镁硅酸盐矿物的晶体结构和基本性质
- 格式:doc
- 大小:563.50 KB
- 文档页数:4
实验3 硅酸盐矿物的晶体结构一、实验目的:巩固硅酸盐矿物的晶体结构知识。
二、硅酸盐晶体结构概述硅酸盐晶体按结构中硅氧四面体的连接方式,可以分为岛状、组群状、链状、层状和架状五种。
1. 岛状结构岛状结构硅酸盐晶体中硅氧四面体以孤立形式存在,硅氧四面体之间没有共用的氧。
典型的矿物是镁橄榄石,其结构如图3-1所示。
镁橄榄石(Mg2SiO4)的晶体结构属正交晶系Pbmm空间群,a0=0.476nm,b0=1.021nm,c0=0.598nm,Z=4。
镁橄榄石的结构中O2-近似于六方紧密堆积,Si4+充填在四面体空隙,Mg2+充填于八面体空隙,硅氧四面体之间由Mg2+按镁氧八面体的方式相连。
图3-1 镁橄榄石晶体理想结构图3-2 绿宝石的晶体结构2. 组群状结构组群状结构是指硅氧四面体以两个、三个、四个或六个,通过共用氧连成硅氧四面体群体,群体之间由其它阳离子按一定的配位形式将它们连接在一起。
典型的矿物是绿宝石,其晶体结构如图7-2所示。
绿宝石(Be3Al2[Si6O18])的晶体结构属于六方晶系P6/mcc空间群,a0=0.921nm,c0=0.917nm,Z=2。
绿宝石的基本结构单元是六个硅氧四面体形成的六节环,六节环之间由Al3+和Be2+相连。
六节环中的四面体有两个氧是共同的,它们与硅氧四面体中的Si4+处于同一高度。
图7-2中示出了八个这样的六节环,上面四个和下面四个错开30 排列,上下叠置的六节环内形成了一个巨大的通道,可以存在一些如K+、Cs+等大的阳离子以及H2O分子。
Al3+的配位数为6,形成Al-O八面体,Be2+的配位数为4,构成Be-O四面体。
3. 链状结构硅氧四面体可以由共用氧离子相连,在一维方向延伸成链状,链与链之间再通过其它阳离子按一定的配位关系连接而形成链状结构。
透辉石(CaMg[Si2O6])是具有链状结构的硅酸盐矿物之一,其晶体结构属于单斜晶系C2/c空间群,a0=0.9746nm,b0=0.8899nm,c0=0.5250nm, 37’,Z=4。
实验3 硅酸盐矿物的晶体结构一、实验目的:巩固硅酸盐矿物的晶体结构知识。
二、硅酸盐晶体结构概述硅酸盐晶体按结构中硅氧四面体的连接方式,可以分为岛状、组群状、链状、层状和架状五种。
1. 岛状结构岛状结构硅酸盐晶体中硅氧四面体以孤立形式存在,硅氧四面体之间没有共用的氧。
典型的矿物是镁橄榄石,其结构如图3-1所示。
镁橄榄石(Mg2SiO4)的晶体结构属正交晶系P bmm空间群,a0=0.476nm,b0=1.021nm,c0=0.598nm,Z=4。
镁橄榄石的结构中O2-近似于六方紧密堆积,Si4+充填在四面体空隙,Mg2+充填于八面体空隙,硅氧四面体之间由Mg2+按镁氧八面体的方式相连。
图3-1 镁橄榄石晶体理想结构图3-2 绿宝石的晶体结构2. 组群状结构组群状结构是指硅氧四面体以两个、三个、四个或六个,通过共用氧连成硅氧四面体群体,群体之间由其它阳离子按一定的配位形式将它们连接在一起。
典型的矿物是绿宝石,其晶体结构如图7-2所示。
绿宝石(Be3Al2[Si6O18])的晶体结构属于六方晶系P6/mcc空间群,a0=0.921nm,c0=0.917nm,Z=2。
绿宝石的基本结构单元是六个硅氧四面体形成的六节环,六节环之间由Al3+和Be2+相连。
六节环中的四面体有两个氧是共同的,它们与硅氧四面体中的S i4+处于同一高度。
图7-2中示出了八个这样的六节环,上面四个和下面四个错开30 排列,上下叠置的六节环内形成了一个巨大的通道,可以存在一些如K+、Cs+等大的阳离子以及H2O分子。
Al3+的配位数为6,形成Al-O八面体,Be2+的配位数为4,构成Be-O四面体。
3. 链状结构硅氧四面体可以由共用氧离子相连,在一维方向延伸成链状,链与链之间再通过其它阳离子按一定的配位关系连接而形成链状结构。
摘要:凹凸棒石是一种含水富镁的硅酸盐黏土矿物,具有层链状结构,结构中有着规整的孔道,是天然的一维纳米材料,其具有比表面积大、吸附性强等特点,已被广泛应用于陶瓷领域。
简述了凹凸棒石的晶体结构及其基本性质,包括吸附性、催化性、填充性、胶体性和悬浮性;分析了凹凸棒石在加热过程中的结构演变过程;综述了凹凸棒石在传统陶瓷和功能陶瓷中的应用现状,并展望了其未来的研究方向。
关键词:凹凸棒石;黏土;陶瓷;结构演变;吸附性;催化性;功能陶瓷0 引言凹凸棒石又名坡缕石,是一种含水富镁的硅酸盐黏土矿,具有2∶1层链状晶体结构,亦为天然的一维纳米材料。
我国凹凸棒石储量丰富,仅甘肃省临泽县已探明储量就高达4亿t,远景储量达10亿t,而国外的凹凸棒石总储量约为4 000万t。
凹凸棒石目前已被广泛应用于陶瓷、石油化工、造纸、建材、印染及环保等领域。
在陶瓷领域中,凹凸棒石表现出了巨大的应用潜力,与传统的黏土矿物相比,其不仅具有黏土的大部分特性,因结构的特殊性还使其拥有黏土所不具备的其他性能。
与氧化物功能陶瓷相比,在同等性能下,凹凸棒石陶瓷的成本更低,经济效益更好。
目前,凹凸棒石已被应用于陶瓷砖、吸附陶瓷和支撑材料等领域。
添加凹凸棒石可以显著提高材料的力学性能,包括抗弯强度、抗压强度和断裂韧性等。
此外,凹凸棒石还可以增强吸附陶瓷材料的吸附性。
本文介绍了凹凸棒石的结构及其性质,分析了温度对凹凸棒石结构的影响,综述了凹凸棒石在陶瓷领域的应用现状,并展望了其在陶瓷领域的发展方向。
1 凹凸棒石的结构和性质凹凸棒石的理论化学式为Mg5Si8O20-(OH)2-(OH2)4·4H2O,其基本单元由硅氧四面体双链组成,硅氧四面体在链间通过角顶的氧原子连结并上下交替排列,构成层链状结构。
由于硅氧四面体角顶的氧原子指向不同,产生了不连续的八面体片,从而形成了孔道,孔道截面尺寸约为0.37 nm×0.64 nm。
这些孔道沿凹凸棒石晶束有序排列,因此凹凸棒石具有较大的比表面积。