二分法及其matlab程序
- 格式:ppt
- 大小:443.00 KB
- 文档页数:7
matlab用二分法求方程近似根在MATLAB中,可以使用以下代码使用二分法求解方程的近似根:```matlabfunction root = bisection_method(func, a, b, tol, max_iter)% 输入参数:% func: 待求解方程的函数句柄% a, b: 取值范围% tol: 容差% max_iter: 最大迭代次数fa = func(a);fb = func(b);if fa * fb > 0error('在该区间内没有根存在');endfor k = 1:max_iterc = (a + b) / 2;fc = func(c);if abs(fc) < tolroot = c;return;endif fa * fc < 0b = c;fb = fc;elsea = c;fa = fc;endenderror('未达到收敛条件');end```使用该函数时,首先需要定义待求解方程的函数句柄。
例如,若要求解方程x^2 - 4 = 0的近似根,则可以定义如下函数:```matlabfunction f = equation(x)f = x^2 - 4;end```然后,可以通过调用`bisection_method`函数求解方程的近似根:```matlaba = 1; % 取值范围的下界b = 3; % 取值范围的上界tol = 1e-6; % 容差max_iter = 100; % 最大迭代次数root = bisection_method(@equation, a, b, tol, max_iter);disp(root);```在上述代码中,设置了取值范围的下界为1,上界为3,容差为1e-6,最大迭代次数为100。
运行代码后,MATLAB将输出方程的一个近似根。
完美WORD格式姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。
并比较方法的优劣。
二、 实验原理 (1)、二分法对方程0)(=x f 在[a ,b]内求根。
将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。
否则,继续判断是否0)()(<∙x f a f ,若是,则令x b =,否则令x a =。
否则令x a =。
重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。
(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。
(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。
取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。
迭代公式为:=+1k x -0x )(')(k k x f x f 。
三、 实验设备:MATLAB 7.0软件四、 结果预测(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。
(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x的近似根。
要求误差不超过3105.0-⨯。
MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。
其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。
本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。
二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。
在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。
首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。
直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对复杂方程的迭代计算来评估迭代法的性能。
2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。
具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。
然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。
3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。
具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。
如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。
如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。
直到新的区间的长度小于规定的误差阈值为止。
本实验将通过对复杂方程的二分计算来评估二分法的性能。
三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。
借助Matlab使⽤⼆分法求解⽅程的根第⼀次使⽤ Matlab,遂将过程详细记录之。
图中标注①是⼯作⽬录,即代码存放的⽬录;标注②是编辑器,即我们写代码的地⽅;标注③是命令⾏,是我们执⾏语句的地⽅。
本次实验我们是在这⾥执⾏⼆分法的函数。
例题:应⽤⼆分法求解⽅程x3−x−1=0 在区间 [1,1.5] 内的数值解x k,要求绝对误差⼩于 10−8.解答如下。
代码:half.m脚本:function x = half(a, b, tol)% tol 是 tolerance 的缩写,表⽰绝对误差c = (a + b) / 2; k = 1;m = 1 + round((log(b - a) - log(2 * tol)) / log(2)); % <1>while k <= mif f(c) == 0c = c;return;elseif f(a) * f(c) < 0b = (a + b) / 2;elsea = (a + b) / 2;endc = (a + b) / 2; k = k + 1;endx = c; % 这⾥加分号是为了不再命令⾏中输出k % 不加分号就会在控制台输出cf.m脚本,这是half.m中调⽤的f()函数。
function y = f(x)y = x^3 - x -1;然后我们在命令⾏执⾏:可以看出,最后求解得到的x=1.3247,即输出的ans,迭代次数k=27.关于代码half.m中的标注<1>,有如下解释:注意,在 Matlab 中,log()函数的底是e.补充例题(感兴趣的朋友可以⾃⾏测试):Processing math: 100%。
Matlab⾮线性⽅程数值解法实验⽬的⽤Matlab实现⾮线性⽅程的⼆分法、不动点迭代法实验要求1. 给出⼆分法算法和不动点迭代算法2. ⽤Matlab实现⼆分法3. ⽤Matlab实现不动点迭代法实验内容(1)在区间[0,1]上⽤⼆分法和不动点迭代法求的根到⼩数点后六位。
(2)⼆分法的基本思想:逐步⼆分区间[a,b],通过判断两端点函数值的符号,进⼀步缩⼩有限区间,将有根区间的长度缩⼩到充分⼩,从⽽,求得满⾜精度要求的根的近似值。
(3)不动点迭代法基本思想:已知⼀个近似根,构造⼀个递推关系(迭代格式),使⽤这个迭代格式反复校正根的近似值,计算出⽅程的⼀个根的近似值序列,使之逐步精确法,直到满⾜精度要求(该序列收敛于⽅程的根)。
实验步骤(1)⼆分法算法与MATLAB程序(⼆分法的依据是根的存在性定理,更深地说是介值定理)。
MATLAB程序,1 %⼆分法2 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep3 %输出:近似根root,迭代次数k4 function [root,k]=bisect(fun,a,b,ep)5if nargin>36 elseif nargin<47 ep=1e-5;%默认精度8else9 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]10 end11if fun(a)*fun(b)>0%输⼊的区间要求12 root=[fun(a),fun(b)];13 k=0;14return;15 end16 k=1;17while abs(b-a)/2>ep%精度要求18 mid=(a+b)/2;%中点19if fun(a)*fun(mid)<020 b=mid;21 elseif fun(a)*fun(mid)>022 a=mid;23else24 a=mid;b=mid;25 end26 k=k+1;27 end28 root=(a+b)/2;29 end⼆分法1运⾏⽰例(并未对输出格式做控制,由于精度要求,事后有必要控制输出的精度):优化代码,减⼩迭代次数(在迭代前,先搜寻更适合的有根区间)1 %⼆分法改良2 %在⼀开始给定的区间中寻找更⼩的有根区间3 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep4 %输出:近似根root,迭代次数k5 %得到的根是优化区间⾥的最⼤根6 function [root,k]=bisect3(fun,a,b,ep)7if nargin>38 elseif nargin<49 ep=1e-5;%默认精度10else11 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]12 end13 %定义划分区间的分数14 divQJ=1000;15 %等分区间16 tX=linspace(a,b,divQJ);17 %计算函数值18 tY=fun(tX);19 %找到函数值的正负变化的位置20 locM=find(tY<0);21 locP=find(tY>0);22 %定义新区间23if tY(1)<024 a=tX(locM(end));25 b=tX(locP(1));26else27 a=tX(locP(end));28 b=tX(locM(1));29 end30if fun(a)*fun(b)>0%输⼊的区间要求31 root=[fun(a),fun(b)];32 k=0;33return;34 end35 k=1;36while abs(b-a)/2>ep%精度要求37 mid=(a+b)/2;%中点38if fun(a)*fun(mid)<039 b=mid;40 elseif fun(a)*fun(mid)>041 a=mid;42else43 a=mid;b=mid;44 end45 k=k+1;46 end47 root=(a+b)/2;48 end⼆分法2运⾏⽰例(同样没有控制输出)明显地,迭代次数减⼩许多。
在matlab用二分法求方程近似解的实验分析与讨论以及实验总二分法也称为折半法,是一种求解非线性方程近似解的常用方法。
其基本思路是:利用函数在某个区间上的符号变化来找到方程的根,每次减半区间长度直到满足精度要求为止。
在Matlab中,我们可以利用循环结构和if语句来实现二分法求解非线性方程的近似解。
具体步骤如下:1. 定义函数f,并确定区间[a,b]和精度要求tol。
2. 利用while循环,当区间长度小于精度要求tol时停止循环,否则继续。
3. 每次循环先计算区间中点c=(a+b)/2,并计算函数值fc=f(c)。
4. 判断fc的符号和f(a)的符号是否相同,如果相同,则将区间左端点a赋值为c,否则将区间右端点b赋值为c。
5. 循环结束后,输出近似解x=(a+b)/2。
接下来我们以求解方程x^3-3x+1=0在区间[0,1]上的近似解为例,进行实验分析。
代码如下:```matlabfunction [x] = bisection_method()f = @(x) x^3-3*x+1; % 定义函数fa = 0; % 区间左端点b = 1; % 区间右端点tol = 1e-6; % 精度要求while (b-a)/2 > tol % 判断区间长度是否小于精度要求c = (a+b)/2; % 计算区间中点fc = f(c); % 计算函数值if f(a)*fc > 0 % 判断符号是否相同a = c; % 更新区间左端点elseb = c; % 更新区间右端点endendx = (a+b)/2; % 输出近似解end```我们运行该代码,可以得到方程的近似解为:```matlab>> bisection_method()ans =0.3473```实验分析:1. 二分法求解非线性方程的收敛性是保证的,即对于满足某些条件的方程和初始估计,二分法可以保证收敛到方程的根。
2. 在确定初始区间时,需要考虑到方程根的数量和分布。
非线性方程求解摘要:利用matlab软件编写程序,分别采用二分法、牛顿法和割线法求解非线性方程,0 2= -x ex的根,要求精确到三位有效数字,其中对于二分法,根据首次迭代结果,事先估计迭代次数,比较实际迭代次数与估计值是否吻合。
并将求出的迭代序列用表格表示。
对于牛顿法和割线法,至少取3组不同的初值,比较各自迭代次数。
将每次迭代计算值求出,并列于表中。
关键词:matlab、二分法、牛顿法、割线法。
引言:现实数学物理问题中,很多可以看成是解方程的问题,即f(x)=0的问题,但是除了极少简单方程的根可以简单解析出来。
大多数能表示成解析式的,大多数不便于计算,所以就涉及到算法的问题,算法里面,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止,但是,我们知道,人为计算大大的加重了我们的工作量,所以大多用计算机编程,这里有很多可以计算的软件,例如matlab等等。
正文:一、二分法1 二分法原理:对于在区间[,]上连续不断且满足·<0的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
2 二分法求根步骤:(1)确定区间,,验证·<0,给定精确度;(2)求区间,的中点;(3)计算。
若=,则就是函数的零点;若·<0,则令=;若·<0,则令=。
(4)判断是否达到精确度;即若<,则得到零点近似值(或);否则重复步骤2-4.3 二分法具体内容:精度要求为5e-6,,解得实际迭代次数与估计值基本吻合,迭代如下表。
n=2 c=0.000000 fc=-1.000000 n=11 c=-0.705078 fc=0.003065 n=3 c=-0.500000 fc=-0.356531 n=12 c=-0.704102 fc=0.001206 n=4 c=-0.750000 fc=0.090133 n=13 c=-0.703613 fc=0.000277 n=5 c=-0.625000 fc=-0.144636 n=14 c=-0.703369 fc=-0.000187 n=6 c=-0.687500 fc=-0.030175 n=15 c=-0.703491 fc=0.000045 n=7 c=-0.718750 fc=0.029240 n=16 c=-0.703430 fc=-0.000071 n=8 c=-0.703125 fc=-0.000651 n=17 c=-0.703461 fc=-0.000013 n=9 c=-0.710938 fc=0.014249 n=18 c=-0.703476 fc=0.000016n=10 c=-0.707031 fc=0.006787 n=19 c=-0.703468 fc=0.0000024 二分法程序:eps=5e-6;delta=1e-6;a=-1;b=1;fa=f(a);fb=f(b);n=1;while (1)if(fa*fb>0)break;endc=(a+b)/2;fc=f(c);if(abs(fc)<delta)break;else if(fa*fc<0)b=c;fb=fc;elsea=c;fa=fc;endif(b-a<eps)break;endn=n+1;fprintf('n=%d c=%f fc=%f\n',n,c,fc);endEnd(在同一目录下另建文件名为“f”的文件,内容为“function output=f(x)output=x*x-exp(x);”)5 二分法流程图:流程图二:牛顿法1 牛顿迭代法原理:设已知方程0)(=x f 的近似根0x ,则在0x 附近)(x f 可用一阶泰勒多项式))((')()(000x x x f x f x p -+=近似代替.因此, 方程0)(=x f 可近似地表示为0)(=x p .用1x 表示0)(=x p 的根,它与0)(=x f 的根差异不大.设0)('0≠x f ,由于1x 满足,0))((')(0100=-+x x x f x f 解得)(')(0001x f x f x x -=重复这一过程,得到迭代格式)(')(1k k k k x f x f x x -=+2 牛顿法具体内容:近似精度要求为5e-6,带入不同初值结果如下表。
二分法二分法基本思路一般地,对于函数f(x),如果存在实数c,当x=c 时,若f(c)=0,那么把x=c 叫做函数f(x)的零点。
解方程即要求f(x)的所有零点。
假定f(x)在区间(x ,y )上连续先找到a 、b 属于区间(x ,y ),使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2], 现在假设f(a)<0,f(b)>0,a<b如果f[(a+b)/2]=0,该点就是零点,如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,(a+b)/2>=a ,从①开始继续使用中点函数值判断。
如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2<=b ,从①开始继续使用 中点函数值判断。
这样就可以不断接近零点。
通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。
从以上可以看出,每次运算后,区间长度减少一半,是线形收敛。
另外,二分法不能计算复根和重根。
二分法步骤用二分法求方程()0f x =的根*x 的近似值k x 的步骤若对于a b <有()()0f a f b <,则在(,)a b 内()0f x =至少有一个根。
取,a b 的中点12a b x +=计算1()f x 若1()0f x =则1x 是()0f x =的根,停止计算,运行后输出结果*1x x =若1()()0f a f x <则在1(,)a x 内()0f x =至少有一个根。
取111,a a b x ==;若1()()0f a f x >,则取111,a x b b ==;④ 若12k k b a ε-≤(ε为预先给定的要求精度)退出计算,运行后输出结果*2k k a b x +≈,反之,返回步骤1,重复步骤1,2,3二分法Mtalab 程序syms x;fun=input('(输入函数形式)fx=');a=input('(输入二分法下限)a=');b=input('(输入二分法上限)b=');d=input('输入误差限 d=')%二分法求根%f=inline(x^2-4*x+4);%修改需要求解的inline 函数的函数体f=inline(fun);%修改需要求解的inline 函数的函数体e=b-a; k=0 ;while e>dc=(a+b)/2;if f(a)*f(c)<0b=c; elseif f(a)*f(c)>0a=c;elsea=c;b=cende=e/2; k=k+1;endx=(a+b)/2;x%x 为答案k%k 为次数例题:用二分法计算方程4324100x x x -++=在(-2,2)内的实根的近似值,要求精度为 解:(输入函数形式)fx=x^4-2*x^3+4*x+10(输入二分法下限)a=-2(输入二分法上限)b=2输入误差限 d=得到结果d =x =k =16>>。