线性规划模型的标准形式
- 格式:doc
- 大小:809.50 KB
- 文档页数:19
线性规划的数学模型及其标准形式线性规划问题是工作和生活中最常见的问题,也是运筹学中最简单和最基础的问题。
因此,研究现线性规划在经济中的应用问题必须对线性规划的概念和数学模型的掌握和了解是十分必要的。
下面让我们对线性规划的数学模型加以介绍。
线性规划的数学模型在许多实际问题中总是存在着已知量和未知量,若将这些量之间的依赖关系用数学式子表示出来,那么就称这些式子为实际问题的数学模型,或者说数学模型就是描述实际问题共性的抽象的数学形式,线性规划的数学模型包含两个组成部分,一是目标函数,二是约束条件,目标函数是一个由欲达到最优目的的有关量所构成的关系式,根据研究的目标是最大还是最小,在目标函数前面冠以“max ”或“min ”;约束条件是欲达到预期目的所受到的现实客观环境的制约,将这种制约用不等式或不等式表示,即为约束条件,以后减记..s t ;是“subject to “的缩写。
研究数学模型有助于认识这类问题的性质和寻求它的一般解法,但线性规划问题涉及到的实际问题是非常广泛的,我们只能先从其中某些典型的实际问题开始,不能面面俱到,但这些问题的做法都是类似的,下面我们通过例题研究线性规划的数学模型。
例 1 某工厂有生产甲,乙两种产品的能力,且生产一吨甲产品需要3个工日和0.35吨小麦,生产一吨乙产品需要4个工日和0.25吨小麦,该厂仅有工人12人一个月只能出300个工日,小麦一个月只能进12吨,并且还知道生产一吨甲产品可盈利80(百元),生产一吨乙产品可盈利90(百元)。
那么,这个工厂在一个月中应如何根据现有条件安排这两种产品的生产,使之获得最大盈利?建立数学模型。
解:设1x ,2x 分别表示一个月生产甲,乙两种产品的数量,则最大盈利为:1280S x x =+工日的约束为1234300x x +≤,原料小麦的约束为120.350.2521x x +≤,那么该问题的数学模型即为:12121212m ax 8090,..34300,0.350.2521,,0S x x s t x x x x x x =++≤+≤≥例 2 假定市场上可以买到各种不同的食品,且第j 种食品每单位售价j c (元)。
第三部分运筹学第四章运筹学建模4.1 运筹学概述运筹学是用数学方法研究各种系统最优化问题的学科。
其研究方法是应用数学语言来描述实际系统,建立相应的数学模型,并对模型进行研究和分析,据此求得模型的最优解;其目的是制定合理运用人力、物力和财力的最优方案;为决策者提供科学决策的依据;其研究对象是各种社会系统,可以是对新的系统进行优化设计,也可以是研究已有系统的最佳运营问题。
因此,运筹学既是应用数学,也是管理科学,同时也是系统工程的基础之一。
运筹学一词最早出现于第二次世界大战期间,当时为了急待解决作战中所遇到的许多错综复杂的战略战术问题,英美一些具有不同学科和背景的科学家,组成了许多研究小组,专门从事军事行动的优化研究。
研究的典型课题有:高射炮阵地火力的最佳配置、护航舰队规模的大小以及开展反潜艇作战的侦察等方面。
由于受到战时压力的推动,加上不同学科互相渗透而产生的协同作用,在上述几个方面的研究都卓有成效,为第二次世界大战盟军的胜利起到积极作用,也为运筹学各个分支的进一步研究打下了基础。
战后,这些科学家们转向研究在民用部门应用类似方法的可能性。
因而,促进了在民用部门中应用运筹学有关方法的研究和实践。
1947年,美国数学家G.B.Dantzig提出了求解线性规划的有效方法——单纯形法。
50年代初,应用电子计算机求解线性规划问题获得了成功。
50年代末,工业先进国家的一些大型企业也陆续应用了运筹学的方法以解决企业在生产经营活动中所出现的许多问题,取得了良好效果。
60年代中期,一些银行、医院、图书馆等都已陆续认识到运筹学对帮助改进服务功能、提高服务效率所起的作用,由此带来了运筹学在服务性行业和公用事业中的广泛应用。
电子计算机技术的迅速发展,为广泛应用运筹学方法提供了有力工具,运筹学的应用又开创了新的局面。
当前,运筹学在经济管理、生产管理、工程建设、军事作战、科学试验以及社会系统等各个领域中都得到了极为广泛的应用。
简述优化模型的标准形式、类别优化模型是数学规划领域中的一个重要概念,它用于描述在给定的约束条件下求解最优解的问题。
优化问题可以分为线性优化问题和非线性优化问题两大类,基本数学表达形式通常是用标准形式或一般形式来描述的。
标准形式指的是对优化问题进一步的整理和限定,使得问题的结构更加明确和规范化。
标准形式的优化问题通常包括以下几个要素:目标函数、约束条件、决策变量的约束条件和目标的限制条件。
下面将详细介绍并讨论优化模型的标准形式及其类别。
1.线性规划的标准形式线性规划是优化模型中最常见的一种类型,它的目标函数和约束条件均为线性关系。
线性规划的标准形式可以表示为:求解:minimize (c^T * x)subject to A * x <= bx >= 0其中,c是长度为n的目标函数系数向量,x是决策变量向量,A 是约束条件的系数矩阵,b是约束条件右侧常数项向量。
2.整数规划的标准形式整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划的标准形式可以表示为:求解:minimize (c^T * x)subject to A * x <= bx >= 0x为整数其中,c、A、b的定义与线性规划的标准形式相同,但要求决策变量x为整数。
3.非线性规划的标准形式非线性规划是优化模型中比较复杂的一种类型,它的目标函数或约束条件包含非线性关系。
非线性规划的标准形式可以表示为:求解:minimize f(x)h(x) = 0其中,f(x)是目标函数,g(x)和h(x)分别表示不等式约束和等式约束,x是决策变量。
4.线性二次规划的标准形式线性二次规划是线性规划的一种扩展形式,它的目标函数中包含二次项。
线性二次规划的标准形式可以表示为:求解:minimize (1/2 * x^T * Q * x + c^T * x)subject to A * x <= bx >= 0其中,Q是一个正定矩阵,x是决策变量。
高中线性规划高中线性规划是高中数学课程中的一部分,是线性代数的重要内容之一。
线性规划是一种优化问题的数学建模方法,通过线性规划可以求解出一组满足一定约束条件的最优解。
线性规划的基本形式是在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。
线性规划的目标函数和约束条件都是线性的,这使得线性规划问题能够用简洁的数学模型来描述。
线性规划的数学模型可以用如下的标准格式来表示:最大化(或最小化)目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束条件:x₁ ≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数项。
线性规划的求解过程一般分为以下几个步骤:1. 确定决策变量:根据实际问题确定需要优化的变量,将其表示为x₁、x₂、...、xₙ。
2. 建立目标函数:根据实际问题确定需要最大化或最小化的目标函数,并将其表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ。
3. 建立约束条件:根据实际问题确定约束条件,并将其表示为线性不等式的形式,即a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ。
4. 确定非负约束条件:由于线性规划问题的解必须满足变量的非负性,即x₁≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0。
5. 求解最优解:将线性规划问题转化为数学模型后,可以利用线性规划的求解方法,如单纯形法、对偶理论等,求解出目标函数的最大值或最小值,以及相应的决策变量的取值。
线性规划化为标准型线性规划是运筹学中的一种重要方法,它在资源分配、生产计划、物流管理等领域有着广泛的应用。
将线性规划问题化为标准型是解决线性规划问题的基本步骤之一,本文将介绍线性规划问题的标准型及其转化方法。
一、线性规划问题的标准型。
线性规划问题的标准型是指将原始的线性规划问题转化为一种特定形式的数学模型。
线性规划问题的标准型通常具有以下形式:\[。
\begin{array}{ll}。
\text { Maximize } & c^{T} x \\。
\text { subject to } & A x=b \\。
& x \geq 0。
\end{array}。
\]其中,$x$是一个$n$维向量,表示决策变量;$c$是一个$n$维向量,表示目标函数的系数;$A$是一个$m \times n$的矩阵,$b$是一个$m$维向量,表示约束条件的系数。
在标准型中,约束条件通常包括等式约束和非负约束。
二、将线性规划问题转化为标准型的方法。
1. 将不等式约束转化为等式约束。
对于原始的线性规划问题,如果存在不等式约束,可以通过引入松弛变量将其转化为等式约束。
例如,对于不等式约束$a^{T} x \leq b$,可以引入松弛变量$y$,得到等式约束$a^{T} x+y=b$,其中$y \geq 0$。
2. 将目标函数转化为最大化形式。
如果原始的线性规划问题是最小化形式,可以通过取其相反数转化为最大化形式。
例如,对于最小化问题$\min c^{T} x$,可以转化为最大化问题$\max -c^{T} x$。
3. 引入人工变量。
对于原始的线性规划问题,如果约束条件中存在非负约束,可以通过引入人工变量将其转化为等式约束。
例如,对于非负约束$x \geq 0$,可以引入人工变量$y$,得到等式约束$x+y=b$,其中$y \geq 0$。
三、实例分析。
考虑以下线性规划问题:\[。
\begin{array}{ll}。
第3章02线性规划模型的标准形式同学们大家好,上次我们讲了线性规划模型的结构和特征,然后在后面没给出了要定义线性规划的标准型的原因,今天我们就来介绍一下线性规划的标准型。
首先我们要说标准形式定义出来的,在不同的教材里面的定义并不相同。
在我们教材里面我们是这么定义的:我们先看目标函数,一般形式中可能是关于目标函数的最大化问题,有可能最小化问题,但在标准型里面我们定义目标函数必须是求最大化问题。
1111max(min c max c n n n nz x c x z x c x =++⇒=++ 或)我们再来看一下常约束条件。
在一般形式里面,常约束可能是等式,也可能是不等式,但在标准形式中,定义每个常约束都必须取等号。
112211221,2,,i i i i in in i i i i i in in i a x a x a x b a x a x a x b i m+++≤=≥⇒+++== (或,),再来看非负约束。
在一般形式里面,并不要求每个变量都有非负约束,但是在标准形式里面,要求每一个变量都是非负的。
1212,,0,,,,0k j j j n x x x k n x x x ≥≤⇒≥ 另外,标准形式还要求每一个右端常数项都是大于等于0的,当然这个不是很重要,因为如果右端常数项是负数,可以给这个方程左右两边乘以-1,就把它变成了整数。
最后,我们总结一下,在我们的教材里,标准形式有四个要求:目标函数是求最大化问题,所有常约束为等式,所有变量都有大于等于0,右端常数项都大于等于0。
所以,我们的标准形式可以规范地写成下面的形式。
11112212max , 1,2,,st.,,0n ni i i i in in i n z c x c x a x a x a x b i m x x x =+++++==⎧⎨≥⎩ 关于标准形式,它还有几种等价的形式需要大家熟悉。
第一种是简写形式。
也就是用和式号对标准形式进行简写,形式如下:⎪⎩⎪⎨⎧=≥===∑∑==n j x m i b x a x c z jnj i j ij nj j j ,,2,1,0 ,2,1st.max 11 ,第二种是矩阵形式。
线性规划的标准形式线性规划是一种数学优化方法,用于解决一些实际问题,比如资源分配、生产计划、运输调度等。
线性规划的标准形式是指将问题转化为一个标准的数学模型,以便于使用线性规划方法进行求解。
在本文中,我们将介绍线性规划的标准形式以及相关的数学概念和方法。
首先,让我们来定义线性规划的标准形式。
一个线性规划问题可以表示为:\[。
\begin{aligned}。
& \text{maximize} \quad c^Tx \\。
& \text{subject to} \quad Ax \leq b \\。
& \quad x \geq 0。
\end{aligned}。
\]其中,c是一个n维向量,表示目标函数的系数;x是一个n维向量,表示决策变量;A是一个m×n的矩阵,表示约束条件的系数;b是一个m维向量,表示约束条件的右端项。
在这个标准形式中,我们的目标是最大化目标函数c^Tx,同时满足约束条件Ax≤b和x≥0。
这个问题可以用线性规划方法求解,得到最优的决策变量x和最优解c^Tx。
为了更好地理解线性规划的标准形式,让我们来看一个简单的例子。
假设有一个工厂需要生产两种产品A和B,利润分别为3和5。
同时,工厂有两种资源,分别是材料和人工,资源A和资源B的使用量分别为1和2。
工厂的资源总量分别为4和12。
那么,我们可以将这个问题表示为一个线性规划问题:\[。
\begin{aligned}。
& \text{maximize} \quad 3x_1 + 5x_2 \\。
& \text{subject to} \quad x_1 + 2x_2 \leq 4 \\。
& \quad x_1 + x_2 \leq 12 \\。
& \quad x_1, x_2 \geq 0。
\end{aligned}。
\]在这个例子中,目标函数是3x1+5x2,表示生产产品A和B的总利润;约束条件是资源A和资源B的使用量不超过总量。
线性规划标准形式线性规划是运筹学中的一种重要方法,它在管理、经济、工程等领域有着广泛的应用。
在进行线性规划问题求解时,往往需要将原始问题转化为标准形式,这样可以更方便地应用线性规划的方法进行求解。
本文将介绍线性规划的标准形式及其相关内容。
1. 线性规划的标准形式。
线性规划的标准形式可以表示为:Max z = c1x1 + c2x2 + ... + cnxn。
Subject to:a11x1 + a12x2 + ... + a1nxn ≤ b1。
a21x1 + a22x2 + ... + a2nxn ≤ b2。
...am1x1 + am2x2 + ... + amnxn ≤ bm。
xi ≥ 0, i = 1, 2, ..., n。
其中,目标函数为最大化的线性表达式,约束条件为线性不等式,变量xi为决策变量,ci为系数,aij为系数矩阵,bi为常数,n为变量个数,m为约束个数。
2. 转化为标准形式的方法。
为了将原始线性规划问题转化为标准形式,可以采取以下步骤:(1)将不等式约束转化为等式约束,引入松弛变量或者人工变量,将不等式约束转化为等式约束。
(2)将目标函数转化为最大化问题,如果原始问题是最小化问题,可以通过取负号将其转化为最大化问题。
(3)引入非负约束,对于原始问题中的自由变量或者负变量,引入非负变量替代。
通过以上步骤,可以将原始线性规划问题转化为标准形式,从而方便进行后续的求解操作。
3. 求解标准形式的方法。
一旦线性规划问题被转化为标准形式,就可以利用线性规划的方法进行求解。
常用的求解方法包括单纯形法、对偶理论、内点法等。
这些方法都是基于线性规划的特殊结构和性质而设计的,可以高效地求解大规模的线性规划问题。
4. 实例分析。
为了更好地理解线性规划的标准形式,我们可以通过一个实例来进行分析。
假设有如下线性规划问题:Max z = 3x1 + 5x2。
Subject to:2x1 + x2 ≤ 6。
第三部分运筹学第四章运筹学建模4.1 运筹学概述运筹学是用数学方法研究各种系统最优化问题的学科。
其研究方法是应用数学语言来描述实际系统,建立相应的数学模型,并对模型进行研究和分析,据此求得模型的最优解;其目的是制定合理运用人力、物力和财力的最优方案;为决策者提供科学决策的依据;其研究对象是各种社会系统,可以是对新的系统进行优化设计,也可以是研究已有系统的最佳运营问题。
因此,运筹学既是应用数学,也是管理科学,同时也是系统工程的基础之一。
运筹学一词最早出现于第二次世界大战期间,当时为了急待解决作战中所遇到的许多错综复杂的战略战术问题,英美一些具有不同学科和背景的科学家,组成了许多研究小组,专门从事军事行动的优化研究。
研究的典型课题有:高射炮阵地火力的最佳配置、护航舰队规模的大小以及开展反潜艇作战的侦察等方面。
由于受到战时压力的推动,加上不同学科互相渗透而产生的协同作用,在上述几个方面的研究都卓有成效,为第二次世界大战盟军的胜利起到积极作用,也为运筹学各个分支的进一步研究打下了基础。
战后,这些科学家们转向研究在民用部门应用类似方法的可能性。
因而,促进了在民用部门中应用运筹学有关方法的研究和实践。
1947年,美国数学家G.B.Dantzig提出了求解线性规划的有效方法——单纯形法。
50年代初,应用电子计算机求解线性规划问题获得了成功。
50年代末,工业先进国家的一些大型企业也陆续应用了运筹学的方法以解决企业在生产经营活动中所出现的许多问题,取得了良好效果。
60年代中期,一些银行、医院、图书馆等都已陆续认识到运筹学对帮助改进服务功能、提高服务效率所起的作用,由此带来了运筹学在服务性行业和公用事业中的广泛应用。
电子计算机技术的迅速发展,为广泛应用运筹学方法提供了有力工具,运筹学的应用又开创了新的局面。
当前,运筹学在经济管理、生产管理、工程建设、军事作战、科学试验以及社会系统等各个领域中都得到了极为广泛的应用。
一些发达国家的企业、政府、军事等部门都拥有相当规模的运筹学研究组织,专门从事运筹学的应用研究,并为上层决策部门提供科学决策所需的信息和依据。
随着运筹学技术的推广应用,各国都先后成立了运筹学研究的专业学术机构。
早在1948年,英国成立了运筹学俱乐部,并出版运筹学的专门学术刊物。
1957年,在英国牛津大学召开了第一届国际运筹学会议。
1959年,成立了国际运筹学联合会。
我国于1956年成立了第一个运筹学小组,1980年成立了全国运筹学会,这对促进我国运筹学的应用和发展起了积极作用,特别是著名数学家华罗庚教授早在50年代中期就在一些企业和事业单位积极推广和普及优选法、统筹法等运筹学方法,取得了显著成效。
今天,我国有关高等院校不仅设置了运筹学专业,而且在管理类、财经类等的有关专业普遍开设了运筹学的必修课程。
许多专业的硕土生,也设置了运筹学作为学位课程。
运筹学的实质在于模型的建立和使用。
应用运筹学处理问题时,首先要求从系统观点来分析问题,即不仅要求提出需要解决的问题和希望达到的目标,而且还要弄清问题所处的环境和约束条件,包括:时间、地点、资金、原材料、设备、人力、能源、动力、信息、技术等的环境和约束条件,以及要处理问题中的主要因素、各种环境和约束条件之间的逻辑关系。
运筹学是一门多分支的应用学科,随着新的系统问题的不断出现,运筹学的有关分支也在不断的发展,内容在不断充实和扩大。
其主要分支有:近年来,有关运筹学的应用和理论研究都得到迅速发展。
在理论研究方面,涌现出许多新的模型方法和算法。
随着运筹学在各种专业学科中的广泛应用,结合专业特点,产生和发展了许多新的专业分支。
研究的内容有:“军事运筹学”、“运筹学在卫生医疗系统中的应用”、“运筹学在交通运输中的应用”、“运筹学在旅游观光事业中的应用”、“运筹学在体育运动中的应用”以及“能源运筹学模型”、“教育运筹学模型”、“刑事司法运筹学模型”等。
而且,运筹学与相关学科的交叉渗透还将进一步得到发展。
另一方面,随着运筹学应用逐渐向复杂的社会大系统渗透.运筹学的研究内容已出现了定量分析和定性分析相结合的发展趋势。
同时,运筹学的发展与计算机技术的发展密切相关。
计算机的飞速发展将深刻地影响着运筹学将来的发展。
随着计算机技术的提高,许多目前还不能求解的运筹学问题在将来会被解决。
运筹学的应用也会被推向越来越广的领域。
运筹学涉及到的理论和方法非常广泛,有些分支已发展完善为一门独立学科,限于篇幅,本书中只就线性规划、非线性规划的部分内容进行讨论,其他内容请读者参阅有关资料书籍。
4.2 线性规划模型的标准形线性规划是求一个 函数()n x x x f ,,21(称为目标函数)在规定条件()A x x x n ∈ ,,21(称为约束条件)下的极大值或极小值问题。
4.2.1线性规划模型的可行解和最优解定义5.1 设线性规划模型的一般式为:n n x c x c x c Z +++= 2211max(min) (5.1)约束条件(s.t.)()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥=≤+++≥=≤+++≥=≤+++n j x bx a x a x a b x a x a x a b x a x a x a j mn mn m m n n n n ,2,1,0,,,22112222212111212111 (5.2)满足约束条件(5.2)的一组数()n x x x ,,21,称为该线性规划模型的可行解。
满足目标函数,即使得目标函数达到最大值或最小值的可行解,称为该线性规划模型的最优解。
把最优解代入目标函数所得到的目标函数的最大值或最小值称为最优值。
定义5.2 某个线性规划模型的全体可行解组成的集合,称为该线性规划模型的可行解域。
4.2.2线性规划模型的标准型为讨论方便,我们规定线性规划模型的标准型,而其它非标准型总可以通过一些方法化为标准型。
线性规划模型的标准型为:目标函数n n x c x c x c Z +++= 2211max (5.3)约束条件(s.t.)()⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=+++=+++=+++n j x bx a x a x a b x a x a x a b x a x a x a j mn mn m m n n n n ,2,1,022112222212111212111 (5.4)注意,在线性规划模型的标准型中,约束条件是一组线性等式,也称为约束方程组,利用向量或矩阵符号,线性规划模型的标准型还可以记为:目标函数 CX Z =max约束条件(s.t.)⎩⎨⎧≥=0X BAX其中()n c c c C ,,21=,⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b B 21,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,0≥X 是指X 的各分量0,,21≥n x x x 。
标准型具有以下特点: (1) 目标函数是求最大值;(2) 约束条件为线性方程组;(3) 未知变量n x x x ,,21都有非负限制。
线性规划模型的非标准型,可以通过以下三种方法化为标准型: (一) 目标函数是求最小值Z min设n n x c x c x c Z +++= 2211min ,可设Z Z -=',则求最小值问题转化为求最大值问题,即将求Z min 转化为求Z 'max ,且n n x c x c x c Z ----=' 2211max 。
(二) 约束条件为不等式如果约束条件为不等式,则可增加一个或减去一个非负变量,使约束条件变为等式,增加或减去的 这个非负变量称为松弛变量。
例如:i n in i i b x a x a x a ≤+++ 2211加一个非负变量1+n x ,使不等式变为等式:i n n in i i b x x a x a x a =+++++12211如果约束为:i n in i i b x a x a x a ≥+++ 2211则减去一个非负变量1+n x ,使不等式变为等式:i n n in i i b x x a x a x a =-++++12211(三) 模型中的某些变量没有非负限制若某个变量j x 取值可正可负,这时可设两个非负变量j x '和j x '',令j j j x x x ''-'=,这样就可以满足标准型的要求。
4.3 线性规划模型的建立模型是线性规划解决问题的工具,线性规划方法通过对实际问题进行分析,建立其相应的线性规划模型,然后进行求解和分析,为决策提供依据。
所建立的模型是否能够恰当的反映实际问题中的主要矛盾,直接影响到所求得的解是否有意义,从而影响着决策的质量。
因此,建模是应用线性规划方法的第一步,也是最为重要的一步。
建立线性规划模型有三个基本步骤:第一步,找出问题中的所有相关的未知变量(决策变量),并用代数符号表示它们,根据变量的物理性质研究变量是否有非负性;第二步,找出问题中的目标,写成变量的线性函数,作为线性规划模型的目标函数; 第三步,找出问题中所有的限制或约束,写成变量的线性方程或线性不等式,作为线性规划模型的约束条件。
4.3.1生产计划问题生产计划问题是企业生产过程中时时遇到的问题,其最简单的一般形式可以描述如下: 用若干种原材料(设备)生产某几种产品,原材料(或设备)供应有一定的限制,要求制定一个产品生产计划,使其在给定资源限制条件下能得到最大收益。
[例题5.1] 根据以下现实情况建立线性规划模型某厂计划内将安排生产I,II 两种产品,已知生产单位重量的产品所需的设备为A 及B 、表5.1 生产设备和原料消耗表生产单位重量的产品I 可获利2万,生产单位重量的产品II 可获利5万。
问:如何安排生产可使工厂获得的利润最多? 解:模型建立:第一步,确定决策变量:要求的未知变量是I,II 两种产品的产量,用1x ,2x 分别表示它们;第二步,确定目标函数:本问题的目标是使工厂获得的利润1225Z x x =+最大; 第三步,确定约束条件:在这个问题中,约束条件是设备及材料的限制,设备A :1228x x +≤ 材料A :1624x ≤ 材料B :2515x ≤则这一问题的线性规划模型为:12max 25Z x x =+s.t. ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+0,15524682212121x x x x x x4.3.2合理下料问题下料问题是加工业中常见的一种问题,其一般的提法是把一种尺寸规格已知的原料,切割成给定尺寸的几种零件毛坯,问题是在零件毛坯数量要求给定的条件下,如何割才能使废料最少?下料问题由所考虑的尺寸的维数可以分成三维(积材)下料,二维(面料)下料和一维(棒料)下料问题,其中最简单的是棒料下料问题,现举一例来讨论如何用线性规划方法解决下料问题。