甘油发酵生产1_3_丙二醇的菌种筛选及培养基优化研究
- 格式:pdf
- 大小:376.86 KB
- 文档页数:4
发酵法产1,3-丙二醇的应用基础研究的开题报告开题报告题目:发酵法产1,3-丙二醇的应用基础研究一、研究背景和意义1,3-丙二醇是一种重要的化工原料,广泛应用于工业生产、医药化学等领域。
传统制备1,3-丙二醇的方法为石油化学法和氢气化学法,这两种方法均存在成本高、能源消耗多、对环境不良等问题,因此需要探寻一种新型的高效、低能耗、环保的生物制备方法。
发酵法是一种可行的生物制备方法,采用适宜的微生物菌株代谢分泌1,3-丙二醇,具有能源消耗低、来源丰富、环保等优点。
目前,发酵法已成为1,3-丙二醇工业生产的重要方法之一。
但是,发酵法制备1,3-丙二醇的过程中,存在影响丙二醇产量和质量的因素较多,如反应物浓度、温度、pH值、氧气供应等,因此需要进行深入研究。
本研究旨在通过对发酵过程中关键因素的优化调控,提高1,3-丙二醇发酵生产的效率和质量,为1,3-丙二醇生产的工业化应用提供技术支持。
二、主要研究内容和方法1. 筛选高效1,3-丙二醇生产菌株:通过培养基筛选和评价不同菌株对1,3-丙二醇产量和生长速率的影响,选定最适合生产1,3-丙二醇的菌株。
2. 优化发酵过程中反应物浓度:采用单因素法和正交试验等方法考察不同反应物浓度对1,3-丙二醇合成的影响,并确定最适合反应的反应物浓度范围。
3. 优化发酵过程中温度和pH值:通过控制温度和pH值的变化,考察其对1,3-丙二醇产量和质量的影响,并确定最适合的温度和pH值范围。
4. 优化氧气供应条件:采用不同方法探究氧气供应对1,3-丙二醇合成的影响,如改变气体的流速、增加曝气时间等,以提高1,3-丙二醇发酵的效率。
5. 通过分析和对比试验结果,确定最适合丙二醇发酵生产的最佳工艺条件和参数,以提高1,3-丙二醇发酵生产的效率和质量。
三、预期研究结果和意义本研究通过基础理论和实验研究,旨在建立一种高效、经济、环保的1,3-丙二醇生产方法,提高生产效率和质量,为丙二醇工业化生产提供新技术和新思路,在工业制备、医药化学等领域具有广泛的应用前景。
对甘油制备1,3-丙二醇工艺进行设计-发酵法制备1,3-丙二醇摘要:本设计以甘油为原料,在无氧条件下,利用克雷伯氏菌发酵生产1,3-丙二醇,符合绿色化学的特点。
通过测定菌体生物量、葡萄糖浓度、蛋白质浓度、甘油脱水酶、丙醛的浓度,可以初步判定发酵进行程度。
设计实验对克雷伯氏菌发酵特性进行研究,分别研究温度、PH、甘油初始浓度、氮源对菌体生长和 1,3-PD 合成的影响。
关键词:1,3-丙二醇、甘油、克雷伯氏菌、厌氧发酵1 前言1,3-丙二醇(1,3-PD)是一种重要的化工原料,它可作为化学和医药工业中多种润滑剂、有机溶剂和前体的合成原料。
它作为聚酯、聚醚和聚氨酯的重要单体原料合成的聚合物具有生物可降解性、安全无毒、可循环利用等优点,不仅在服装和工程塑料领域得到了广泛应用,在食品、药品和化妆品等领域也开始崭露头角。
以 1,3-丙二醇为原料合成的食品添加剂丙二醇酯,是世界六大食品乳化剂之一,目前已被美国、日本和中国等国家及欧盟,联合国粮农组织和世界卫生组织批准使用[]1。
20世纪90年代中期,工业上成功开发出了以1,3-PD为原料的新型聚酯材料-聚对苯二甲酸丙二醇酯(PTT), PTT性能优良,因此研究开发低成本的1, 3-PD生产技术成为关注的热点。
1,3-PD的生产方法有化学法和生物转化法。
生物法合成 1,3-PD 符合“绿色化学”的特点,利用甘油或葡萄糖等可再生资源为原料,生产清洁,对环境无污染,符合我国可持续发展的需要。
近几年,随着以大豆油与菜籽油为原料生产生物柴油产量的迅速增长,产生了大量副产物甘油;用甘油合成附加值更高的 1,3-丙二醇有利于资源的综合利用,引起了如杜邦公司、陶氏化学公司、亨斯迈公司等公司的关注[]2。
发酵工程作为生物法合成 1,3-PD 的关键环节更是人们关注的热点。
2003 年美国环境保护机构向杜邦授予“绿色化学总统奖”,专门用于表彰该公司对生物基 1,3-PD 工艺开发所作的研究。
大连理工大学科技成果——微生物发酵法生产1,3-丙二醇一、产品和技术简介本技术针对当前1,3-丙二醇生产现存的问题,采用克雷伯氏杆菌将甘油转化为1,3-丙二醇,在实验室小试研究成果的基础上,开展了放大到1立方米和20立方米发酵罐的中试试验。
提出了葡萄糖好氧发酵生产甘油与甘油厌氧、微氧发酵生产1,3-丙二醇相结合的两步发酵工艺,并首次提出并采用了酒精沉淀预处理技术,解决了产品难以提取分离的瓶颈问题。
该技术在教育部组织的鉴定会上被评为国际先进技术,获辽宁省技术发明二等奖。
二、应用范围1,3-丙二醇是一种重要的化工原料,可用作溶剂、抗冻剂或保护剂、精细化工原料以及新型聚酯和聚氨酯的单体。
其与聚对苯二甲酸合成的新型聚酯材料聚对苯二甲酸丙二酯(PTT)与聚对苯二甲酸乙二酯(PET)和聚对苯二甲酸丁二酯(PBT)相比具有许多优良的特性。
如尼龙样的弹性恢复、抗紫外、臭氧及氮氧化物的着色性、低静电、低水吸附、全色范围内无需添加任何特殊化学品而呈现出的良好连续印染性及可生物降解性等。
PTT不仅可以作为新型合成纤维在地毯和纺织品方面有着广阔的应用前景,在工程热塑性塑料领域也有巨大的应用潜力。
目前,国外的一些大牌公司正加紧开发1,3-丙二醇及PTT 在纺织和地毯等行业中的应用,如壳牌(Shell)和杜邦(Dupont)公司已先后开发出性能优良的空气变形纱(BCF)、地毯、PTT织物(Corterra)以及玻璃纤维填充的PTT热塑性工程塑料等。
此外,1,3-丙二醇还可用作增塑剂、洗涤剂、防腐剂、乳化剂的合成,也可作为产品中的组分如化妆品、打印机墨水、清洁剂、稳定剂和燃料电池燃料等的添加剂来提高产品的性能。
作为医药和有机合成的中间体,1,3-丙二醇可用于食品、化妆品和制药等行业。
1,3-丙二醇可替代乙二醇、1,4-丁二醇和新戊二醇等中间体生产多醇聚酯及作为碳链延伸剂,还可用于制备其它不饱和聚酯,如聚萘二甲酸丙二醇酯(PTN)和共聚聚酯以及制备新型聚氨酯树脂等。
甘油法生产1.3-丙二醇工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!甘油法制备1,3-丙二醇的工艺流程详解1,3-丙二醇,一种重要的有机化工原料,广泛应用于化妆品、医药、食品和塑料等多个领域。
生物工程法制备1,3-丙二醇尽管化学法是当前生产1,3-PDO的主要方法,但其存在生产成本高,易造成环境污染等问题,而采用生物工程法则具有条件温和,操作简便,副产物少,选择性好,能源节省,设备投资少和环境良好等特点,是一种生产成本最低,污染最少的方法。
美国杜邦、陶氏化学、德国拜尔、赫司特、英国ICI等公司均投入巨额资金和人力对生物技术进行了研究,取得了令人瞩目的成果。
目前,采用生物工程法制备1,3-PDO主要有以甘油为原料的微生物发酵工艺和以葡萄糖为原料的微生物发酵工艺两种。
1 以甘油为原料的微生物发酵工艺以甘油为原料的微生物发酵生产1,3-PDO工艺是基于自然界存在克雷伯氏肺炎杆菌和丁酸梭状芽孢杆菌,而它们具有在厌氧条件下使甘油转化成1,3-PDO的能力。
在菌种的发酵过程中,甘油消耗主路径有两种,其一为甘油脱水酶催化甘油脱水,转化成3-羟基丙醛,3-羟基丙醛再被还原得到1,3-PDO;其二为甘油在脱氢酶作用下生成副产物。
此外,由于菌体生长和氧化代谢支路都要消耗部分甘油,使得甘油转化为1,3-PDO的摩尔转化率最高只能达到0.5%左右。
虽然生物柴油的快速发展提供了大量廉价的副产物甘油,但由于发酵液中1,3-PDO含量最高只有5%左右,且为了得到纯度为99.9%的1,3-PDO产品,需要采取相当复杂的精制工艺,在生产成本上还难以与化学合成法相竞争。
2 以葡萄糖为原料的微生物发酵工艺从自然界分离获得的菌种只能以甘油为碳源,无法直接利用葡萄糖生产1,3-PDO以降低微生物发酵法的成本。
为此,DuPont公司和基因克(Genecor)公司利用基因工程技术,在大肠杆菌中插入取自酿酒酵母的基因,从而将葡萄糖转化为甘油,再插入取自柠檬酸杆菌和克雷氏菌的基因,将甘油转化为1,3-PDO,开发了由葡萄糖一步法生产1,3-PDO的发酵技术,使生产效率提高了近500倍,有效地提高了1,3-PDO的产率。
DuPont公司和英国Tate & Lyle公司合作,于2000年在一套规模为45.4吨/年的中试装置上对该技术进行了验证并获得成功。
甘油制备1.3-丙二醇l,3-丙二醇是一种重要的有机化工原料.广泛应用于增塑剂、洗涤剂、防腐剂、乳化剂、聚酯和聚氨酯的合。
也可用作防冻剂、溶剂、保护剂等,其中最重要的应用是制备聚对苯二甲酸丙二醇酯(PTT)。
PTT是一种性能优异的聚酯材料,是目前国际上合成纤维开发的热点,被专家预测为2l世纪最主要的新纤维品种之一。
世界上已实现工业化生产1。
3一丙二醇的合成路线有两条:一种方法是Shell公司的环氧乙烷羰基化法;另一种方法是Degussa公司的丙烯醛水合氧化法。
其中环氧乙烷羰基化法设备投资大.技术难度高.其催化剂体系相当复杂.制备工艺苛刻且不稳定.配位体还有剧毒。
丙烯醛水合氢化法成本较高.特别是丙烯醛本身属剧毒、易燃和易爆物品,难于储存和运输。
由此可见.研究开发以生物柴油副产甘油为原料制备l,3一雨二醇的技术很具竞争性和发展潜力。
目前国内外做了大量的研究,主要形成催化氢解法和微生物发酵法两项技术。
(1)催化氢解法甘油催化氢解制备1.3一丙二醇是一个较复杂和困难的过程.目前人们刚刚在这方面开始研究。
在均相催化体系中加入钨酸和碱性物质如胺或酰胺等,在3lMPa的合成气压力和200℃的温度下反应24h,甘油催化氢解生成1.3丙二醇的产率为21%,选择性为45%。
Schiaf等选用Ru配合物为催化剂,在四氢噻吩砜、甲苯和1一甲基吡咯烷酮的混合溶剂中,在5.2MPa的氢压力和110℃的温度下反应19h,l,3丙二醇的选择性为44%,但转化率仅为5%。
Shell公司于2000年开发了一种均相体系合成1.3一丙二醇.该法以含铂系金属的配合物为催化剂.加入甲磺酸或i氟甲磺酸作添加物.在水或环丁砜的溶剂中甘油被氢解生成1.3一丙二醇.其选择性可达30.8%。
Chaminand等采用氧化锌、活性炭或三氧化二铝负载的cu、Pd或Rh作为催化剂.以钨酸作添加物.在水、环丁砜或二氧杂环已烷等溶剂中研究了甘油催化氢解反应。
当温度为180℃、氢压为8MF,a时,产物中1,3一丙二醇与1.2丙二醇的摩尔比最好时可达到2.并认为Fe和Cu等有利于提高1.3一丙二醇的选择性。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 12 期Pt-WO x 系催化剂上甘油氢解制1,3-丙二醇的研究进展陈宇晴,齐随涛,杨伯伦(西安交通大学化学工程与技术学院,陕西 西安 710049)摘要:生物柴油的发展对实现碳减排、推进能源替补具有重要科学意义,将生物柴油副产粗甘油进行绿色处理及高值转化,有利于促进生物柴油产业链的延伸发展。
甘油氢解制备1,3-丙二醇已成为目前粗甘油高值化利用的研究热点,设计开发高活性、高选择性的催化剂是该过程的关键。
本文首先阐述了Pt-WO x 系催化剂上甘油氢解制备1,3-丙二醇的脱水加氢机理、直接氢解机理以及氧化还原机理,明确了Pt-WO x 系催化剂中Pt 分散度、WO x 状态和Pt-WO x 界面接触等是影响催化性能的主要因素,并对其进行综述;进一步分析Pt 分散度、WO x 状态和Pt-WO x 界面接触的影响机制。
Pt 分散度会影响H 2的活化及反应中间体的氢化;WO x 状态与催化剂Brönsted 酸性位点密不可分,还可促进活性金属的分散;Pt-WO x 界面则影响催化剂氢溢流以及原位Brönsted 酸的生成。
最后,提出今后应从这三方面构筑新型Pt-WO x 系催化剂;探究各活性组分对甘油氢解反应的影响规律及组分间相互作用的本质特征,完善反应机理;考察加氢方式对甘油选择性氢解的影响机制,以促进甘油选择性氢解制1,3-丙二醇技术路线的规模化发展。
关键词:甘油;氢解;1,3-丙二醇;Pt-WO x 催化剂;反应机理中图分类号:O643.38;TQ426 文献标志码:A 文章编号:1000-6613(2023)12-6301-09Research progress of hydrogenolysis of glycerol to 1,3-propanediol oversupported Pt-WO x catalystsCHEN Yuqing ,QI Suitao ,YANG Bolun(College of Chemical Engineering and Technology, Xi ’an Jiaotong University, Xi ’an 710049, Shaanxi, China)Abstract: The development of biodiesel is of great scientific significance for achieving carbon emissionreduction and energy substitution. The high-value green conversion of biodiesel by-product glycerol areconducive to the development and extension of the biodiesel industry chain. 1,3-Propanediol produced by catalytic hydrogenation of glycerol has become a research hotspot, and the design of catalysts with high activity and selectivity is the key. The dehydration-hydrogenation mechanism, direct hydrogenation mechanism and redox mechanism of glycerol to 1,3-propanediol on Pt-WO x supported catalysts are elaborated. Pt dispersion, WO x state and Pt-WO x interface contact behavior in Pt-WO x catalysts are further analyzed as they are the main influence factors on the catalytic performance. Pt dispersion affects the activation of H 2 and the further hydrogenation of intermediates. The WO x state not only promotes the dispersion of Pt, but also closely relates with the Brönsted acid site of the catalyst. The Pt-WO x interface综述与专论DOI :10.16085/j.issn.1000-6613.2023-0075收稿日期:2023-01-15;修改稿日期:2023-03-22。
1,3-丙二醇调研报告1,3-丙二醇英文缩写1,3-PDO,是无色、无味的粘稠液体,可溶于水、醇、醚等多种有机溶剂,主要用于增塑剂、洗涤剂、防腐剂、乳化剂的合成,也用于食品、化妆品和制药等行业,其最主要的用途是作为聚合物单体合成性能优异的高分子材料,不但可以使聚酯塑料具有自然循环的可生物降解特性,而且是制造性能优异的新型聚酯纤维聚对苯二甲酸丙二酯(PTT)的重要单体原料,可替代乙二醇、丁二醇生产多醇聚酯。
2 国际生产技术概况目前1,3-丙二醇主要有三种生产方法:丙烯醛法、环氧乙烷法、微生物发酵法。
其中前两种方法已经实现工业化,后一种方法正由美国Du Pont(杜邦)公司进行工业化开发。
全球1,3-PDO的生产基本上被德国Degussa公司、美国壳牌公司和美国杜邦公司三家垄断。
三个公司各自采用的是不同的技术路线。
Degussa公司采用的是丙烯醛水合氢化法,壳牌公司采用的是环氧乙烷碳基化法,两个公司走的都是“石化合成路线”。
另一家1,3-PDO生产商杜邦公司采用的是自己创新的生物工程法。
2.1 Degussa公司的丙烯醛水合氢化法路线简析丙烯醛水合氢化制备1,3-PDO工艺申请专利最多的是德国Degussa公司,其次是德国Hoechst公司。
Degussa公司以丙烯醛为原料生产1,3-PDO的工业化路线主要的生产步骤是:(1)丙烯醛水合制3-羧基丙醛;(2)3-HPA催化加氢制得1,3-PDO。
丙烯醛水合制备3-羟基丙醛,最早采用无机酸作催化剂,但其产率低,选择性差,并伴有副反应发生。
丙烯醛遇酸容易发生缩合或聚合反应,生成二丙酸醚等,为解决这些问题,Degussa公司采用弱酸性离子交换树脂作为催化剂来提高3-HPA的选择性,丙烯醛水合的转化率和选择性都可以大幅度提高。
美国专利中提出了一种含有磷酸基的酸性螯合型阳离子交换树脂-NH-CH2-PO3H2作催化剂,在反应温度50~80℃的范围内,可使丙烯醛转化率保持在85%~90%,3-HPA选择性可达80%~85%,Degussa公司Arntz等采用弱酸性离子交换树脂用少量钠、镁、铝离子改性,如含0.53%Na,0.06%Mg,0.3%Al的离子交换树脂催化剂,在釜式反应器中于50℃反应4h,丙烯醛的转化率达88.9%~90.5%,3-HPA选择性为80.4%~82.8%。
甘油生产1,3-丙二醇发酵工艺优化研究佚名【摘要】1,3-PDO is the basic raw material to produce polytrimethylene terephthalate. Biorefinery technology of producing 1,3-PDO from glycerol with ferment has broad application prospect. In this paper, K. pneumoniae was chosen as the starting strain. Fermentation process parameters including strain preservation methods, fermentation system environment, nitrogen ventilation ratio, pH neutralizing agent and glycerol quality were optimized. The experimental results show that the yield of 1,3-PDO can reach to 103.38 g/L under optimum process conditions.%1,3-丙二醇是合成聚对苯二甲酸丙二醇酯的基础原料,利用甘油进行微生物发酵生产1,3-丙二醇的生物炼制技术具有广阔的应用前景。
以克雷伯氏肺炎杆菌为出发菌种,对菌种保藏方式、发酵体系环境、氮气通气比、pH 中和剂以及甘油品质等发酵工艺进行了优化研究。
实验结果表明,在较优的工艺条件下,1,3-丙二醇产量可达103.38 g/L。
【期刊名称】《当代化工》【年(卷),期】2015(000)008【总页数】3页(P1813-1815)【关键词】克雷伯氏肺炎杆菌;1,3-丙二醇;发酵工艺;优化【正文语种】中文【中图分类】TQ9231,3-丙二醇(1,3-PDO)可用于化妆品、液体清洁剂、防冻液、服装、室内装饰材料、工程聚合物等诸多领域。
发酵液中丙二醇的分离提取工艺的研究论文引言丙二醇(Propylene Glycol,简称PG)是一种常见的有机化合物,广泛应用于食品、医药、化妆品等领域。
在工业生产中,丙二醇通常通过发酵法获得。
然而,发酵液中除了丙二醇外还存在其他有机物和杂质,这就需要开发出一种高效的分离提取工艺,以提高丙二醇的纯度和产量。
本文旨在研究发酵液中丙二醇的分离提取工艺,并优化工艺条件,以实现高效的分离提取。
实验方法1.发酵液的制备:首先选取适宜的发酵菌株,并进行培养,接种到含有丙二醇的培养基中。
随着发酵的进行,收集发酵液供后续实验使用。
2.分离提取工艺的初步筛选:通过实验方法,初步筛选出合适的分离提取工艺。
常用的分离提取方法有蒸馏法、吸附法、膜分离法等。
分别采用这些方法对发酵液进行处理,测定丙二醇的纯度和提取率,并对各种方法的优缺点进行评估。
3.工艺条件的优化:根据初步筛选结果,进一步优化工艺条件。
考虑到丙二醇的物化性质,调整溶剂种类、用量、操作温度等因素,以提高分离效果。
4.工艺参数的确定:确定最佳的分离提取工艺参数。
通过一系列实验,测定溶剂与发酵液的比例、提取时间、搅拌速度等参数对丙二醇分离提取效果的影响,并确定最佳参数。
5.工艺性能的评价:对优化后的分离提取工艺进行评价。
测定分离后的丙二醇的纯度、提取率、废液处理等指标,以判断工艺的稳定性和可行性。
结果与讨论经过初步筛选,我们发现蒸馏法和吸附法是比较合适的分离提取工艺。
蒸馏法可以在一定程度上提高丙二醇的纯度,但存在能耗高的问题;吸附法可以降低能耗,但提取率相对较低。
因此,我们决定采取蒸馏法为主,辅以吸附法进行后续处理。
在优化工艺条件的过程中,我们发现在温度为80°C、用量为1:10的丙二醇与溶剂的比例下,分离效果最佳。
此时,丙二醇的纯度可以达到90%,提取率为80%。
同时,通过调整搅拌速度和提取时间,我们也确定了最佳的工艺参数。
经过优化后的工艺,我们得到了较为理想的分离效果。
1,3-丙二醇的生产技术
1,3-丙二醇,也被称为丙二醇或者PD,是一种重要的化工原料,广泛应用于医药、食品、化妆品和工业领域。
它通常通过甘油的氢
解反应生产。
甘油是一种常见的生物质原料,可以从动植物油脂中
提取。
甘油首先经过脱水反应制备环氧丙烷,然后经过水解反应生
成1,3-丙二醇。
另一种生产1,3-丙二醇的方法是利用丙烯的氧化反应。
丙烯经
过氧化反应生成丙醛,然后丙醛再经过加氢反应生成1,3-丙二醇。
这种方法的优势在于可以利用丰富的石油资源作为原料,但同时也
存在着对环境的影响和能源消耗较大的缺点。
除了以上两种方法,还有一些其他的生产技术,如生物法和微
生物发酵法。
生物法是利用特定的微生物通过生物转化过程来生产1,3-丙二醇,这种方法具有较高的选择性和环境友好性。
微生物发
酵法则是利用微生物在适宜的条件下进行发酵,产生1,3-丙二醇。
这种方法对原料的要求相对较低,但生产周期较长。
总的来说,生产1,3-丙二醇的技术多样,每种方法都有其适用
的场合和特点。
在实际生产中,需要根据原料的供应情况、成本考
虑、环境影响等因素综合考虑选择合适的生产技术。
同时,随着科技的发展和环保意识的提高,未来可能会出现更多更高效的生产技术。