LLC电路基本原理分析及公式推导(ST)
- 格式:pdf
- 大小:679.96 KB
- 文档页数:55
llc谐振电路工作原理及参数设计contents •LLC谐振电路工作原理•LLC谐振电路参数设计•LLC谐振电路优化与控制•LLC谐振电路应用案例•LLC谐振电路发展与挑战•参考文献目录CHAPTERLLC谐振电路工作原理连续模式断续模式工作模式电路组成工作过程输入变压器将直流电压转换为交流电压,并通过输出变优点030201CHAPTERLLC谐振电路参数设计频率范围频率稳定性操作频率增益LLC谐振电路的增益通常由放大器和反馈网络决定。
在设计时,需要考虑增益的平坦度和稳定性,以确保良好的频率响应和信号质量。
效率高效率是LLC谐振电路的重要性能指标之一。
为了实现高效率,需要考虑功率匹配和电路损耗。
采用有效的匹配网络和低损耗元件可以提高电路的效率。
增益和效率阻抗匹配输入阻抗LLC谐振电路的输入阻抗需要根据放大器的输入阻抗进行匹配。
这可以保证信号的有效传输和防止信号反射。
输出阻抗输出阻抗也需要进行匹配,以确保信号的完整传输和防止信号反射。
这可以通过使用合适的输出网络和元件来实现。
稳定性与可靠性稳定性可靠性CHAPTERLLC谐振电路优化与控制优化方法03功率控制控制方法01电压控制02电流控制参数设计谐振频率占空比负载阻抗CHAPTERLLC谐振电路应用案例案例1:节能荧光灯电子镇流器描述01工作原理02参数设计03描述案例2:开关电源工作原理参数设计描述工作原理参数设计案例3:电磁炉CHAPTERLLC谐振电路发展与挑战发展背景介绍发展历程当前状况虑多个因素,如负载条件、电源电压、电路拓扑等,设计过程较参数设计复杂定性的元件,因此制造成本相对较高,需要优化设计以降低成本。
制造成本高稳定性问题可靠性问题挑战CHAPTER参考文献参考文献参考文献1参考文献2参考文献3WATCHING。
LLC 半桥谐振电路中,根据这个谐振电容的不同联结方式,典型LLC 谐振电路有两种连接方式,如下图1所示。
不同之处在于LLC 谐振腔的连接,左图采用单谐振电容(Cr ),其输入电流纹波和电流有效值较高,但布线简单,成本相对较低;右图采用分体谐振电容(C1, C2),其输入电流纹波和电流有效值较低,C1和C2上分别只流过一半的有效值电流,且电容量仅为左图单谐振电容的一半。
图2-1 典型电路Fig.2-1 Tipical Circuit2.2 LLC 半桥谐振电路基本原理LLC 谐振变换的直流特性分为零电压工作区和零电流工作区。
这种变换有两个谐振频率。
一个是Lr 和Cr 的谐振点,另外一个谐振点由Lm, Cr 以及负载条件决定。
负载加重,谐振频率将会升高。
这两个谐振点的计算公式如下: rr r1C L 2π1f =rr mr2)C L (L2π1f +=公式2-1考虑到尽可能提高效率,设计电路时需把工作频率设定在fr1附近。
其中,fr1为Cr,Lr 串联谐振腔的谐振频率。
当输入电压下降时,可以通过降低工作频率获得较大的增益。
通过选择合适的谐振参数,可以让LLC 谐振变换无论是负载变化或是输入电压变化都能工作在零电压工作区。
总体来说LLC 半桥谐振电路的开关动作和半桥电路无异,但是由于谐振腔的加入,LLC 半桥谐振电路中的上下MOSFET 工作情况大不一样,它能实现MOSFET零电压开通。
其工作波形图如下: 图2-2 工作波形示意图Fig.2-2 Operation Waveform上图为理想半桥谐振电路工作波形图;图中,Vgs1和Vgs2分别是Q1、Q2的驱动波形,Ir为谐振电感Lr电感电流波形,Im为变压器漏感Lm电流波形,Id1和Id2分别是次级侧输出整流二级管波形,Ids1则为Q1导通电流。
波形图根据不同工作状态被分成6个阶段,下面具体分析各个状态,LLC谐振电路工作情况: ?T0~ T1: Q1关断、Q2开通;这个时候谐振电感上的电流为负,方向流向Q2。
目录引言一、 LLC谐振变换器原理 (2)二、LLC谐振腔之元件设计 (3)三、L6598\L6599芯片资料......................................................................错误!未定义书签。
1、L6599 芯片介绍...............................................................................................错误!未定义书签。
2、芯片与典型方框图 (5)3、PIN脚功能 (5)4、典型电源系统图 (6)5、振荡器 (7)6、工作在轻载或无载时 (8)四、 L6599的工作流程1、L6599供电回路 (8)2、L6599的启动 (9)3、L6599稳压原理 (10)4、L6599的SCP保护及次级OCP保护 (11)附:过流延时保护电路 (12)引言随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。
近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。
对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。
LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。
一、LLC谐振变换器原理图一、LLC谐振原理图图二、LLC谐振波形图图一和图二分别给出了LLC 谐振变换器的电路图和工作波形。
图一中包括两个功率MOSFET (S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr 的漏感Ls,激磁电感Lm,Lm 在某个时间段也是一个谐振电感,因此,在LLC 谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls 和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf。
三电平全桥LLC电路原理详解三相模块的母线电压可以达到800V,如果(DC)DC仍然采用传统的两电平拓扑,那么DC MOS管必须采用1200V耐压的MOS管。
而目前市场上这样的MOS管型号非常少,而且很贵。
如果采用三电平拓扑,就可以继续采用600V的MOS管了,型号丰富,成本也低。
三电平PWM控制已经得到了成熟应用,但是传统的PWM拓扑整体效率低,所以在三电平的基础上,又采用了LLC拓扑,该拓扑从成本、效率等方面都得到了很好的兼顾。
三电平全桥LLC主电路拓扑电路说明:1、谐振电感和谐振(电容)做成两边平衡的方式,是因为项目组在实验过程中发现如果是单Lr, Cr模式,MOS驱动(信号)容易受干扰,拆成两边对称放置以后,驱动可靠性提高;三电平全桥LLC电路拓扑示意图如图(图五‑3)所示,有8个开关管S1~S8,需要8路驱动信号来完成PFM(调频)、PWM(调宽)控制,S1~S8对应的高精度驱动信号编号为PWM1~PWM8。
注:PWM并不单指控制策略采用PWM方式时的开关信号,也包括PFM方式时的开关信号。
三电平LLC电路拓扑框图在此三电平LLC电路控制中,设计8路驱动信号PWM1~PWM8,从(图五‑4)的发波时序图来看,这8路驱动有下面的关系:1) PWM1和PWM4,PWM2和PWM3,PWM5和PWM8,PWM6和PWM7相位互补(不考虑死区时间Td2和提前关断时间Td1);2) PWM1比PWM2提前Td1关断,PWM4比PWM3提前Td1关断,PWM5比PWM6提前Td1关断,PWM8比PWM7提前Td1关断;根据控制策略需要,PWM1~PWM8可以实现高精度PFM/PWM/PSM(或者同时实现其中两个状态,如PFM+PWM),在三种控制状态(PFM/PSM/PWM)下PWM1~PWM8在一个开关周期内的输出波形如图(图五‑4)所示,以高电平(或者为低电平)为有效电平,当PWMx(x=1~8)为高时通过相应的(驱动电路)使得Sx 导通,当PWMx为低时通过相应的驱动电路使得Sx断开。
llc谐振开关电源电路原理LLC谐振开关电源电路原理LLC谐振开关电源电路是一种高效、低噪声的电源设计方案,广泛应用于各种电子设备中。
本文将介绍LLC谐振开关电源电路的工作原理及其优势。
一、LLC谐振开关电源电路的基本原理LLC谐振开关电源电路由LLC谐振网络和开关电源组成。
LLC谐振网络由电感L、电容C和电感L2构成,以及谐振电容C1和电感L1。
开关电源由开关管和变压器组成。
在工作过程中,LLC谐振开关电源电路首先通过变压器将输入电压变换为所需的输出电压。
然后,开关管控制开关频率和占空比,将电能传递到输出负载上。
通过LLC谐振网络的谐振作用,实现电能的高效转换和传输。
二、LLC谐振开关电源电路的工作过程LLC谐振开关电源电路的工作过程可分为两个阶段:开关阶段和谐振阶段。
1. 开关阶段:在开关阶段,开关管导通,输入电源将电能传输到变压器的一侧。
同时,电容C1通过电感L1充电。
当开关管关闭时,电容C1通过电感L1和电感L2的共振,将电能传输到输出负载上。
2. 谐振阶段:在谐振阶段,开关管关闭,电感L1和电感L2之间的电能开始谐振。
谐振电压和电流在电感L和电容C的共振作用下,形成高频交流信号。
通过调节电感L和电容C的数值,可以实现输出电压和电流的稳定控制。
三、LLC谐振开关电源电路的优势LLC谐振开关电源电路相比传统的开关电源具有以下优势:1. 高效性:LLC谐振开关电源电路利用谐振网络的特性,实现了高效率的能量转换和传输,显著提高了能源利用率。
2. 低噪声:由于谐振频率高于人耳可听到的范围,LLC谐振开关电源电路工作时产生的噪声较低,有利于提高电子设备的使用体验。
3. 宽输入电压范围:LLC谐振开关电源电路的谐振网络可以适应宽范围的输入电压变化,提供稳定的输出电压,适用于各种电源输入条件。
4. 稳定性好:LLC谐振开关电源电路具有较好的稳定性和抗干扰能力,能够有效应对电网波动和负载变化等外部干扰。
全桥llc工作原理一、概述:全桥LLC电路中的LLC,即谐振电路。
该电路是一种三电平电路,可以将电源电压进行升压或降压,并且具有高效率和低损耗的特点,因此在高功率的开关电源中得到广泛应用。
在全桥LLC电路中,主要包括LLC谐振电路、功率MOS管的开关控制、输出反馈控制等部分,这些组成部分共同协作,实现对电源电压的有效控制。
下面将对全桥LLC工作原理进行详细介绍。
二、全桥LLC电路分析及工作原理1.全桥LLC电路结构在全桥LLC电路中,V1和V2是两个主开关管,它们通过一个谐振电路与变压器T1相连。
电感L1、电容C1和电容C2串联组成了谐振回路,器件Q1和Q2则构成了一个整流电路。
在全桥LLC电路中,当主开关管V1和V2交替开关时,谐振回路就可以产生一个高频的平滑波形,这个平滑波形会通过变压器T1传递到输出端口。
变压器T1起到的是变换电压的作用。
当开关管V1和V2交替开关时,输入端的电压就会在谐振电路中进行变换,变换后的电压通过变压器放大后输出到输出端口,实现了对输出端口的控制。
在全桥LLC电路中,由于谐振回路的存在,可以使电压上升或下降,电流也会在谐振电路中产生一个峰值。
为了保证输出端口的控制,需要在输出端接上一个反馈电路,将输出电压与参考电压进行比较,从而调节变压器输出电压。
在全桥LLC电路中,采用了输出反馈控制。
当输出电压高于参考电压时,反馈电路会调节谐振电路的频率,降低输出电压;当输出电压低于参考电压时,反馈电路会调节谐振电路的频率,提高输出电压。
这样可以有效的保证输出电压的稳定性和精度。
总之,全桥LLC电路的工作原理就是通过谐振回路产生高频平滑波形,实现对输入电压的升压或降压,并通过输出反馈电路进行控制,保证输出电压的稳定和精度。
llc变压器设计公式推导我们需要了解LLC变压器的基本原理。
LLC变压器是一种谐振变换器,由电感L、电容C和谐振电容Cres组成。
通过控制开关管的开关信号,使得LLC变压器在工作过程中能够实现能量的存储和传递。
在LLC变压器的设计中,需要确定电感L、电容C和谐振电容Cres 的数值。
接下来,我们将逐步推导LLC变压器的设计公式。
我们可以根据LLC变压器的工作原理,得到其电感L和谐振电容Cres的关系。
根据谐振电路的共振频率公式,我们可以得到:f = 1 / (2 * π * sqrt(L * Cres))其中,f为谐振频率,L为电感的数值,Cres为谐振电容的数值。
接下来,我们可以根据LLC变压器的工作原理,得到其谐振电容Cres和电容C的关系。
根据电容的串联关系,我们可以得到:1 / Cres = 1 / C + 1 / Cm其中,C为电容的数值,Cm为谐振电容的数值。
将以上两个公式结合起来,我们可以得到LLC变压器的设计公式:f = 1 / (2 * π * sqrt(L * (1 / C + 1 / Cm)))通过这个公式,我们可以根据所需的谐振频率f,计算出电感L、电容C和谐振电容Cres的数值。
在实际设计中,我们可以根据系统的要求和约束条件,选择合适的数值。
除了以上的基本设计公式,LLC变压器的设计还需要考虑其他因素,如功率因数、效率和损耗等。
在实际设计中,我们需要综合考虑这些因素,并进行必要的优化。
总结起来,LLC变压器设计公式的推导是基于其基本工作原理和电路特性的。
通过以上的推导,我们可以根据所需的谐振频率,计算出电感L、电容C和谐振电容Cres的数值。
在实际设计中,我们还需要考虑其他因素,并进行必要的优化。
LLC变压器作为一种高效率、高功率密度的变压器,其设计公式的推导对于实际应用具有重要的指导意义。