遗传算法在数字图像处理中的应用
- 格式:pdf
- 大小:402.52 KB
- 文档页数:8
基于双特征的短波红外星图识别算法
廖屹;张磊
【期刊名称】《电光与控制》
【年(卷),期】2024(31)6
【摘要】在短波红外波段进行昼夜测星有望实现近地空间全天时自动导航,其中,星图识别算法是实现全天时导航的关键技术之一。
传统的三角形算法在导航星数增多的情况下,由于其匹配特征维度低,在识别时容易出现冗余匹配、误匹配的情况。
针对这一问题,提出了一种基于双特征的短波红外星图识别算法,该算法选取三角形的面积与外切圆半径双高维特征作为匹配特征,通过构建面积特征的K矢量索引,应用K矢量查找法降低匹配识别的计算复杂度。
此外,还提出一种优化的观测三角形的选择策略,减少了匹配过程中的计算量,提高算法的识别速度。
实验表明,星点位置噪声低于2像素时,算法的平均识别率优于95%;伪星数未超过50%时,平均识别率可达87.6%;并通过实际观星试验验证了所提算法的可行性,与改进的三角形算法相比,该算法在识别速度、识别率以及抗噪声能力等方面都有明显优势。
【总页数】6页(P56-61)
【作者】廖屹;张磊
【作者单位】中国科学院长春光学精密机械与物理研究所;中国科学院大学
【正文语种】中文
【中图分类】TP391.4
【相关文献】
1.一种基于点对构造与星等差的近红外星图匹配识别算法
2.一种基于旋转不变特征的星图识别算法
3.一种基于径向和环向模式特征量的近红外星图匹配识别方法
4.短波红外星图的星点边界提取算法
5.基于特征学习的双路径红外-可见光行人重识别算法
因版权原因,仅展示原文概要,查看原文内容请购买。
第七章遗传算法应用举例遗传算法是一种模拟自然选择和遗传机制的计算方法,它可以用来解决很多实际问题。
以下是几个遗传算法应用的实例。
1.旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到最短路径来访问一系列城市并返回原始城市。
遗传算法可以通过编码城市序列,并使用交叉、变异和选择操作进行优化。
通过进行迭代,遗传算法可以更优的路径,并得到近似最优的解。
2.机器学习特征选择:在机器学习中,特征选择是一种减少特征集合维度的方法,以提高模型的性能和泛化能力。
遗传算法可以用来选择最佳的特征子集,通过优化目标函数(例如分类准确率或回归误差)来评估子集的优劣,并通过交叉和变异操作不断改进。
3.组合优化问题:遗传算法也广泛应用于组合优化问题,如背包问题、任务调度、物流路径规划等。
通过定义适应度函数和优化目标,遗传算法可以最优的组合并提供近似解。
4.神经网络训练:神经网络是一种模拟人脑神经元相互连接和传递信息的计算模型。
训练神经网络需要调整网络权重和参数,以最小化损失函数。
遗传算法可以用作优化算法,通过定义染色体编码网络参数,并通过交叉和变异操作对网络进行进化,以找到更好的网络结构和参数。
5.机器调参:机器学习算法通常包含许多超参数需要调优,例如决策树的深度、神经网络的学习率等。
遗传算法可以用来超参数的最佳组合,并通过交叉和变异操作对超参数进行优化。
6.图像处理:遗传算法被广泛应用于图像处理领域,如图像增强、目标检测、图像分割等。
通过定义适应度函数和优化目标,遗传算法可以优化图像处理算法的参数和参数组合,以提高图像质量和算法效果。
7.电力系统优化:电力系统优化包括电力负荷优化、电力设备配置优化、电力网路规划等。
遗传算法可以用来优化电力系统的各种参数和变量,以提高电力系统的效率和可靠性。
总之,遗传算法是一种强大而灵活的优化算法,在许多领域都可以应用。
它通过模拟生物进化过程,通过选择、交叉和变异操作,问题的解空间,并找到最优或近似最优的解。
改进的Hausdorff距离和遗传算法在图像匹配中的应用臧铁飞;沈庭芝;陈建军;顾建军
【期刊名称】《北京理工大学学报》
【年(卷),期】2000(20)6
【摘要】研究模板和图像间的有效匹配 .将部分 Hausdorff距离的计算进行改进 ,提出一种改进的部分 Hausdorff距离作为检测模板和图像中物体轮廓相似性的测度 ,可以较大地减少计算量 .同时把遗传算法引入图像匹配识别 .由于遗传算法的高并行性和鲁棒性 ,可以较快地完成全局搜索 ,而不会陷入局部最优 ,因此该算法和改进的 Hausdorff距离相结合能有效地检测出具有平移、旋转和尺度变化的物体 .【总页数】5页(P733-737)
【关键词】Hausdorff距离;数字图像处理;图像匹配;遗传算法
【作者】臧铁飞;沈庭芝;陈建军;顾建军
【作者单位】北京理工大学电子工程系
【正文语种】中文
【中图分类】TN911.73;TP18
【相关文献】
1.改进 Hausdorff距离和量子遗传算法在激光制导中的应用 [J], 张腾飞;张合新;孟飞;强钲捷;杨小冈
2.一种改进的部分Hausdorff距离检测技术和遗传算法在图像匹配识别中的应用[J], 沈庭芝;臧铁飞;朱少娟;方力
3.基于Hausdorff距离和免疫遗传算法在图像匹配的应用研究 [J], 孟飞;王仕成;杨小冈;张合新
4.鲁棒Hausdorff距离在SAR/惯性组合导航图像匹配中的应用研究 [J], 冷雪飞;刘建业;熊智;邢广华
5.基于改进Hausdorff距离在图像匹配中的算法 [J], 徐文科;王国刚
因版权原因,仅展示原文概要,查看原文内容请购买。
遗传算法的原理及其应用实例遗传算法是一种受生物进化启发的优化算法。
它模拟了自然进化的过程,通过选择、交叉和变异等方式不断优化解决问题的方法。
遗传算法已经在很多领域得到了广泛应用,如机器学习、图像处理、数据挖掘、优化、智能控制等领域。
遗传算法的原理遗传算法的三个基本操作是选择、交叉和变异。
选择操作是基于适应度函数对个体进行评估,优秀的个体会有更大的概率被选中。
交叉操作是将两个或多个个体的部分基因进行互换,在新一代中产生更好的个体。
变异操作是根据一定的概率对个体的某些基因进行随机变异,以增加新的可能性。
遗传算法的应用实例1.优化问题遗传算法已成功应用于很多优化问题中。
例如,在工程设计领域中,遗传算法可以用来求解复杂的数学模型,以优化设计变量,如大小、材料和形状等,来满足特定的需求。
在机器学习和人工智能领域中,遗传算法被广泛用于模型优化和参数调整。
2.路径规划遗传算法还可以被用来解决复杂路径规划问题,如飞机航线规划、智能出租车路径规划等。
通过评估适应度函数,遗传算法可以找到一条最短或最优的路线,可以用于优化运输成本、提高效率等。
3.学习算法遗传算法还可用于生成人工神经网络的拓扑结构,进一步实现学习算法的优化。
遗传算法能够通过超参数的选择,使神经网络表现更好的能力,因此在很多领域中如自然语言处理、图像处理、语音识别等领域中被广泛应用。
总之,遗传算法不仅具有优化复杂问题的能力,而且还是一种可扩展,灵活,易用和高度可定制的算法。
随着计算力的增强和算法技术的提高,遗传算法在未来的发展中将会有更为广泛的应用。
遗传算法在人脸识别中的应用案例人脸识别技术是近年来快速发展的一项前沿技术,它在安全领域、智能手机解锁、人脸支付等方面都有广泛的应用。
而遗传算法作为一种优化算法,也被广泛应用于人脸识别中,以提高识别准确率和效率。
本文将介绍一些遗传算法在人脸识别中的应用案例,并探讨其优势和局限性。
一、遗传算法在特征提取中的应用在人脸识别中,特征提取是非常重要的一步。
传统的特征提取方法如主成分分析(PCA)、线性判别分析(LDA)等,都存在一定的局限性。
而遗传算法可以通过优化特征选择的过程,自动地找到最佳的特征子集,从而提高识别准确率。
以基于遗传算法的特征选择方法为例,首先将人脸图像转化为数字矩阵,然后通过遗传算法来选择最佳的特征子集。
遗传算法通过模拟进化过程中的选择、交叉和变异等操作,不断优化特征子集的性能。
通过这种方法,可以减少特征维度,去除冗余信息,提高分类器的性能。
二、遗传算法在分类器设计中的应用分类器是人脸识别中的核心组件,它的设计直接影响到识别准确率。
遗传算法可以应用于分类器的参数优化,以提高分类器的性能。
以基于遗传算法的支持向量机(SVM)参数优化为例,首先通过遗传算法来搜索最佳的SVM参数组合,如核函数类型、惩罚因子等。
然后使用优化后的参数训练SVM分类器,从而提高分类准确率。
三、遗传算法在人脸图像增强中的应用人脸图像质量对于识别准确率有着重要影响。
而遗传算法可以应用于人脸图像增强,以提高图像质量,从而提高识别准确率。
以基于遗传算法的图像增强为例,首先通过遗传算法来寻找最佳的图像增强参数,如对比度、亮度等。
然后使用优化后的参数对人脸图像进行增强处理,从而提高图像质量,增强人脸特征的可辨识度。
遗传算法在人脸识别中的应用具有一定的优势,但也存在一些局限性。
首先,遗传算法的计算复杂度较高,需要大量的计算资源和时间。
其次,遗传算法的结果具有一定的随机性,可能无法保证每次都能找到全局最优解。
此外,遗传算法的参数设置也对结果产生一定的影响,需要经验和调优。
遗传算法在数字图像处理中的应用研究随着计算机技术的飞速发展,图像处理技术在各个领域的应用日益广泛。
然而,面对海量的图像数据,传统的图像处理方法往往无法胜任。
遗传算法作为一种优化算法,已经在数字图像处理中得到了广泛的应用。
本文将着重探讨遗传算法在数字图像处理中的应用及其优势。
一、遗传算法的工作原理遗传算法是一种模拟自然进化过程的优化算法,其核心思想是通过模拟生物进化过程,不断优化解决问题的方法。
遗传算法通过选择、交叉和变异三个环节保留和改进经过 evauation(评估)的优秀个体,不断迭代寻求最优解。
其具体过程可归纳为以下几个步骤:1.初始化一个染色体群体。
2.对每个染色体进行评估,评估其适应度。
3.选择适应度高的个体,进行交叉和变异,生成新的染色体。
4.将新生成的染色体加入群体,形成新的染色体群体。
5.如未达到终止条件则返回2,即不断迭代。
二、遗传算法在数字图像处理中的应用1.图像分割遗传算法可通过对图像像素点颜色、边缘的遗传编码,求解解决图像分割问题。
以遗传算法优化聚类方法为例,将每个像素点视为一个染色体,每个染色体的基因由其颜色、空间属性等构成。
通过遗传算法的过程不断优化,得出最优的聚类中心快速而准确地实现图像分割。
2.图像增强图像增强是对图像的亮度、对比度、锐度等进行调整,使其更美观、更易于观察。
遗传算法可通过设计适应度函数来优化图像增强算法,实现最佳的图像增强效果。
3.图像识别遗传算法可用于图像自动识别,如人脸识别、指纹识别、车牌识别等。
通过设计基于特征的遗传编码、适应度函数等方式,寻找最合适的特征来识别图像,在解决图像分类等问题上具有很好的实用性和成功率。
三、遗传算法在数字图像处理中的优势1.高效性遗传算法的并行处理功能使其可以很快地进行大量数据的图像处理和分析,优化搜索算法更快地收敛于全局最优解。
2.鲁棒性遗传算法不容易受到噪声干扰,不受搜索起点的影响,往往能在问题空间的任何区域找到最优解,具有很好的鲁棒性。
遗传算法的的原理及应用遗传算法是一种模拟自然界中生物进化过程的优化算法。
它通过模拟生物的遗传机制和进化规律,利用群体中个体之间的基因交叉、变异和选择等操作来搜索最优解。
遗传算法在解决复杂问题、寻找最优解和优化参数等方面具有很好的应用前景。
遗传算法的原理是基于自然选择和遗传遗传的思想,其主要流程包括初始化种群、选择操作、交叉操作和变异操作等。
1. 初始化种群:将问题抽象成染色体表示形式,并通过随机生成初始个体形成初始种群。
每个个体对应一个解。
2. 选择操作:根据个体的适应度函数值(目标函数值),选择适应度较高的个体作为下一代的父代。
选择操作有多种方法,如轮盘赌选择、竞争选择等。
3. 交叉操作:从父代中选择一对个体作为交叉对象,通过染色体交叉产生下一代的子代。
交叉操作可以随机选择交叉点或按照染色体的结构进行交叉。
4. 变异操作:对子代染色体的基因进行变异操作,改变染色体编码的值,引入新的基因,增加种群的多样性。
变异操作可以增加搜索空间的广度。
5. 重复执行选择、交叉和变异等操作,生成下一代,并计算适应度值。
直到满足终止条件,如达到最大迭代次数或找到最优解等。
遗传算法在很多领域都有广泛的应用,如优化问题、机器学习、图形分析、自动化设计等。
1. 优化问题:遗传算法可以帮助寻找最优解,如组合优化、旅行商问题、背包问题等。
通过定义适应度函数,遗传算法可以在解的空间中搜索最优解。
2. 机器学习:遗传算法可以用于优化模型的超参数选择,如神经网络的隐层节点数、迭代次数等。
通过遗传算法,可以快速地搜索到最优的超参数组合,提高模型的性能。
3. 图形分析:遗传算法可以用于图像分析和图像处理。
通过遗传算法可以提取图像的特征,如边缘检测、目标识别等。
同时,也可以通过遗传算法优化图像处理算法的参数,如滤波器的大小、阈值等。
4. 自动化设计:遗传算法可以用于自动设计和优化复杂系统,如电子电路设计、机械结构设计等。
通过定义适应度函数和限制条件,遗传算法可以搜索到最优设计方案。
遗传算法在图像处理中的应用随着数据量的不断增加,图像处理已经成为现代科学与工程中重要的领域之一。
在这个领域中,图像处理技术能够帮助人们更好地从图像中提取有用的信息。
然而,由于图像中所包含的信息往往非常复杂、庞大,有时候只能依靠大量的计算来解决问题。
因此,近年来大量的研究工作都引入了遗传算法来解决这个问题。
遗传算法是一种模拟生物进化过程的计算方法。
它通过模仿生物界的进化过程,利用基因编码,交叉重组,突变等方式来寻找问题的最优解。
在遗传算法中,每个“染色体”即代表一个可能的解决方案,而“适应度函数”则用来判断染色体的适应性。
通过对染色体的不断变异和交叉,最终得到较为高效的解决方案。
近年来,遗传算法已经被广泛应用于图像处理的领域中。
下面我们将通过其几个常见的应用来具体介绍其在图像处理中的应用。
一、图像压缩图像压缩是一种常见的图像处理技术,它能够在保证图像质量的前提下,将图像文件的体积缩小,以达到减小存储空间和提高传输速度等效果。
在图像压缩中,遗传算法通常被用来优化压缩算法的参数。
例如,在JPEG图像压缩中,遗传算法可以用来优化压缩表的编码,这样可以减少图像文件的体积,提高解码速度。
二、图像分割图像分割是图像处理中另一项非常重要的任务,它能够将一张图像分成若干个不同的区域,从而更好地提取其中的信息。
遗传算法常常被用来优化图像分割算法中的参数,例如阈值、迭代次数等,以取得更好的分割效果。
三、图像识别图像识别是在图像处理的领域中最为重要的任务之一。
在图像处理中,图像识别一般通过制定一个分类器来实现。
因此,图像识别的精度及分类器的性能全都取决于特征提取的准确性。
而遗传算法正是能够有效地解决这个问题。
通过遗传算法来优化特征提取的算法及参数,可以取得更好的分类精度。
四、图像增强遗传算法不仅可以在图像压缩、分割与识别中发挥作用,也可以在图像增强中发挥重要作用。
例如,在医疗图像中,有时需要对图像进行增强,以使医疗专家能够更好地诊断病情。