局组织的全国煤矿瓦斯地质图编制中,计算了22省(区、市)瓦斯资源量,汇总了中国煤矿2000m以浅瓦斯资源量为29.17万亿m3。
基于含瓦斯煤岩破裂过程气固耦合作用模型,采用RFPA-GAS软件模拟了上保护层开采过程,实践证明数值试验的结果和实测效果有较好的一致性。
矿井瓦斯赋存规律的探讨瓦斯是地质作用的产物,现今煤层瓦斯的赋存状态是含煤地层经受复杂地质历史演化作用的结果,受着瓦斯生成、运移、保存条件综合地质作用的控制。
研究煤层中瓦斯的赋存状况是矿井瓦斯研究中的重要一环。
多年的实践证明,只有运用板块构造理论、区域地质演化理论、瓦斯赋存构造逐级控制理论才能揭示瓦斯赋存机理、规律。
1.煤层瓦斯赋存理论煤体中赋存瓦斯的多少不仅影响煤层瓦斯含量的大小,而且对煤层中瓦斯流动及其发生灾害的危险性的大小也有很大的影响。
因此,煤层中瓦斯的赋存状况的研究是矿井瓦斯研究中的重要部分。
1.1煤中瓦斯的赋存状态煤体是一种含有大量空隙和裂隙的复杂的多孔固体,这样就会有很大的自由空间和空隙表面形成。
因此,煤中瓦斯一般以游离状态和吸附状态两种形式赋存。
煤是通过物理吸附对瓦斯形成吸附作用,其吸附作用是瓦斯分子和碳分子间相互吸引的结果,而吸附瓦斯又分为吸着瓦斯和吸收瓦斯,通常吸收瓦斯是指进入煤体内部的瓦斯,吸着瓦斯是指附着在煤体表面的瓦斯。
1.2煤层瓦斯赋存的垂向分带当煤层具有露头或直接为透气性较好的第四系冲积层覆盖时,在煤层内气体会朝两个不同方向的运移,一是煤化过程中生成的瓦斯经煤层、上覆岩层和断层不断由煤层深部向地表运移,一是地面空气、表土中的生物化学和化学反应生成的气体向煤层深部渗透扩散,从而使赋存在煤层中的瓦斯表现出垂向分带特征。
一般将煤层由露头自上向下分为4个带:co2-n2带、n2带、n2-ch4带、ch4带,其中前三个带总称为瓦斯风化带。
煤层瓦斯的带状分布是煤层瓦斯含量及巷道瓦斯涌出量预测的基础,也是搞好瓦斯管理的依据。
1.3影响煤层瓦斯赋存及含量的主要因素目前的研究成果认为,影响煤层瓦斯含量的主要因素有:煤层储气条件、区域地质构造和采矿工作。
(1)煤层储气条件。
煤层储气条件是煤层瓦斯赋存及含量的重要基础。
煤层的埋藏深度、煤层和围岩的透气性、煤层倾角、煤层露头以及煤的变质程度等是储气条件的主控因素。
料煤炭学报 2 卷 ( 二煤层瓦斯涌出量的针算 1 掘进巷道 . : 以单巷掘进为 : 门曰曰曰厂厂「厂厂曰厂门口「曰曰曰口二七 r l 一匕 r 「吧 e 竺 w 阴l l 杯 l l i }—门r 尸- 六- r- 卜卜卜 l , 巨, l 厂「「厂厂厂尸日「厂「口口巨口口口 l ~ , . - ‘ 卜舀‘‘ ‘ 石‘二‘ . 下二二二一 . , ~ - 一 l 一 l ! l 一 l 一 l 1 例 , 每 Q 日巷道瓦斯涌出量 Q R 为落 ~ - . 竺 ~ l 一一 M l 2 口门口口口「门口口「厂下口厂日「习曰曰一曰尸曰曰曰「尸—尸曰叮叮日门日尸「日门「日口门门口口门日曰「一口门曰「日口曰曰一日口日二〔二一下【二二巨二「兰了厂厂廿于一十斤曰目团「 - 广口口口口门门口旦口] 口口一下口口口 , ; 丁 0 、 + Md ‘ QK 式中『 l . . J 【 , ~ 门「- 吧, 尸 . 卜卜 . . 白少. 司护. . 叫吧 ,~ , . 吮二全 , QK 1 . 工作面 2 . 掘进巷道 (北票三宝台吉 b 心—巷道长度米—工作面瓦斯涌出量—Q 一 M ( , 煤层厚度 , 米 ; ; , 二 bV 二。
一俨 1 , 图 11 瓦斯涌出量与风量的关系米/ “ 日; , Qr : 。
, —巷道掘进速度—日; 巷道掘进竟度米 , ; 米/ 气一一牛今 r , —剩余含量 ( 下的含量 : 煤层原始瓦斯含量和 1 。
大气压将 ( 1 1 式代入得掘进巷道瓦斯来源。
e。
Q 一、万‘% + 万。
(r 一r , 。
(24 从式中可以看出巷道瓦斯涌出量与掘进速度成正比 , 巷道中瓦斯。
浓度与巷道长度呈抛物袋关系若煤层厚度略大于巷道的高度图13 , 由于巷道的卸压作用 , 。
, 仍可按全部开切煤层爵算工作面前方瓦斯压力分布 , 但在特厚煤层在径向流动中应按径向流动爵算。
中孔径的大小对瓦斯涌出量影响很小所以在厚煤层中巷道瓦斯涌出量井不决定于巷道 , 尺寸和煤壁暴露面积 2 . , 而决定于甜参数回采工作面 : 回采工作面瓦斯涌出与掘进头前方煤体瓦斯涌出情况相同。
深部煤层瓦斯赋存规律及其涌出特征简介煤炭资源是我国主要能源资源之一,煤层瓦斯则是其中一种无形的能源资源。
深部煤层瓦斯赋存规律及其涌出特征的研究,可以为煤层气开发提供理论依据和技术支撑,同时也可以为煤层气的安全生产提供重要参考。
本文将围绕深部煤层瓦斯的赋存规律及其涌出特征展开讨论。
深部煤层瓦斯赋存规律赋存形式煤层瓦斯的赋存形式一般包括两种,一种是吸附在煤体孔隙中,另一种是游离在煤层裂隙中。
在深部煤层中,由于地下水的压力增大以及煤体孔隙逐渐关闭等因素的影响,煤层瓦斯的主要赋存形式是游离气体。
吸附气体则占据了较少的比例。
煤性对瓦斯赋存的影响煤层瓦斯的赋存量与煤性有直接关系。
由于不同煤性的孔隙率和比表面积不同,因此不同煤性的煤层瓦斯赋存量也会有所不同。
一般来说,具有较高孔隙率和比表面积的煤层,其孔隙中的煤层瓦斯含量相对较高。
同时,煤层的厚度也会对瓦斯赋存量产生影响。
厚度较小的煤层由于煤体间的连通性较差,瓦斯的堆积容易导致局部区域的高压,进而影响其可开采性。
底板岩性对瓦斯赋存的影响在深部煤层中,底板岩性的不同也会对煤层瓦斯的赋存量产生影响。
底板岩性若是致密型岩石,则瓦斯无法透过岩石而向地面逸出,而会向煤层上部和两侧的煤体中渗透和堆积,从而增加其含量。
反之,底板岩性若为通透型岩石,则瓦斯会向地面逸出,导致其含量减少。
深部煤层瓦斯的涌出特征涌出类型深部煤层瓦斯的涌出类型通常分为两种,一种是常规涌出,另一种是突发涌出。
常规涌出是由瓦斯压力自然产生,较为稳定。
而突发涌出则是由于煤层瓦斯压力快速释放,可能会导致爆炸等灾害事件的发生。
涌出量深部煤层瓦斯的涌出量与煤层深度、煤性、地质构造等因素有关。
一般来说,随着煤层深度的增加,瓦斯的赋存量和压力会增大,从而导致涌出量增加。
此外,含有大量煤层气的煤层,其瓦斯的涌出量也会相应增加。
涌出过程深部煤层瓦斯的涌出过程是一个较为复杂的过程,涉及到煤层瓦斯的释放、扩散、迁移等环节。
矿井瓦斯赋存规律的探讨瓦斯是地质作用的产物,现今煤层瓦斯的赋存状态是含煤地层经受复杂地质历史演化作用的结果,受着瓦斯生成、运移、保存条件综合地质作用的控制。
研究煤层中瓦斯的赋存状况是矿井瓦斯研究中的重要一环。
多年的实践证明,只有运用板块构造理论、区域地质演化理论、瓦斯赋存构造逐级控制理论才能揭示瓦斯赋存机理、规律。
1.煤层瓦斯赋存理论煤体中赋存瓦斯的多少不仅影响煤层瓦斯含量的大小,而且对煤层中瓦斯流动及其发生灾害的危险性的大小也有很大的影响。
因此,煤层中瓦斯的赋存状况的研究是矿井瓦斯研究中的重要部分。
1.1煤中瓦斯的赋存状态煤体是一种含有大量空隙和裂隙的复杂的多孔固体,这样就会有很大的自由空间和空隙表面形成。
因此,煤中瓦斯一般以游离状态和吸附状态两种形式赋存。
煤是通过物理吸附对瓦斯形成吸附作用,其吸附作用是瓦斯分子和碳分子间相互吸引的结果,而吸附瓦斯又分为吸着瓦斯和吸收瓦斯,通常吸收瓦斯是指进入煤体内部的瓦斯,吸着瓦斯是指附着在煤体表面的瓦斯。
1.2煤层瓦斯赋存的垂向分带当煤层具有露头或直接为透气性较好的第四系冲积层覆盖时,在煤层内气体会朝两个不同方向的运移,一是煤化过程中生成的瓦斯经煤层、上覆岩层和断层不断由煤层深部向地表运移,一是地面空气、表土中的生物化学和化学反应生成的气体向煤层深部渗透扩散,从而使赋存在煤层中的瓦斯表现出垂向分带特征。
一般将煤层由露头自上向下分为4个带:CO2-N2带、N2带、N2-CH4带、CH4带,其中前三个带总称为瓦斯风化带。
煤层瓦斯的带状分布是煤层瓦斯含量及巷道瓦斯涌出量预测的基础,也是搞好瓦斯管理的依据。
1.3影响煤层瓦斯赋存及含量的主要因素目前的研究成果认为,影响煤层瓦斯含量的主要因素有:煤层储气条件、区域地质构造和采矿工作。
(1)煤层储气条件。
煤层储气条件是煤层瓦斯赋存及含量的重要基础。
煤层的埋藏深度、煤层和围岩的透气性、煤层倾角、煤层露头以及煤的变质程度等是储气条件的主控因素。
煤层瓦斯赋存及流动规律摘要: 煤矿井下的瓦斯主要来自煤层和煤系地层,还与煤的成因息息相关。
瓦斯在煤层中的赋存状态一般有两种,即吸附状态和游离状态。
而煤层瓦斯含量实际上是指吸附瓦斯量和游离瓦斯量之和,其值的大小往往是评价煤层瓦斯储量和是否具有抽放价值的重要指标。
煤层瓦斯含量的多少主要取决于保存瓦斯的条件,而不是生成瓦斯量的多少,也就是说,不仅取决于煤质质量,而更重要的是取决于储存瓦斯的地质条件。
根据目前的研究成果认为,影响煤层瓦斯含量的主要因素有:煤层储气条件、区域地质构造和采矿工作。
另一方面,煤层是孔隙、裂隙结构组成的物质,瓦斯在孔隙中的流动主要是扩散,在煤层裂隙系统的流动属于渗透。
本文将对煤层瓦斯赋存及流动规律进行阐述,并作简单的分析。
关键词:煤层瓦斯赋存流动规律Coal seam gas occurrence and flow pattern Abstract: the coal gas mainly comes from coal and coal measure strata, it is closely related to the causes of coal. Gas in the coal seam occurrence state is generally has two kinds, namely the adsorption state and free state. And coal seam gas content actually refers to the amount of gas and free gas quantity, the sum of its value tends to be the size of the evaluation of coal seam gas reserves and is an important index of drainage value. Coal seam gas content depends mainly on save gas conditions, it is not how much the amount of generated gas, that is to say, not only depends on the quality of coal, but more importantly depends on the geological conditions of gas storage. According to current research argues that the main factors affecting gas content of coal seam are: coal gas storage conditions, regional geological structure and mining work. On the other hand, the coal seam is material composed of pore and fracture structure. Gas flow in the pore is mainly spread in the flow of the fissure system of coal seam belongs to penetration. This article willexplain coal seam gas occurrence and flow pattern, and make a simple analysis.Key words: coal seam gas , occurrence, flow ,pattern1.煤层瓦斯赋存影响因素瓦斯的生成、运移、赋存和富集,受地质条件的控制。