地震作用计算
- 格式:ppt
- 大小:1.11 MB
- 文档页数:19
计算地震作用的方法地震作用计算可是个很重要又有点复杂的事儿呢。
一、底部剪力法。
这是一种比较简单的方法哦。
它主要适用于高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构。
就像是那种规规矩矩的小房子,不太复杂的建筑结构就可以用这个方法来计算地震作用。
它的基本思路呢,就是先算出一个总的底部剪力,这个剪力就像是整个建筑在地震时受到的一个总的“拉拽力”。
然后再根据一定的规则把这个总的力分配到各个楼层上去。
就好比是有一大袋糖果(底部剪力),要按照一定的方法分给每个小朋友(楼层)。
二、振型分解反应谱法。
这个方法就相对复杂一些啦。
它适用于比较高的建筑或者结构不规则的建筑。
它的理念是把结构在地震下的振动分解成好多不同的振型,每个振型都有自己的频率、周期和振型参与系数。
这就像是把一个复杂的舞蹈动作(建筑在地震中的振动)分解成一个个单独的舞步(振型)。
然后呢,根据反应谱曲线,算出每个振型对应的地震作用,最后再把这些不同振型的地震作用组合起来,得到结构总的地震作用。
这就像是把每个舞步的力量(每个振型的地震作用)合起来,才是这个舞蹈完整的力量(结构总的地震作用)。
三、时程分析法。
这个方法可就更酷啦。
它是直接输入地震波,就像真的让建筑去经历一场地震一样。
然后通过数值计算,一步一步地算出结构在地震过程中的反应。
不过呢,这个方法计算量超级大,就像要做一个超级复杂的大工程。
它一般用于特别重要的建筑或者是超高层、大跨度等复杂结构。
因为这些建筑结构太特殊啦,用前面两种方法可能不够准确,就像对待超级宝贝一样,得用最精细的方法来计算地震作用。
不管是哪种方法,都是为了让我们的建筑在地震的时候能够尽可能地安全。
建筑工程师们就像建筑的守护者,通过这些方法算出地震作用,然后设计出安全可靠的建筑结构,让大家在房子里住着安心、放心。
这也是对每一个生命的尊重和保护呢。
单质点地震作用计算的计算方法所谓单质点弹性体质,是指可以将结构参与振动的全部质量集中于一点,用无重量的弹性直杆支承于地面上的结构.例如水塔、单层房屋等建筑物,由于它们的质量大部分集中于结构的顶部,所以通常将这些结构简化成单质点体系.目前,计算弹性体系的反应时,一般假定地基不产生转动,而把地基的运动分解为一个竖向和两个水平向的分量,然后分别计算这些运动分量对结构的影响.主要内容:1.单自由度弹性体系地震反应分析,主要是运动方程解的一般形式及水平地震作用的基本公式及计算方法。
2.计算水平地震作用关键在于求出地震系数k和动力系数β。
一、地震概述地震是一种地质现象,就是人们常说的地动,它主要是由于地球的内力作用而产生的一种地壳振动现象。
据统计,地球上每年约有15万次以上或大或小的地震。
人们能感觉到的地震平均每年达三千次,具有很大破坏性的达100次。
每次中等程度的地震就会造成重大损失和人员伤亡,研究地震的危害和抗震的方法极有必要,目前已经研究到了多质点体系地震作用和整体结构的地震作用,但这些研究都离不开单质点地震作用的计算,我们组准备理论研究并在现有的计算基础上做一点拓展。
二.地震危害直接2005年2月15日新疆乌什发生6.2级地震,经济损失达15757.43万元,主要是土木结构的房屋破坏严重。
近期,云南普洱发生严重的地震,震中位于人口稠密的县城,造成严重的财产损失和人员伤亡。
目前,因灾受伤群众为300余人,其中3人死亡。
全县各乡(镇)房屋受损严重,土木结构房屋墙体倒塌较多,砖混结构房屋普遍出现墙体开裂,承重柱移位。
作为将来的结构工程师,抗震是我们拦路虎,必须加以重视,那我们先从基础理论着手。
三、单质点弹性体系的地震反应目前,我国和其他许多国家的抗震设计规范都采用反应谱理论来确定地震作用。
这种计算理论是根据地震时地面运动的实测纪录,通过计算分析所绘制的加速度(在计算中通常采用加速度相对值)反应谱曲线为依据的。
地震作用计算地震是地球表面的一种自然现象,是地球内部能量释放的结果。
地震作用是指地震对周围环境的影响和改变。
地震作用可以从多个方面进行计算和研究。
地震作用对地表造成的影响可以通过震级来计算。
震级是用来表示地震能量大小的指标,通常使用里氏震级或面波震级进行计算。
里氏震级是根据地震的震源矩来计算的,可以反映地震的破坏力。
面波震级则是根据地震波的振幅和周期来计算的,可以反映地震的震感。
通过计算震级,可以了解地震对地表的破坏程度和影响范围。
地震作用还可以通过地震波的传播和衰减来计算。
地震波是地震能量在地球内部传播的波动现象,可以分为P波、S波和面波等不同类型。
P波是最快传播的纵波,S波是次快传播的横波,面波是沿地表传播的波动。
通过计算地震波的传播速度和衰减程度,可以预测地震对不同地区的影响和破坏程度。
地震作用还可以通过地震引起的地表变形来计算。
地震会引发地壳的弯曲、断裂和垂直位移等变形现象,这些变形可以通过测量地震前后的地形和地貌来计算。
地震引起的地表变形可以影响土地利用、水资源和基础设施等方面,因此需要进行计算和评估。
地震作用还可以通过地震引起的地下水位变化来计算。
地震会引发地下水位的升降,这可以通过监测井水位的变化来计算。
地震引起的地下水位变化可以影响地下水资源的分布和利用,因此需要进行计算和研究。
地震作用可以从震级、地震波传播和衰减、地表变形和地下水位变化等方面进行计算和研究。
地震作用的计算可以帮助我们了解地震对周围环境的影响和改变,为地震灾害的预防和防范提供科学依据。
通过不断深入研究地震作用的计算方法和技术,可以提高地震预测和防灾减灾的能力,保护人民的生命财产安全。
地震效应计算公式对于低层建筑,可以使用简化的等效静力法计算地震效应。
常用的公式为:F=C_q*W其中F为地震效应(地震力或基底剪力);C_q为荷载系数,由地震参数和建筑结构特性决定;W为建筑物的有效重量。
对于多层建筑,一般采用简化的等效静力法或动力分析法计算地震效应。
其中,动力分析法更加精确,但计算复杂度更高。
简化的等效静力法常用的公式为:F=C_q*W*I其中F为地震效应(地震力或基底剪力);C_q为荷载系数,由地震参数和建筑结构特性决定;W为建筑物的有效重量;I为重要性系数,用于反应建筑物对地震的抗性能,根据建筑的用途和地理位置确定。
框架结构是一种常见的建筑结构形式,地震效应的计算公式需要考虑结构的刚度和地震作用的分布。
常用的公式为:F=C_q*(W+T*Q)其中F为地震效应(地震力或基底剪力);C_q为荷载系数,由地震参数和建筑结构特性决定;W为建筑物的有效重量;T为建筑物的周期;Q为地震作用的分布系数,考虑地震波对不同层的作用。
四、基础动应力计算公式地震对建筑物的基础动应力是非常重要的,可以使用以下公式进行计算:σ=k*M/A其中σ为动应力;k为地震系数,取决于建筑物基础的类型和地质条件;M为地震矩,取决于地震参数和建筑物的质量和刚度;A为建筑物的地基面积。
需要注意的是,以上公式仅为常见的地震效应计算公式,并不是适用于所有情况的通用公式。
在具体工程设计和地震风险评估中,需要根据具体情况选择适合的公式,并结合合理的参数值进行计算。
此外,地震效应计算还需要考虑地震波的频率特性、位移效应、非线性效应等因素,以得到更准确的结果。
地震作用计算方法
地震作用计算方法包括以下几种:
1.等效静力法:通过将地震作用等效为静荷载,计算结构的变形和内力。
这种方法的基础是地震动力学的基础原理,适用于规则结构或近似规则结构的计算。
2.离散寻找理论方法:通过对连续结构进行离散化,将结构分解成一系列离散的单元或节点,从而计算出结构的振型和其各个部分的响应特性。
该方法适用于非规则结构和复杂结构的计算。
3.有限元法:将结构分割为有限数量的小元素,然后计算每个元素的变形和内力。
从这些元素的相互作用中推导出总体结构的响应。
该方法适用于求解一般结构的动力响应问题。
4.谱分析法:通过分析地震波的频谱特性,计算出结构的地震响应,用于确定地震荷载的等效单向谱值或多向谱值。
该方法适用于有规律的结构抗震设计。
5.时间历程分析法:通过对地震波进行时间历程分析,模拟地震发生时结构的动态响应过程,从而计算结构的变形和内力。
该方法适用于一般结构的抗震设计。
需要注意的是,地震作用计算方法的选择取决于结构的类型、规律性、复杂程度、地震波的特性等多种因素。
在进行抗震设计时应综合考虑以上因素。
水平地震作用计算方法
水平地震作用是指地震破裂在水平方向上对地壳和岩石产生的应力。
以下是常用的水平地震作用计算方法:
1. 直接计算法:利用地震学公式直接计算水平地震作用。
该方法需要知道地震破裂的物理条件和地震参数,然后利用地震学公式和岩石力学理论进行计算。
2. 破裂模拟法:通过模拟地震破裂的物理过程,计算出水平地震作用。
该方法需要建立地震破裂模型,模拟地震破裂时地壳和岩石发生的变形和应力过程,然后根据岩石力学理论计算出水平地震作用。
3. 专业模型法:利用专业模型对地震破裂进行模拟,并计算出水平地震作用。
该方法适用于研究复杂地质条件下的地震破裂,如断层带等。
常用的水平地震作用计算方法有 direct method、破裂模拟法和专业模型法等。
这些方法都需要具体的地震破裂数据和研究模型,因此在研究地震破裂时需要选择合适的方法进行计算。
地震作用计算
1. 几个重要参数
1.1地震系数k ,是地震动峰值加速度与重力加速度之比:g x k g max
=;
地震动峰值加速度与《抗规》的设计基本地震加速度值相当,即50年设计基准期,超越概率10%的地震加速度设计值。
地震时在某处地震加速度记录的最大值,就是这次地震在该处的k 值(以地震加速度g 为单位)。
抗震7度(0.1g )设防,相当于汽车速度从0公里/小时加速到100公里/小时(≈28m/s ),用时28s ,加速度为0.1g ,行驶距离392m ;
抗震8度(0.2g )设防,相当于汽车速度从0公里/小时加速到100公里/小时(≈28m/s ),用时10s ,加速度为0.28g ,行驶距离140m 。
1.2动力系数β,是单质点弹性体系在地震作用下最大反应加速度与地面最大加速度之比:max g a x S =
β,即质点最大反应加速度比地面最大加速度放大的倍数。
地震作用标准值计算(1)各层总重力荷载代表值计算1.屋面层总重力荷载代表值女儿墙重量:(1.95+0.51+0.875)×[(11.4+0.2)×2+(25+0.2)×2-(2.5+0.4×10+0.5×4)]=217.11kN屋面板重量:6.4×(4-0.2-0.15)×(11.4-0.2-0.3-0.2)×2=499.90kN7.7×(6-0.15×2)×(11.4-0.2-0.3-0.2)×2=939.25kN5.9×[(6-0.2-0.15)×(2.5-0.3)×2+(2.5-0.3)×(3.6-0.3)]+6.4×(1.8-0.25)×(2.5-0.3)=211.33kN499.90+939.25+211.33=1650.48kN电梯机房重量:0.91+2.366+1.333+3.465+1.43+3.887+25×0.3×0.3×1.5×2+25×0.2×0.2×(1.8×2+2.5×2)+5.9×1.6×2.3=50.453kN楼梯间重量:(7.275+15.132+3.958)×2+(1.275+1.716+0.449+1.62)+(2.61+5.148+1.346+0.486)=67.38kN4.5×[(2.5-0.4)+(2.5-0.25-0.2)+(5.4-0.3-0.25)+(5.4-0.3-0.2)]=62.55kN3.89+4.031+0.432+0.571=8.924kN25×3×(0.4×0.4×3+0.5×0.5)=54.75kN5.9×(5.4-0.35)×(2.5-0.3)=65.55kN67.38+62.55+8.924+54.75+65.55=259.15kN楼梯板重量:25×(0.3×0.15/2×1.1×9+3×1.1×0.12+0.2×0.3×2.5)+3×1.1×2.3+17×0.02×[1.1×2.3+2.3×(0.2+0.2+0.2)+1.1×3]+2.12=31.38kN8层柱重量:25×1.5×(0.4×0.4×9+0.5×0.5×5)=100.88kN17×0.02×1.5×(0.4×4×9+0.5×4×5-0.2×2×14)=9.59kN100.88+9.59=110.47kN梁重量:4.5×[(11.4+0.2)×7-0.4×12-0.5×8-0.3)]=324.45kN4.5×[(25+0.2)×3-0.4×12-0.5×8]=300.6kN1.5×(2.5-0.3)=3.3kN2.122×2+4.243×2+3.89+4.031+3.89+4.972+1.428×2+2.418×2+0.432+0.714×2+1.18×2+0.571+0.443=42.44kN324.45+300.6+3.3+42.44=670.79kN7层墙、门、窗重量:54.253×2+28.925×2+42.844+41.342+40.291+14.463×2+15.826×2+18.378+11.172×2+8.629+14.463×2+23.598×2+5.573+8.374+8.439×2+15.06×2+10.184+8.706×2+26.611+5.597×2=603.23kN7层柱重量:25×3×(0.4×0.4×12+0.5×0.5×8)=294kN17×0.02×3×(0.4×4+0.7×4+1.7×2+1×2+0.6×3+1.4×2+0.9×2+1)=17.544kN294+17.544=311.544kN因屋面可变载不计入重力荷载代表值,故屋面层的重力荷载代表值为:G=217.11+1650.48+50.453+259.15+31.38+110.47+670.79+603.23/2+311.544/2 7=3447.22kN2-6层重力荷载代表值楼面板重量:3.5×(4-0.35)×(11.4-0.2-2.25-0.2)×2=223.563kN3.0×[(2-0.25)×(2.5-0.3)+(4-0.25)×(2.5-0.3)+(6-0.3)×(2.9-0.25)+(2.5-0.3)×(6-0.55)+(2-0.25)×(4-0.55)]×2+3.0×(3.6-0.3)×(2.5-0.3)=296.325kN4.8×(6-0.3)×(6-0.35)×2=309.168kN3.5×(1.5-0.2)×(6-0.3)×2=51.87kN223.563+296.325+309.168+51.87=880.93kN柱重量:25×3×(0.4×0.4×12+0.5×0.5×8)=294kN17×0.02×3×(0.4×4+0.7×4+1.7×2+1×2+0.6×3+1.4×2+0.9×2+1)=17.544kN294+17.544=311.544kN楼梯板重量:31.38×2=62.76kN梁重量:[1.5×(2.5-0.3)+3×(6-0.3)+1.5×(4-0.35)+3×(6-0.3)+1×(2-0.25)]×2+1×(5-0.6)=93.85kN4.5×1.5×4=27kN0.431×2+2.267×2+0.422+0.305+0.384+2.648×2+0.22×2+0.676×4=14.947kN670.79+93.85+27+14.947=806.59kN墙、门、窗、栏杆重量:603.23+1.06×4+4.239×2=615.948kN楼面可变荷载:2.0×[(25-0.1)×(11.4-0.1)-1.8×2.5]+2.5×6×1.5×2=598.74kN因楼面可变荷载按等效均布荷载计算,要乘以组合值系数0.5,故2-6层的总重力荷载G=880.93+311.544+62.76+806.59+615.948+0.5×598.74=2977.14kN代表值为:621层重力荷载代表值楼面板重量:3.5×(4-0.35)×(11.4-0.2-2.25-0.2)×2=223.563kN3.0×[(2-0.25)×(2.5-0.3)+(4-0.25)×(2.5-0.3)+(6-0.3)×(2.9-0.25)+(2.5-0.3)×(6-0.55)+(2-0.25)×(4-0.55)]×2+3.0×(3.6-0.3)×(2.5-0.3)=296.325kN4.8×(6-0.3)×(6-0.35)×2=309.168kN3.5×(1.5-0.2)×(6-0.3)×2=51.87kN223.563+296.325+309.168+51.87=880.93kN柱重量:25×3.8×(0.4×0.4×12+0.5×0.5×8)=372.4kN372.4+17.544=389.944kN楼梯板重量:31.38×2=62.76kN梁重量:[1.5×(2.5-0.3)+3×(6-0.3)+1.5×(4-0.35)+3×(6-0.3)+1×(2-0.25)]×2+1×(5-0.6)=93.85kN4.5×1.5×4=27kN0.431×2+2.267×2+0.422+0.305+0.384+2.648×2+0.22×2+0.676×4=14.947kN670.79+93.85+27+14.947=806.59kN墙、门、窗、栏杆重量:因1层平面布置与标准层大致相同,此项荷载相差不大,故大小取同标准层此项荷载,为615.948kN楼面可变荷载:2.0×[(25-0.1)×(11.4-0.1)-1.8×2.5]+2.5×6×1.5×2=598.74kN因楼面可变荷载按等效均布荷载计算,要乘以组合值系数0.5,故1层的总重力荷载代表值为:G=880.93+(389.944+311.544)/2+62.76+806.59+615.948+0.5×598.74=3016.34kN 1(2)全楼横向水平地震作用计算 1.结构基本自振周期计算采用顶点位移法计算,此方法计算周期必须先求出结构在重力荷载代表值水平作用于各质点产生的顶点位移,计算过程见表3-2-15。
地震效应计算公式地震效应计算公式是指用于计算地震对建筑物、结构物、土壤和人体等造成的影响和损害的数学公式。
这些公式根据地震波参数和结构物的特性来计算地震效应,包括地震力、地震加速度、地震位移、地震反应谱等。
下面将介绍几个常用的地震效应计算公式。
1.地震力计算公式:地震力是指地震作用下作用于建筑物或结构物的力,可以用于评估结构的稳定性和设计地震时的重要参数。
通常使用摩擦模型或弹簧模型来计算地震力。
根据弹性力学理论,地震力可以使用以下公式进行计算:F=m*a其中,F代表地震力,m代表结构物的质量,a代表地震加速度。
这个公式可以适用于单自由度结构。
2.地震加速度计算公式:地震加速度是指地震波在其中一点上产生的加速度。
地震加速度的计算对于评估结构物的破坏程度至关重要。
根据地震学的知识,可以使用以下公式计算地震加速度:a=V*y其中,a代表地震加速度,V代表地震速度,y代表地震波的周期。
地震加速度与地震速度和周期的乘积成正比。
3.地震位移计算公式:地震位移是指地震波在其中一点上产生的位移。
地震位移的计算对于评估结构物的变形程度和应力程度至关重要。
根据动力学理论,可以使用以下公式计算地震位移:S = (2 * pi * V * y) / g其中,S代表地震位移,V代表地震速度,y代表地震波的周期,g代表重力加速度。
地震位移与地震速度、周期和重力加速度的乘积成正比。
4.地震反应谱计算公式:地震反应谱是指结构物在地震波作用下的频率-加速度关系曲线。
地震反应谱的计算对于评估结构物的自振频率、阻尼比和峰值反应至关重要,可以用于确定结构物的抗震性能。
地震反应谱可以通过以下公式计算:Sa = Sd * (2 * pi / T^2)其中,Sa代表地震反应谱值,Sd代表地震谱加速度图的最大值,T代表周期。
地震反应谱与地震谱加速度和周期的平方成正比。
综上所述,地震效应的计算公式包括地震力、地震加速度、地震位移和地震反应谱等。
地震作用计算方法地震是地球内部能量释放的结果,它造成地球表面产生震动,并可能引起众多灾害,如建筑物倒塌、土地滑坡、断裂带形成等。
为了减少地震灾害的影响,科学家们发展了一些方法来计算地震的作用。
本文将介绍几种常用的地震作用计算方法。
1.地震强度计算方法:地震强度是描述地震摧毁程度的指标,通常使用烈度表来表示。
常用的烈度表有Modified Mercalli Intensity Scale (MMI)和震度表。
地震强度的计算是通过对震中附近地区的建筑物破坏、地面的变形和地震产生的其他效应进行实地调查得出的。
研究人员采集各种数据,如摄像机记录的毁坏情况、眼见、耳闻等,用来判断各地的地震强度。
计算方法主要通过对各种指标和损害程度的评估,得出地震的强度等级。
2.地震震级计算方法:地震震级是一种用来描述地震能量大小的指标。
常用的地震震级计算方法是利用所记录到的地震波幅度或地震波能量进行计算。
其中最常见的方法是利用地震波在不同距离下振幅的衰减关系计算地震震级。
这需要测量原始地震波的振幅,然后将该振幅转换为一个合适的单位(如矩震级或能量黑球震级)。
根据振幅和距离的关系,可以计算出地震的震级。
3.地震动力学计算方法:地震动力学计算方法是一种通过数学模型和地震动力学理论来模拟和预测地震作用的方法。
这种方法基于地震波在不同地质条件下的传播规律,通过计算地震波在地下的传播过程中的振动特征,来估计地表地震动和地下结构物的响应。
这种方法可以用于评估地震对结构物的破坏程度,以及预测地震引起的地表烈度变化等。
4.地震作用的数值模拟:数值模拟方法是一种通过计算机建立地震动力学模型,并运用数值方法求解模型来计算地震作用的方法。
这种方法可以模拟地震波在地下的传播过程,预测地表地震动和结构物的响应。
通过对地震波传播过程中的波动方程进行数值求解,可以得到地震波在不同地质条件下的传播规律,从而估计地震作用的影响范围和程度。
总结起来,地震作用的计算方法包括地震强度计算方法、地震震级计算方法、地震动力学计算方法和地震作用的数值模拟方法。
地震作用计算的方法及各自的使用范围1.引言地震是地球上常见的自然灾害之一,对人类社会和基础设施造成了严重的破坏。
为了准确预测和评估地震对结构物的影响,地震作用计算方法至关重要。
本文将介绍几种常见的地震作用计算方法,并详细阐述它们各自的使用范围。
2.位移法位移法是一种简化的地震作用计算方法,通过假设结构物在地震作用下发生弹性变形,计算结构体的位移响应。
该方法适用于小型结构和较小地震作用的情况,如住宅、小型商业建筑等。
然而,在大震和长周期地震作用下,位移法的精度会降低,因为它无法考虑非线性效应和耗散力的影响。
3.非线性静力法非线性静力法是一种考虑结构物非弹性变形的地震作用计算方法。
该方法通过采用非线性弹簧模型或塑性铰模型,对结构体的产生的非线性效应进行建模,从而计算结构体的应力和变形响应。
非线性静力法适用于中小型结构,可以更准确地预测和评估结构体在地震作用下的性能。
4.动力时程分析法动力时程分析法是一种基于结构体惯性力和地震激励之间相互作用的地震作用计算方法。
通过将结构体建模为质点体系,并考虑结构体和地震作用之间的相互作用力,该方法可以模拟结构体在地震波荷载下的真实动态响应。
动力时程分析法适用于大型或特殊结构,如桥梁、高层建筑等。
5.响应谱分析法响应谱分析法是一种将地震波和结构体的频率特性结合起来,评估结构体在地震作用下的响应的方法。
该方法通过使用结构体的频响函数和地震波的谱函数,计算结构体的响应谱曲线,从而评估结构体的抗震性能。
响应谱分析法广泛应用于工程设计和结构性能评估。
6.使用范围比较不同的地震作用计算方法适用于不同的结构类型和地震作用水平。
以下是各种方法的使用范围比较:-位移法:适用于小型结构和较小地震作用,计算简便,精度相对较低。
-非线性静力法:适用于中小型结构,可以考虑非线性效应,具有较高的精度。
-动力时程分析法:适用于大型或特殊结构,可以模拟真实的动态响应,精度高。
-响应谱分析法:广泛适用于各种结构类型,通过结构体的频率特性评估抗震性能。