高考物理一轮复习第六章动量动量守恒定律微专题动量守恒定律的理解和应用备考精炼
- 格式:doc
- 大小:338.00 KB
- 文档页数:7
第1讲 动量 动量定理[A 组 基础题组]一、单项选择题1.下列解释正确的是( )A .跳高时,在落地处垫海绵是为了减小冲量B .在码头上装橡皮轮胎,是为了减小渡船靠岸过程受到的冲量C .动量相同的两个物体受相同的制动力作用,质量小的先停下来D .人从越高的地方跳下,落地时越危险,是因为落地时人受到的冲量越大解析:跳高时,在落地处垫海绵是为了延长作用时间减小冲力,不是减小冲量,故选项A 错误;在码头上装橡皮轮胎,是为了延长作用时间,从而减小冲力,不是减小冲量,故选项B 错误;动量相同的两个物体受相同的制动力作用,根据动量定理Ft =mv ,可知运动时间相等,故选项C 错误;人从越高的地方跳下,落地前瞬间速度越大,动量越大,落地时动量变化量越大,则冲量越大,故选项D 正确。
答案:D2.如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中( )A .小球所受合力的冲量方向为弧中点指向圆心B .小球所受支持力的冲量为0C .小球所受重力的冲量大小为m 2gRD .小球所受合力的冲量大小为m 2gR解析:小球受到竖直向下的重力和垂直切面指向圆心的支持力,所以合力不指向圆心,故合力的冲量也不指向圆心,故A 错误;小球的支持力不为零,作用时间不为零,故支持力的冲量不为零,故B 错误;小球在运动过程中只有重力做功,所以根据机械能守恒定律可得mgR =12mv B 2,故v B =2gR ,根据动量定理可得I 合=Δp =mv B =m 2gR ,故C 错误,D 正确。
答案:D3.一小球从水平地面上方无初速度释放,与地面发生碰撞后反弹至速度为零。
假设小球与地面碰撞没有机械能损失,运动时的空气阻力大小不变,则下列说法正确的是( ) A .上升过程中小球动量改变量等于该过程中空气阻力的冲量 B .小球与地面碰撞过程中,地面对小球的冲量为零 C .下落过程中小球动能的改变量等于该过程中重力做的功D .从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功解析:根据动量定理可知,上升过程中小球动量改变量等于该过程中重力和空气阻力的合力的冲量,选项A 错误;小球与地面碰撞过程中,由动量定理得Ft -mgt =mv 2-(-mv 1),可知地面对小球的冲量Ft 不为零,选项B 错误;下落过程中小球动能的改变量等于该过程中重力和空气阻力做功的代数和,选项C 错误;由能量守恒关系可知,从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功,选项D正确。
第2节动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
3.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
二、碰撞、反冲和爆炸1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。
(3)分类:2.(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
3.爆炸问题(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
1.思考辨析(正确的画“√”,错误的画“×”)(1)系统所受合外力的冲量为零,则系统动量一定守恒。
(√)(2)动量守恒是指系统在初、末状态时的动量相等。
(×)(3)物体相互作用时动量守恒,但机械能不一定守恒。
(√)(4)在爆炸现象中,动量严格守恒。
(×)(5)在碰撞问题中,机械能也一定守恒。
(×)(6)反冲现象中动量守恒、动能增加。
(√)2.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。
学习资料第2节动量守恒定律及其应用必备知识预案自诊知识梳理一、动量守恒定律及其应用1。
动量守恒定律(1)内容:如果一个系统,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式①p= ,系统相互作用前的总动量p等于相互作用后的总动量p’。
②m1v1+m2v2= ,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Δp1= ,相互作用的两个物体动量的增量等大反向。
④Δp= ,系统总动量的增量为零。
2.动量守恒的条件不受外力或所受外力的合力为零,不是系统内每个物体所受的合外力都为零,更不能认为系统处于状态。
二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的机械能损失。
②非弹性碰撞:碰撞后系统的机械能有损失.③完全非弹性碰撞:碰撞后合为一体,机械能损失。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量。
3。
反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向,如发射炮弹、火箭等.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。
考点自诊1。
判断下列说法的正误。
(1)若在光滑水平面上的两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相等。
()(2)只要系统内存在摩擦力,系统的动量就不可能守恒。
()(3)无论碰撞、反冲还是爆炸类问题,动能都不会增大.()(4)两物体组成的系统总动量守恒,这个系统中两个物体的动量变化总是大小相等、方向相反。
()(5)弹性碰撞过程中系统动量一定守恒。
()2。
将质量为1.00 kg的模型火箭点火升空,50 g燃气以大小为600 m/s的速度从火箭喷口在很短的时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷气过程中重力和空气阻力可忽略)()A.30 kg·m/s B。
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
第六章 碰撞与动量守恒定律动量守恒定律及三类模型【考点预测】1.动量守恒的条件2.动量守恒的简单应用3.子弹打木块问题4.爆炸反冲问题5.人船模型问题【方法技巧与总结】一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”在滑动摩擦力作用下做匀加速直线运动.②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为在这一过程中动量守恒.把“子弹”和“木块”看成一个系统:a.系统水平方向动量守恒;b.系统的机械能不守恒;c.对“木块”和“子弹”分别应用动能定理.(2)“木块”固定在水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”静止不动.②处理方法:对“子弹”应用动能定理或牛顿第二定律.2.“反冲”和“爆炸”模型(1)反冲①定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.②特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.③规律:遵从动量守恒定律.(2)爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.如爆竹爆炸等.3.“人船模型”问题(1)模型介绍两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题即为“人船模型”问题.(2)模型特点①两物体满足动量守恒定律:m1v1-m2v2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1x2=v1v2=m2m1.③应用x1x2=v1v2=m2m1时要注意:v1、v2和x1、x2一般都是相对地面而言的.【题型归纳目录】题型一:动量守恒的判定题型二:动量守恒定律的理解和基本应用题型三:“人船”模型题型四:“子弹打木块”模型题型五:反冲和爆炸模型【题型一】动量守恒的判定【典型例题】1“世界上第一个想利用火箭飞行的人”是明朝的士大夫万户。
48 动量守恒定律的理解和应用[方法点拨] (1)守恒条件的判断:理想守恒、近似守恒、单方向守恒.(2)应用关键是选好合适的系统、合适的过程,即一定要明确研究对象是谁,明确守恒过程的初、末状态.(3)要注意规定正方向.1.(多选)(2017·北京西城区模拟)如图1所示,甲、乙两人静止在光滑的冰面上,甲沿水平方向推了乙一下,结果两人向相反方向滑去.已知甲的质量为45 kg,乙的质量为50 kg.则下列判断正确的是( )图1A.甲的速率与乙的速率之比为10∶9B.甲的加速度大小与乙的加速度大小之比为9∶10C.甲对乙的冲量大小与乙对甲的冲量大小之比为1∶1D.甲的动能与乙的动能之比为1∶12.(2017·北京石景山区模拟)如图2所示,一轻绳上端固定,下端系一木块,处于静止状态.一颗子弹以水平初速度射入木块内(子弹与木块相互作用时间极短,可忽略不计),然后一起向右摆动直至达到最大偏角.从子弹射入木块到它们摆动达到最大偏角的过程中,对子弹和木块,下列说法正确的是( )图2A.机械能守恒,动量不守恒B.机械能不守恒,动量守恒C.机械能不守恒,动量不守恒D.机械能守恒,动量守恒3.(多选)(2017·福建漳州联考)如图3所示,木块a和b用一根水平轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b上施加向左的水平力F使弹簧压缩,当撤去外力后,下列说法中正确的是( )图3A .尚未离开墙壁前,a 、b 及弹簧组成的系统动量守恒B .尚未离开墙壁前,a 、b 及弹簧组成的系统机械能守恒C .离开墙壁后,a 、b 及弹簧组成的系统动量守恒D .离开墙壁后,a 、b 及弹簧组成的系统动量不守恒4.(多选)(2017·贵州凯里模拟)如图4所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、B 静置于光滑水平轨道上,A 、B的质量分别为1.5 kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s ,当A 与B 碰撞后立即粘在一起运动,g 取10 m/s 2,则( )图4A .A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小F =50 NB .A 与墙壁碰撞的过程中没有能量损失C .A 、B 碰撞后的速度v =3 m/sD .A 、B 滑上圆弧轨道的最大高度h =0.55 m5.(2017·四川成都第一次诊断)如图5所示,小车静止在光滑水平面上,AB 是小车内半圆轨道的水平直径,现将一小球从距A 点正上方h 高处由静止释放,小球由A 点沿切线方向经半圆轨道后从B 点冲出,在空中能上升的最大高度为0.8h ,不计空气阻力.下列说法正确的是( )图5A .在相互作用过程中,小球和小车组成的系统动量守恒B .小球离开小车后做竖直上抛运动C .小球离开小车后做斜上抛运动D .小球第二次冲出轨道后在空中能上升的最大高度为0.6h6.(多选)(2017·福建漳州八校模拟)如图6所示,光滑水平地面上静止放置由弹簧相连的木块A 和B ,开始时弹簧处于原长,现给A 一个向右的瞬时冲量,让A 开始以速度v 0向右运动,若m A>m B,则( )图6A.当弹簧压缩最短时,B的速度达到最大值B.当弹簧再次恢复原长时,A的速度一定向右C.当弹簧再次恢复原长时,A的速度一定小于B的速度D.当弹簧再次恢复原长时,A的速度可能大于B的速度7.(2017·江西南昌三校第四次联考)如图7所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过p点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的( )图7A. 轨迹为pb,至屏幕的时间将小于tB. 轨迹为pc,至屏幕的时间将大于tC. 轨迹为pa,至屏幕的时间将大于tD. 轨迹为pb,至屏幕的时间将等于t8.(多选)(2017·山东淄博一模)如图8所示,在质量为M(含支架)的小车上用轻绳悬挂一小球,小球质量为m0,小车和小球以恒定的速度v沿光滑的水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞时间极短,下列哪些说法是可能发生的( )图8A.在此碰撞过程中,小车、木块、小球的速度都发生变化,分别变为v1、v2、v3,满足(M +m0)v=Mv1+mv2+m0v3B.在此碰撞过程中,小球的速度不变,小车和木块的速度变为v1和v2,满足(M+m0)v=Mv1+mv2C.在此碰撞过程中,小球的速度不变,小车和木块的速度都变为u,满足Mv=(M+m)u D.碰撞后小球摆到最高点时速度变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv29.(2017·黑龙江大庆模拟)如图9所示,甲、乙两船的总质量(包括船、人和货物)分别为12m、14m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图910.(2018·山东青岛二中模拟)如图10所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C 静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C 发生碰撞后瞬间A的速度大小.图1011.(2018·四川成都第七中学月考)如图11所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一水平轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求:图11(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小.答案精析1.AC [两人在光滑的冰面上,故他们受合力为零,当甲推乙时,二人的总动量守恒,故m 甲v 甲=m 乙v 乙,则v 甲v 乙=m 乙m 甲=5045=109,选项A 正确;二人的相互作用力大小相等,方向相反,故甲的加速度大小与乙的加速度大小之比为二人质量的反比,即10∶9,选项B 错误;二人相互作用的时间相等,作用力大小相等,故甲对乙的冲量大小与乙对甲的冲量大小之比为1∶1,选项C 正确;由E k =p 22m可知,甲、乙的动能不相等,选项D 错误.]2.C3.BC [以a 、b 及弹簧组成的系统为研究对象,在a 离开墙壁前,除了系统内弹力做功外,无其他力做功,系统机械能守恒,在a 尚未离开墙壁前,系统所受合外力不为零,因此该过程系统动量不守恒,故A 错误,B 正确;当a 离开墙壁,系统水平方向不受外力,系统动量守恒,故C 正确,D 错误.]4.AC [设水平向右为正方向,A 与墙壁碰撞时根据动量定理有Ft =m A v 1′-m A (-v 1),解得F =50 N ,故A 正确.若A 与墙壁碰撞时无能量损失,A 将以速度6 m/s 水平向右运动,由题已知碰后的速度大小变为4 m/s ,故B 错误.设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有m A v 1′=(m A +m B )v ,解得v =3 m/s ,故C 正确.A 、B 在光滑圆弧轨道上滑动时,机械能守恒,由机械能守恒定律得12(m A +m B )v 2=(m A +m B )gh ,解得h =0.45 m ,故D 错误.]5.B6.BC [A 开始压缩弹簧时做减速运动,B 做加速运动,当两者速度相等时,弹簧压缩到最短,然后B 继续做加速运动,A 继续做减速运动,所以弹簧压缩到最短时,B 的速度没有达到最大,故选项A 错误;弹簧压缩到最短时,两者速度相等,然后B 继续做加速运动,A 继续做减速运动,直到弹簧恢复原长,此时B 的速度达到最大,且大于A 的速度,根据动量守恒有:m A v 0=m A v A +m B v B ,若A 的速度方向向左,则m B v B >m A v 0,动能E k =p 22m,可知E k B >E k0,违背了能量守恒定律,所以A 的速度一定向右,故选项B 、C 正确,D 错误.]7.C [带电粒子和不带电粒子相碰,遵守动量守恒,故总动量不变,总电荷量也保持不变,由Bqv =m v 2r ,得:r =mv qB =pqB,p 、q 都不变,可知粒子碰撞前后的轨迹半径r 不变,故轨迹应为pa ,由周期T =2πmqB可知,因m 增大,故粒子运动的周期增大,因所对应的弧线不变,圆心角不变,故新微粒运动至屏幕所用的时间将大于t ,C 正确.] 8.CD9.5v 0解析 设抛出货物的速度为v ,由动量守恒定律得: 乙船与货物:14mv 0=13mv 1-mv 甲船与货物:12m ·2v 0-mv =13mv 2 两船不相撞的条件是:v 2≤v 1, 解得v ≥5v 0. 10.2 m/s解析 因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v CA 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得m A v A +m B v 0=(m A+m B )v ABA 与B 达到共同速度后恰好不再与C 碰撞,应满足v AB =v C ,联立以上各式,代入数据得v A=2 m/s.11.(1)12v 0 (2)13v 0 (3)1348mv 02解析 (1)对A 、B 接触的过程中,当第一次速度相同时, 由动量守恒定律得,mv 0=2mv 1解得v 1=12v 0(2)设A 、B 第二次速度相同时的速度大小为v 2,对A 、B 、C 组成的系统,根据动量守恒定律:mv 0=3mv 2解得v 2=13v 0(3)B 与C 碰撞的瞬间,B 、C 组成的系统动量守恒,有:m v 02=2mv 3解得v 3=14v 0系统损失的机械能为ΔE =12m (v 02)2-12×2m (v 04)2=116mv 02当A 、B 、C 速度相同时,弹簧的弹性势能最大,此时v 2=13v 0根据能量守恒定律得,弹簧的最大弹性势能为:E p =12mv 02-12(3m )v 22-ΔE =1348mv 02。