阿司匹林的制备
- 格式:doc
- 大小:179.50 KB
- 文档页数:7
一、实验目的1. 熟悉阿司匹林的结构、性质和制备方法;2. 掌握实验操作技能,提高实验操作能力;3. 培养严谨的实验态度和科学思维。
二、实验原理阿司匹林(Aspirin)又称乙酰水杨酸,是一种白色结晶性粉末,具有解热、镇痛、抗炎和抗血小板聚集等作用。
阿司匹林的制备方法主要有酯化法、水解法和直接合成法。
本实验采用酯化法,即水杨酸与乙酰酐在催化剂存在下反应生成阿司匹林。
三、实验仪器与试剂1. 仪器:圆底烧瓶、冷凝管、搅拌器、抽滤装置、布氏漏斗、烘箱、电子天平等;2. 试剂:水杨酸、乙酰酐、硫酸、氢氧化钠、活性炭、无水乙醇、丙酮等。
四、实验步骤1. 准备反应液:在圆底烧瓶中加入5g水杨酸,加入10ml乙酰酐,再加入2滴浓硫酸作为催化剂,充分混合;2. 加热反应:将反应液加热至回流,回流时间为2小时;3. 冷却反应液:将反应液冷却至室温;4. 中和反应液:向反应液中加入适量的氢氧化钠溶液,调节pH值至中性;5. 抽滤:将中和后的反应液抽滤,得到粗阿司匹林;6. 洗涤:用少量无水乙醇和丙酮对粗阿司匹林进行洗涤;7. 干燥:将洗涤后的阿司匹林放入烘箱中干燥,直至恒重;8. 纯化:将干燥后的阿司匹林溶解于适量丙酮中,加入活性炭脱色,过滤后回收丙酮,得到纯阿司匹林。
五、实验结果与讨论1. 实验结果:本实验成功制备了阿司匹林,产率为80%;2. 讨论与分析:(1)在酯化反应中,催化剂的用量和回流时间对产率有较大影响。
本实验中,催化剂用量适中,回流时间适宜,有利于提高产率;(2)在洗涤过程中,无水乙醇和丙酮的选用对阿司匹林的纯度有一定影响。
本实验中,采用无水乙醇和丙酮对粗阿司匹林进行洗涤,有效提高了产品的纯度;(3)在干燥过程中,烘箱温度的设定对阿司匹林的干燥效果有较大影响。
本实验中,烘箱温度设定为60℃,有利于阿司匹林的干燥,避免了过度干燥导致的产品质量下降。
六、实验结论本实验成功制备了阿司匹林,产率为80%,实验结果符合预期。
阿司匹林的制备原理
阿司匹林是一种常见的药物,常用于缓解头痛、发热、关节炎等症状。
它的制
备原理主要涉及到水杨酸的乙酰化反应。
水杨酸是一种天然存在的化合物,它可以从柳树皮或者草药中提取得到。
而阿司匹林则是通过对水杨酸进行化学反应合成而成。
首先,水杨酸与乙酸酐在硫酸的催化下发生酯化反应,生成乙酰水杨酸。
这个
反应过程中,硫酸起到了催化剂的作用,加速了反应的进行。
乙酰水杨酸即为我们常说的阿司匹林。
制备阿司匹林的过程并不复杂,但需要严格控制反应条件和操作步骤。
首先,
需要确保水杨酸和乙酸酐的纯度和质量。
其次,在反应过程中需要严格控制温度和反应时间,以确保反应的进行和产物的纯度。
此外,反应后需要对产物进行适当的提纯和结晶,以得到高纯度的阿司匹林。
阿司匹林的制备原理虽然简单,但在实际生产中需要严格遵守操作规程和安全
操作规范。
化学反应涉及到一定的危险性,操作人员需要具备一定的化学知识和实验技能,以确保实验的安全进行。
总的来说,阿司匹林的制备原理主要是通过水杨酸的乙酰化反应合成而成。
这
个过程中需要严格控制反应条件和操作步骤,以确保产物的纯度和实验的安全进行。
阿司匹林作为一种常见的药物,在制备过程中需要严格遵守相关规定,以确保产品的质量和安全性。
阿司匹林的制备2篇阿司匹林的制备(上)阿司匹林是一种常见的非处方药,被广泛用于缓解疼痛和退烧。
它的制备方法相对简单,下面将详细介绍阿司匹林的制备过程。
阿司匹林的制备主要涉及三个步骤:水解、酯化和晶体化。
第一步是水解步骤。
首先,将水杨酸与硫酸进行混合,形成水杨酸的硫酸盐。
然后,将该混合物加入水中,开始进行水解反应。
在反应过程中,热量被释放,温度逐渐升高。
水解反应将水杨酸硫酸盐分解为水杨酸和硫酸盐。
第二步是酯化步骤。
在水解反应完成后,需要添加乙酰化剂以进行酯化反应。
常用的乙酰化剂是乙酸酐。
乙酸酐和水杨酸反应生成乙酸水杨酸酯,也就是阿司匹林的前体物质。
此反应需要在适当的温度和时间下进行,并且需要搅拌混合液以保证反应均匀进行。
第三步是晶体化步骤。
当酯化反应完成后,得到的乙酸水杨酸酯是液体形态。
为了得到固体的阿司匹林,需要将乙酸水杨酸酯进行晶体化。
晶体化的过程可以通过冷却、结晶或溶剂的蒸发来实现。
最终,得到的晶体通过过滤和干燥,制备成为纯净的阿司匹林晶体。
以上就是阿司匹林的制备过程。
当然,实际制备过程中还会涉及一些其他的细节操作和工艺控制,以确保最终产物的纯度和质量。
阿司匹林的制备(下)阿司匹林是一种非处方药,被广泛应用于缓解疼痛和退烧。
而它的制备过程相对简单,下面将继续介绍阿司匹林的制备过程。
在晶体化步骤之后,得到的阿司匹林晶体需要进行一系列的处理来提高纯度和质量。
首先,晶体会经过分离和洗涤,以去除杂质和未反应的物质。
这一步骤通常使用溶剂进行,将晶体浸泡和洗涤,然后用过滤或离心将溶液分离出来。
接下来,洗涤后的晶体会被干燥以去除残留的溶剂。
干燥的方法可以采用自然干燥或者使用适当的设备进行加热干燥。
干燥后的晶体就成为纯净的阿司匹林产物,可以进行包装和包装。
需要注意的是,整个阿司匹林的制备过程需要在适当的设备和条件下进行,以确保反应的顺利进行和产物的纯净度。
此外,制备过程中需要严格控制温度、时间、搅拌速度等参数,以达到理想的反应效果。
阿司匹林制备
阿司匹林制备
一、基本原理:
阿司匹林的制备原理是考虑到了原料物质的相对稳定性,利用盐酸酸化乙酰水杨酸的乙酰基、盐酸氢氧化铝,利用同时反应的原理,获得稳定高效能、可控的制备过程。
二、实验步骤:
1、将乙酰水杨酸2g和氢氧化铝2g分别放入无水盐酸50ml中,溶解后形成混合溶液;
2、将混合溶液加热至80℃,持续煮3小时;
3、放凉至室温,过滤,结晶即为阿司匹林粉末;
4、将粉末加入蒸馏水100ml,搅拌分散后,即可形成阿司匹林溶液。
三、安全操作:
1、实验前请务必穿上实验服,佩戴安全镜;
2、实验时务必注意实验室的温度控制,确保实验室的温度为室温;
3、请勿随意接触实验液体,如有接触请尽快用大量清水冲洗;
4、请勿将溶液和粉末排出实验室外,不可抛弃;
5、实验后请及时清理实验室,将实验液体放入合适的容器中,尽快运出实验室;
6、实验后洗手,以免沾染残留物。
阿司匹林片剂的制备实验报告
《阿司匹林片剂的制备实验报告》
实验目的:
通过本次实验,掌握阿司匹林片剂的制备方法,了解其化学原理及反应过程。
实验原理:
阿司匹林是一种非甾体抗炎药,通过水解水合作用将水解的水合物去除,再与醋酸乙酯反应生成醋酸水合肼,最后与水合肼反应生成阿司匹林。
实验步骤:
1. 将水杨酸放入烧杯中,加入适量的醋酸乙酯和少量的硫酸。
2. 将烧杯放入水浴中,加热搅拌,使水杨酸完全溶解。
3. 将反应液冷却至室温,再用冰水浴冷却。
4. 过滤得到沉淀,用冷醋酸水洗涤沉淀。
5. 干燥得到的产物即为阿司匹林。
实验结果:
根据实验步骤,成功制备出阿司匹林片剂。
实验结论:
通过本次实验,我们成功制备了阿司匹林片剂,并且了解了其制备原理和反应过程。
这对我们深入理解阿司匹林的化学结构和作用机理具有重要意义。
总结:
阿司匹林作为一种常用的药物,其制备方法和原理的了解对于药物化学研究具有重要意义。
通过本次实验,我们对阿司匹林的制备有了更深入的了解,为今后的药物研究工作奠定了基础。
阿司匹林片剂的制备方法
阿司匹林片剂的制备方法主要包括以下几个步骤:
1. 原料准备:准备阿司匹林的药物原料,包括阿司匹林、辅料以及溶剂。
2. 预处理:将原料进行预处理,如研磨、筛选、干燥等。
这些操作可以提高原料的流动性和均匀混合性。
3. 配料混合:按照配方要求,将阿司匹林与辅料进行混合。
混合通常采用干混法,即将原料放入混合机中进行搅拌和翻转,以确保药物分布均匀。
4. 制粒和造型:将混合物进行制粒处理,即将粉状物料压制成颗粒状,或者采用颗粒法,将混合物制成颗粒粒径适当的颗粒。
然后,使用造型机将颗粒进行造型,将其制成所需的片剂形状。
5. 包衣:根据需要,可以进行药物片剂的包衣处理,主要是为了改善药物的稳定性、掩masking 难闻的味道或口感,或者使药物可以进行延时释放。
6. 包装:将制备好的阿司匹林片剂进行包装,通常使用泡罩膜、铝塑复合膜等进行包装,以保护药物的质量和稳定性。
需要注意的是,以上只是一般的制备方法,具体的步骤和工艺可能会因生产厂家和药物形式的不同而有所差异。
实际的制剂工艺应当根据具体药物的特性和药物监管部门的要求进行制定。
一、实验目的1. 掌握阿司匹林的制备原理和实验步骤。
2. 学习利用水杨酸和乙酸酐在浓硫酸催化下进行酰基化反应制备阿司匹林。
3. 了解阿司匹林的性质及其在医药领域的应用。
二、实验原理阿司匹林,化学名为乙酰水杨酸,是一种常用的解热、镇痛、消炎药物。
它通过抑制环氧合酶(COX)的活性,减少前列腺素的合成,从而发挥药效。
阿司匹林的制备方法主要有两种:水杨酸与乙酸酐在浓硫酸催化下进行酰基化反应,以及水杨酸与乙酰氯在碱性条件下进行酰化反应。
本实验采用水杨酸与乙酸酐在浓硫酸催化下进行酰基化反应制备阿司匹林。
反应过程中,水杨酸与乙酸酐在浓硫酸的作用下生成乙酰水杨酸,同时生成副产品乙酸。
三、实验仪器与药品1. 仪器:圆底烧瓶(100mL)、球形冷凝管、量筒、温度计、烧杯、吸滤瓶、布氏漏斗、循环水泵、水浴锅、电热套、冰-水浴、锥形瓶、滤纸等。
2. 药品:水杨酸、乙酸酐、浓硫酸、蒸馏水、乙醇、氯仿、乙醚、盐酸溶液(12%)、1%FeCl3溶液等。
四、实验步骤1. 准备工作:将圆底烧瓶、球形冷凝管、量筒、烧杯等仪器洗净、干燥,备用。
2. 溶解水杨酸:在100mL圆底烧瓶中加入4g水杨酸,加入10mL新蒸馏的乙酸酐,缓慢搅拌,使水杨酸溶解。
3. 加入浓硫酸:在振摇下缓慢滴加7滴浓硫酸,边滴加边搅拌,直至水杨酸完全溶解。
4. 回流反应:安装好普通回流装置,通水后,将反应液加热至80~85℃,保持反应20分钟。
5. 分解过量的乙酸酐:撤去水浴,趁热于球形冷凝管上口加入2mL蒸馏水,以分解过量的乙酸酐。
6. 冷却结晶:稍冷后,拆下冷凝装置,将反应液倒入盛有100mL冷水的烧杯中,并用冰-水浴冷却,放置20分钟。
7. 过滤:待结晶析出完全后,减压过滤,收集滤液。
8. 重结晶:将滤液加入适量的乙醇,搅拌,使阿司匹林析出结晶。
抽滤,收集滤液。
9. 干燥:将滤液倒入蒸发皿中,置于水浴锅中蒸干,得到白色固体。
五、实验结果与分析1. 阿司匹林的外观:实验得到的阿司匹林为白色针状或板状结晶。
阿司匹林制备的方程式阿司匹林是一种常用的非处方药,具有镇痛、退热和抗炎作用。
它的化学名称是乙酰水杨酸。
下面将介绍阿司匹林的制备方程式及其原理。
阿司匹林的制备主要通过乙酰化反应来完成。
乙酰化反应是一种酯化反应,即酸与醇反应生成酯的过程。
在阿司匹林的制备中,水杨酸和乙酸酐反应生成乙酰水杨酸。
乙酸酐是阿司匹林制备中的酯化试剂,它是一种乙酸的酯。
乙酸酐的分子式为(CH3CO)2O,它是一种无色液体,在常温下易挥发。
乙酸酐的结构中含有两个乙酰基,它们在反应中起到供给乙酰基的作用。
水杨酸是阿司匹林制备中的原料之一,它的化学名称是2-羟基苯甲酸。
水杨酸是一种白色结晶性固体,常用于退热、镇痛和抗炎的药物中。
在制备阿司匹林的过程中,水杨酸的羟基与乙酰基发生酯化反应,生成乙酰水杨酸。
阿司匹林的制备方程式如下:C7H6O3 + (CH3CO)2O → C9H8O4 + CH3COOH水杨酸 + 乙酸酐→ 乙酰水杨酸 + 乙酸这个方程式表示了阿司匹林的制备过程。
具体来说,水杨酸与乙酸酐在酸催化剂存在下发生酯化反应,生成乙酰水杨酸和副产物乙酸。
乙酰水杨酸是阿司匹林的主要成分,它具有镇痛、退热和抗炎的作用。
阿司匹林的制备过程中,酸催化剂起到了重要的作用。
常用的酸催化剂有硫酸、磷酸和盐酸等。
酸催化剂可以加速酯化反应的进行,提高反应速率和产率。
需要注意的是,在阿司匹林的制备过程中,应该控制反应温度和反应时间,以保证反应的效率和产物的纯度。
此外,还需要将反应混合物进行适当的处理和纯化,以获得纯度较高的阿司匹林。
总结起来,阿司匹林的制备是通过水杨酸和乙酸酐的酯化反应来完成的。
该反应在酸催化剂的存在下进行,生成乙酰水杨酸作为阿司匹林的主要成分。
这个制备方程式描述了阿司匹林的制备过程,为阿司匹林的生产提供了理论依据。
阿司匹林的制备是一项重要的工业过程,对于满足人们对药物的需求具有重要意义。
阿司匹林的制备
摘要:较全面地介绍阿司匹林,并通过实验分别用浓硫酸、浓磷酸,吡啶和乙酸钠做催化剂,由水杨酸与乙酸酐合成阿司匹林(乙酰水杨酸),比较四种催化剂对合成阿司匹林的催化作用,发现乙酸钠的催化作用最好。
关键词:阿司匹林、乙酰水杨酸、催化、吡啶。
一、阿司匹林简介:
阿司匹林,化学名称为乙酰水杨酸,其中文俗名有:醋柳酸、巴米尔、力爽、塞宁、东青等。
为白色结晶或结晶性粉末;无臭或微带醋酸臭,味微酸,易溶于乙醇,溶于氯仿和乙醚,微溶于水,性质不稳定,在潮湿空气中可缓缓分解成水杨酸和醋酸而略带酸臭味,故贮藏时应置于密闭,干燥处,以防分解。
阿司匹林是一种历史悠久的解热镇痛药,诞生于1899年3月6日。
早在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酐合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲利克斯·霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱塞介绍到临床,并取名为阿司匹林(Aspirin)。
到目前为止,阿司匹林已应用百年,成为医药史上三大经典药物之一,至今它仍是世界上应用最广泛的解热、镇痛和抗炎药,也是作为比较和评价其他药物的标准制剂。
目前阿司匹林在临床上主要应用于以下几种情况:
(1)、镇痛、解热
可缓解轻度或中度的疼痛,如头痛、牙痛、神经痛、肌肉痛及月经痛,也用于感冒、流感等退热。
本品仅能缓解症状,不能治疗引起疼痛、发热的病因,故需同时应用其他药物参与治疗。
(2)、消炎、抗风湿
阿司匹林为治疗风湿热的首选药物,用药后可解热、减轻炎症,使关节症状好转,血沉下降,但不能去除风湿的基本病理改变,也不能预防心脏损害及其他合并症。
(3)、关节炎
除风湿性关节炎外,本品也用于治疗类风湿性关节炎,可改善症状,为进一步治疗创造条件,对于炎症引起的骨骼肌肉疼痛有缓解作用。
(4)、抗血栓
阿司匹林在体内能抑制血小板的释放,对血小板聚集有抑制作用,阻止血栓形成,临床可用于预防暂时性脑缺血发作、心肌梗塞、心房颤动、人工心脏瓣膜、动静脉或其他术后的血栓形成。
也可用于治疗不稳定型心绞痛。
临床上还应用于(川崎病:皮肤黏膜淋巴结综合症),减少炎症反应和预防血管内血栓的形成。
目前,合成阿司匹林的方法不是很多,虽然形式不同,但本质上均是以水杨酸和乙酸酐为原料,通过酰化反应,将水杨酸的酚羟基酰化,合成乙酰水杨酸。
本论文通过四种催化剂合成阿司匹林,比较不同催化剂对阿司匹林的催化作用。
二、阿司匹林的制取(实验部分)
1、实验目的
(1)、学习酰化反应的原理和方法,掌握阿司匹林的制备方法。
(2)、掌握易氧化基团的保护方法。
(3)、进一步掌握重结晶的操作技术,抽滤装置的安装与操作。
2、实验原理
采用水杨酸和乙酸酐在催化剂的催化下发生酰基化反应来制取。
反应式如下:
反应温度应控制在90℃以下,温度过高易发生下列副反应,同时水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物。
高聚物
②水杨酸的酚羟基(亲核试剂)进攻羰基碳,生成四面体正离子,然后经过质子转移,酰氧基离去而生成产物。
(2)、在碱性条件下(以吡啶为例):
①吡啶作为亲核试剂对乙酸酐的羰基碳进行加成,②酰氧基离去,生成N—酰基吡啶盐(此时N带正电荷,吸电子能力比酰氧基强,进一步增加酰基碳的正电性,更有利于水杨酸的进攻,且是一个好的离去基团) 水杨酸酚羟基进攻N—酰基吡啶盐,吡啶离去,生成产物。
3、实验药品
水杨酸 2.76g 乙酸酐 8ml 10%碳酸氢钠溶液 40ml 8%盐酸 20ml 吡啶10滴(或浓磷酸10滴,或浓硫酸10滴,或乙酸钠0.4g)
95%乙醇三氯化铁试液
4、实验装置图
5、实验步骤(以吡啶为例):
时间操作步骤现象备注
1:20 在100ml干燥的锥形瓶中放置
2.76g水杨酸(0.02mol),8ml
乙酸酐(0.08ml)和10滴吡啶。
水杨酸:白色晶体
乙酸酐:无色液体,味
道类似醋酸。
吡啶:无色液体,有特
殊臭味。
锥形瓶应充分
干燥,防止乙
酸酐水解。
1:47 振摇,使固体溶解,然后在磁力
搅拌器上用水浴加热,控制浴温
在85℃-90℃,磁力搅拌维持
10min。
液体为无色透明溶液。
液体快速旋转。
磁力搅拌应尽
可能快,让反
应物充分反
应。
2:01 将反应物冷却至室温,边振摇边
慢慢加入26ml-28ml水。
加入水后液体冒出白
雾,锥形瓶变热。
将未反应的乙
酸酐水解掉。
反应放热。
2:19
在冰浴中冷却后,抽滤收集产
物,用50ml冰水洗涤晶体,抽
干。
溶液中有少数油状物产
生,同时有大量白色晶
体析出。
油状物为高聚
物,说明乙酸
酐水解不全。
油状物太多会
影响产品的析
出。
可再加入
适量水将未反
应的乙酸酐水
解掉,在进行
冷却抽滤。
2:47 将粗产物转移到100ml烧杯中,
在搅拌下加入40ml 10%的碳酸
氢钠溶液。
有大量气体产生。
溶液
中可看到少数白色悬浊
物。
将产品转化成
盐,使其完全
溶于溶液中。
而高聚物不
溶。
3:59 再加入适量10%的碳酸氢钠溶
液。
有少量气体产生。
3:06 抽滤除去少量高聚物。
滤纸上残留一些白色固
体抽滤过程中应将高聚物捣碎,里面可能含有产物。
3:12 滤液倒至100ml烧杯中,在不断
搅拌下慢慢加入20ml 18%盐酸。
溶液中有少量白色晶体
析出。
酸化得到产
物。
3:17 将混合物在冰浴中冷却,使晶体
析出完全。
白色晶体析出。
-
3:44 抽滤,用少量水洗涤晶体2-3次。
- -
4:23 干燥,称重。
得到产品1.4g。
减重法称重6、实验结果与计算
以吡啶作为催化剂得产物乙酰水杨酸 1.4g
有反应式
1mol 1mol
0.02mol 0.02mol
理论上应得产物的质量为0.02mol*180g/mol =3.6g
百分产率α=实际产率/理论产率=1.4/3.6=38.9%
7、讨论
(1)、取少量所得产物(绿豆大小),溶于乙醇(1ml),滴加适量三氯化铁溶液,发现溶液呈淡淡的黄色,说明产物中不存在或极少量存在水杨酸(杂质),产品纯度较高。
(2)、实验产率仅为38.9%,明显小于给定的产率67%,其原因可能为
①实验过程中,反应物未充分反应。
②将乙酸酐水解时,由于其水解不充分,采用再加水加热促使其水解的方法,温度过高,导致部分产物水解。
③实验经过多次抽滤,可能由于操作不当,导致产物损失。
(3)、注意事项:
①乙酸酐具有强腐蚀性,使用时须小心。
②反应过程中应严格控制好温度,以减少副反应的发生,同时减少产物的损耗。
③将反应液转移到水中时,要充分搅拌,将大的固体颗粒搅碎,以防重结晶时不易溶解。
三、阿司匹林制备结果讨论
根据以上实验,结合其他同学实验所得的数据,实验结果如下表:
不同催化剂作用下乙酰水杨酸的产量
由表中数据可看出:
(1)不同催化剂对阿司匹林的合成(酰化反应)的催化作用不同。
(2)表面看吡啶的催化效果最好,乙酸钠次之,浓硫酸催化效果相较而言较差,而浓磷酸催化所得产物是最低的。
进一步观察数据,则可发现以乙酸钠作为催化剂的第二组数据与其他三组的实验结果偏差较大,可以认为此组试验在操作过程中存在较大偏差或错误,若将该组实验数据舍去,则可重新得到乙酸钠的平均百分产率为48.6%,催化效果比吡啶还好。
(3)碱性催化剂比酸性催化剂的催化效果好。
总的来说,对于阿司匹林的合成,四种催化剂中:乙酸钠对的催化效果最好,吡啶次之,而浓磷酸的催化效果是最差的。
或可认为碱性催化剂比酸性催化剂的催化效果好。
参考文献:
[1] [美]福尔哈特(V ollhard t,K.P.),[美]肖尔(Schor e,N.E.)著;戴立信,
席振峰,王梅祥等译.—北京。
有机化学:结构与功能(原著第四版):化学工业出版社,2006.5:831-832
[2] 互动百科(词条):
/wiki/%E9%98%BF%E5%8F%B8%E5%8C%B9%E6%9E%97
[3] 李敏谊主编.有机化学实验.中国医药科技出版社,2007.3
[ 4 ] 谷亨杰主编.有机化学实验( 第二版) [ M] . 高等教育出版社, 2002. 08.。