2014城市规划系统工程多元线性规划
- 格式:pdf
- 大小:3.54 MB
- 文档页数:78
《系统工程》结课论文线性规划问题的Excel建模及求解最优化就是从所有可能的方案中选择最合理的一种以达到最优目标的学科。
运筹学作为一种新型的管理方法,在解决系统工程优化问题上有着广泛的应用。
建立线性规划模型问题使得许多动态决策管理问题优化并得到解决。
对实际规划问题作定量分析,必须建立数学模型。
建立数学模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,称之为目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,称之为约束条件。
在解决线性规划问题上本文我介绍采用Excel如何建模并解决问题。
非线性规划问题的一般数学模型可表述为求未知量x1,x2,…,x n,使满足约束条件:gi(x1,…,x n)≥0i=1,…,mhj(x1,…,x n)=0 j=1,…,p并使目标函数f(x1,…,x n)达到最小值(或最大值)。
其中f,诸g i和诸h j都是定义在n维向量空间Rn的某子集D(定义域)上的实值函数,且至少有一个是非线性函数。
上述模型可简记为:min f(x)s.t. g i(x)≥0i=1,…,mh j(x)=0 j=1,…,p其中x=(x1,…,x n)属于定义域D,符号min表示“求最小值”,符号s.t.表示“受约束于”。
定义域D中满足约束条件的点称为问题的可行解。
全体可行解所成的集合称为问题的可行集。
对于一个可行解x*,如果存在x*的一个邻域,使目标函数在x*处的值f(x*)优于 (指不大于或不小于)该邻域中任何其他可行解处的函数值,则称x*为问题的局部最优解(简称局部解)。
如果f(x*)优于一切可行解处的目标函数值,则称x*为问题的整体最优解(简称整体解)。
实用非线性规划问题要求整体解,而现有解法大多只是求出局部解。
虽然运用表上作业法已使人们可以方便地给出一般线性规划的最优解(或满意解),并且也可给出某些参数的灵敏度分析。
但随着科学、经济的发展,竞争的加剧,手工操作的局限性逐渐暴露出来。
2014中国城市规划年会一、年会主题:城乡治理与规划改革2014年,全面深化改革元年。
全面深化改革的总目标是完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代化。
现代治理是政府、市场、人民共同参与、协同作用下的社会管理模式,这就需要改变过去以政府主导资源配置、管制市场运行、社会活动为核心的理念和体制,重塑政府行为的边界,形成政府、企业、基层群众自治组织、社会组织等共同治理的格局。
城乡规划是国家治理体系的重要组成部分,也是建设和提升国家治理能力的重要平台。
国家治理体系和治理能力现代化既是对城乡规划改革提出的要求,也是城乡规划未来发展的目标所在。
规划改革是全面深化改革和重塑国家规划体系的重要环节,城乡规划要更好地发挥在引领健康城镇化发展的作用,必须进一步明晰其在社会治理中的角色,调整与完善各层次城乡规划的内容,加强与相关治理行为的协同作用;依据治理能力现代化的要求,确立与社会经济发展体制和社会需求相适应的城乡规划制度和机制,完善城乡规划的作用方式与方法,强化城乡规划的治理能力建设。
二、论文选题:中国城市规划学会决定围绕年会主题公开征集论文。
建议作者重点关注下列议题:1、国家治理体系和治理能力现代化进程中,城乡规划作用发挥的途径、方式以及改革的主要内容与方向;2、与国家宏观调控体系相适应的城乡规划体系、制度与机制和能力建设;3、市场经济体制中城乡规划的作用及其发挥作用的方式;4、各级政府在城乡规划中的角色;5、公众参与城乡规划的制度建设与实践经验;6、现代治理制度框架下各层次城乡规划内容和调控方式;7、应对城乡发展不确定性的规划技术与方法;8、主体功能区制度框架下的区域竞争及其协调方式,以及跨区域城市发展协调机制建立的途径与规划策略;9、城乡统一的建设用地市场与城乡协调发展的规划方法;10、基于社会利益协调、行动导向的城乡规划技术创新与体系化架构;11、城乡基本公共服务均等化的规划策略以及社区规划的概念与方法;12、以空间品质、健康城市和生活质量为目标的城乡规划策略;13、应对气候变化及减少自然灾害危害的规划应对策略与方法;14、历史文化遗产保护及城乡文化传承的治理结构与规划策略;15、基于社会公平的城乡公共设施、基础设施的体系化建构与规划策略;16、基于现代治理原则的城乡规划实施体制与机制;17、智慧城市的规划对策以及大数据在空间治理中的运用。
线性规划是一种数学优化模型,用于解决在有一些约束条件下,如何使一个目标函数达到最优解的问题。
线性规划广泛应用于许多实际案例中,其中一些常见的案例如下:
1.生产规划:在生产过程中,企业可能需要在有限的生产资源和需求的限制下,决策
生产的数量、成本、产品组合等,以使生产效益最大化。
这就需要用到线性规划模
型来解决。
2.交通规划:在城市规划过程中,市政部门可能需要决策道路的建设、扩建、维护等,
以满足城市交通需求,并考虑到道路建设的成本和环境影响等因素。
这时候可以使
用线性规划模型来解决。
3.财务规划:在进行财务管理时,企业或个人可能需要在有限的资金和资产的限制下,
决策投资、储蓄、借贷等,以使财务效益最大化。
这时候可以使用线性规划模型来
解决。
4.供应链管理:在供应链管理过程中,企业可能需要决策采购、生产、运输、库存等
各个环节,以保证供应链的流畅运行并达到最优的效益。
这时候可以使用线性规划
模型来解决。
这些都是线性规划在实际案例中的应用,线性规划能够帮助企业和组织在有限的条件下,有效地规划和决策,并取得较好的效益。
线性规划的方法及应用1 引言运筹学最初是由于第二次世界大战的军事需要而发展起来的,它是一种科学方法,是一种以定量的研究优化问题并寻求其确定解答的方法体系.线性规划(Linear Progromming ,简称LP )是运筹学的一个重要分支,其研究始于20世纪30年代末,许多人把线性规划的发展列为20世纪中期最重要的科学进步之一.1947年美国的数学家丹泽格提出了一般的线性规划数学模型和求解线性规划问题的通用方法――单纯形法,从而使线性规划在理论上趋于成熟.此后随着电子计算机的出现,计算技术发展到一个高阶段,单纯形法步骤可以编成计算机程序,从而使线性规划在实际中的应用日益广泛和深入.目前,从解决工程问题的最优化问题到工业、农业、交通运输、军事国防等部门的计划管理与决策分析,乃至整个国民经济的综合平衡,线性规划都有用武之地,它已成为现代管理科学的重要基础之一.2 线性规划的提出经营管理中如何有效地利用现有人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现.这类问题可以用数学语言表达,即先根据问题要达到的目标选取适当的变量,问题的目标通常用变量的函数形式(称为目标函数),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件).当变量连续取值,且目标函数和约束条件为线性时,称这类模型为线性规划的模型.有关对线性规划问题建模、求解和应用的研究构成了运筹学中的线性规划分支.线性规划实际上是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解.从而线性规划模型的基本结构为: ①变量:变量又叫未知数,它是实际系统的位置因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如n x x x ,,,21 等.②目标函数:将实际系统的目标用数学形式表示出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值,利润极大值)或极小值(如成本极小值,费用极小值等等). ③约束条件:约束条件是指实现系统目标的限制因素.它涉及到企业内部条件和外部环境的各个方面,如原材料供应设备能力、计划指标.产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件.约束条件的数学表示有三种,即≤=≥,,,线性规划的变量应为非负值,因为变量在实际问题中所代表的均为实物,所以不能为负.线性规划问题有多种形式,函数有的要求实现最大化,有的要求最小化;约束条件可以是“≤”,也可以是“≥”,还可以是“=”,这种多样性给讨论带来不便. 为了便于讨论其一般解法,我们通常将线性规划问题的约束条件归结为线性方程和一组非负性限制条件,并且对目标函数统一成求最大值,也就是说,将线性规划问题的数学模型化成如下形式,并称它为线性规划问题的标准形式:),,2,1(..max11m i b x at s x c f ij nj ijjnj j ===∑∑==),,2,1(0n j x j =≥任何非标准形式的线性规划问题都能化成上述标准形式,这是由于不等式约束k j nj ijb x a≤∑=1等价于约束条件0,1≥=+++=∑k n k k n nj j ijx b x x a;不等式约束l j nj ijb x a≥∑=1等价于约束条件;0,1≥=-++=∑l n l l n nj j ijx b x x a这里增添的变量k n x +和l n x +称为松弛变量.还有,求函数f 的最小值解可转化为求函数f -的最 大值解.以下讨论线性规划问题时以标准型为主.3 线性规划的解法3.1 图解法满足约束条件的决策变量的一组值叫做这个线性规划的一个可行解;把所有可行解构成的集合叫做这个线性规划的可行域.因此,求解一个线性规划的问题,使目标函数取得最大值或最小值的可行解称为线性规划的最优解.一般求解线性规划问题是讨论它的最优解.下面介绍只有两个决策变量的线性规划问题的图解法.例1 用图解法求解21m axx x f +-=22..21-≥-x x t s2221≤-x x 521≤+x x12,0x x ≥解 第一步 先画出可行域 以21,x x 为坐标轴作直角坐标系,因为0,021≥≥x x ,所以问题的可行解必在第一象限(含坐标轴);约束条件222-≥-x x 要求问题的可行解必在直线222-=-x x 的右下方的半平面上;约束条件2221≤-x x ,要求问题的可行解必在直线2221=-x x 的左上方的半平面上;约束条件521≤+x x ,要求问题的可行解必在直线521=+x x 的左下方的半平面上.因为所有的约束条件都必须同时满足,所以问题的可行解域必为闭区域4321Q Q Q OQ ,如图3.1.1中的阴影部分. 第二步 从可行域中找出最优解现在分析目标函数21x x f +-=,在坐标平面上,它可以看作是以f 为参数的一族平行线:f x x +=12位于同一条直线上的点,都有相同的目标函数值,因而称它为等值线.当f 由小变大时,直线f x x +=12沿其法线方向向左上方移动.当移动到2Q 点时,f 的取值最大,这就得出了本题的最优解,如图3.1.2 ,此时f 最大,得 3411max =+⨯-=f .显然用图解法求解线性规划问题时,简单直观;但是当决策变量多于两个的时候,用图解法就失效了.3.2 单纯形法这一方法是丹泽格在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划近30年.单纯形法是求解线性规划问题的最重要、最基本的方法,它的解题思路[7](p27)是:将线性规划问题化为标准型后,先找出一个单位可行基,对这个可行基给出可行解,然后用判定定理——称为检验数,判定其是否为最优解.若是,求解过程结束;若不是,在单位可行基的基础上,进行换基迭代,该过程叫做迭代,直到得出最优解或证明无最优解为止.它有很强的程序性,它的具体操作是从一张叫做初始表的表格开始的.初始表由四部分构成[7](p27-28):第一部分A A B =-1(B 是单位可行基) 即约束方程组的系数矩阵.第二部分b b B =-1(B 是单位可行基) 即约束方程组的常数项构成的列向量.第三部分是检验数C A CB --1 (B C 为单位可行基变量所对应的目标函数中的系数列向量;C 是目标函数的系数行向量).第四部分b C B 该数为目标函数值.它的表格形式为:例2 用单纯形法求解 2136m axx x f +=40x 23..21≤+x t s 21421≤+x x12,0x x ≥ .解 第一步 将原问题化为标准型 43210036m ax x x x x f +++=40x 23..321=++x x t s214421=++x x x )4,3,2,1(0=≥j x j .第二步 观察原问题是否存在现成的单位可行基 因为约束方程组的系数矩阵为),,,(101401234321p p p p A =⎪⎪⎭⎫⎝⎛= ,所以原问题存在现成的单位可行基()1341001B p p ⎛⎫== ⎪⎝⎭,第三步 列出初始表,计算⎪⎪⎭⎫⎝⎛==-10140123)111A A B ,⎪⎪⎭⎫⎝⎛==-2140)211b b B , 3)1B C 是目标函数中基变量43,x x 的系数构成的列向量⎪⎪⎭⎫⎝⎛00,)0,0,3,6()4111--=-=--C C A B C B ,15)0B C b = ,1346)B x X x ⎛⎫= ⎪⎝⎭ .由上面计算结果,列出初始表(如下表)表3.2.1第四步 判定由初始表知,检验数中含有负数,故可行解Tx )21,40,0,0(=不是最优解,还需 要进行迭代运算(若检验数均为非负数,则可行解即为最优解) 第五步 迭代运算迭代一:①确定主元在检验数中,找出最小负数。
系统工程在城市规划中的可持续发展研究随着城市化的不断推进,城市规划成为了一个重要的议题。
如何实现城市的可持续发展,成为了各国政府和学者们关注的焦点。
而在城市规划中,系统工程的应用正逐渐展现出其重要性和价值。
本文将探讨系统工程在城市规划中的可持续发展研究。
首先,系统工程在城市规划中的可持续发展研究中起到了重要的作用。
城市规划需要考虑到众多的因素,如交通、环境、人口等。
而系统工程的方法可以帮助规划者全面地分析这些因素之间的相互关系,并找到最佳的解决方案。
例如,通过建立交通模型,系统工程师可以预测交通流量,从而合理规划道路网和公共交通系统,减少交通拥堵和环境污染。
此外,系统工程还可以帮助规划者评估不同规划方案的可行性和效果,为决策者提供科学依据。
其次,系统工程在城市规划中的可持续发展研究中还可以提供决策支持。
城市规划需要考虑到长期的发展目标和短期的应急措施。
而系统工程的方法可以帮助规划者制定综合的规划方案,平衡不同目标之间的关系。
例如,规划者可以通过系统工程的方法,将经济发展、环境保护和社会公平等因素进行综合考虑,制定出既能促进经济增长又能保护环境的规划方案。
此外,系统工程还可以帮助规划者进行风险评估和应急管理,提前预测可能出现的问题,并采取相应的措施。
再次,系统工程在城市规划中的可持续发展研究中还可以提高规划效率。
城市规划需要处理大量的数据和信息,而系统工程的方法可以帮助规划者进行数据分析和决策优化。
例如,通过建立城市模型,系统工程师可以模拟城市的发展过程,并根据模拟结果进行规划决策。
此外,系统工程还可以帮助规划者进行资源配置和时间管理,提高规划的效率和质量。
最后,系统工程在城市规划中的可持续发展研究中还需要面临一些挑战。
首先,城市规划是一个复杂的过程,涉及到众多的利益相关方。
系统工程师需要与政府、企业和社会各界密切合作,共同制定规划方案。
其次,城市规划需要考虑到不同地区的特点和需求。
系统工程师需要进行充分的调研和分析,才能制定出适合不同城市的规划方案。
城市规划系统工程学培训课件一、概述城市规划系统工程学是指应用系统工程学和城市规划学的理论和方法,对城市规划过程进行系统化、科学化的研究和设计的学科。
本课程旨在介绍城市规划系统工程学的基本概念、原理、方法和应用,培养学生在城市规划工作中运用系统工程学方法的能力。
本课程内容包括城市规划系统工程学的基本理论、城市规划系统设计和评价、城市规划系统优化等方面的内容。
二、城市规划系统工程学基本理论2.1 系统工程学基础•系统工程学的定义和发展历程•系统工程学的基本概念:系统、系统边界、系统要素、系统目标等•系统工程学的基本原理和方法:系统分析、系统设计、系统评价等2.2 城市规划系统工程学原理•城市规划系统的特点和要素•城市规划系统的层次结构和关系•城市规划系统的目标和约束三、城市规划系统设计和评价3.1 城市规划系统设计•城市规划系统设计的基本步骤•城市规划系统设计的方法和工具:系统模型、数据分析、优化算法等•城市规划系统设计的案例研究3.2 城市规划系统评价•城市规划系统评价的基本原理和指标体系•城市规划系统评价的方法和工具:指标权重确定、数据采集和处理、模型建立等•城市规划系统评价的案例研究四、城市规划系统优化4.1 城市规划系统优化的概念•城市规划系统优化的基本思想和目标•城市规划系统优化的方法和工具:多目标优化、约束优化、模拟退火算法等•城市规划系统优化的案例研究4.2 城市规划系统优化的应用•城市交通规划系统的优化•城市环境规划系统的优化•城市土地利用规划系统的优化五、总结本课程概述了城市规划系统工程学的基本理论、城市规划系统设计和评价、城市规划系统优化等方面的内容。
通过学习本课程,学生将能够掌握城市规划系统工程学的基本理论和方法,并能够在城市规划工作中运用系统工程学方法进行系统化、科学化的设计和评价。
本课程将为学生在城市规划领域的工作和研究提供有力的支持和指导。
线性规划讲义一、引言线性规划是一种优化问题的数学建模工具,它可以帮助我们在给定的约束条件下,找到使目标函数达到最大或最小值的最优解。
本讲义将介绍线性规划的基本概念、常见的线性规划模型以及求解方法。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。
通常用字母Z表示目标函数。
2. 约束条件:线性规划的解必须满足一系列约束条件,这些约束条件可以是等式或不等式。
约束条件可以限制决策变量的取值范围,也可以限制决策变量之间的关系。
3. 决策变量:决策变量是我们需要确定的变量,它们的取值将影响目标函数的值。
决策变量通常用字母x表示。
4. 可行解:满足所有约束条件的解被称为可行解。
可行解必须满足约束条件,并且在定义域内取值。
5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解被称为最优解。
最优解可能是唯一的,也可能有多个。
三、线性规划模型1. 单目标线性规划模型:单目标线性规划模型是指只有一个目标函数的线性规划模型。
常见的单目标线性规划模型包括生产计划、资源分配等问题。
2. 多目标线性规划模型:多目标线性规划模型是指有多个目标函数的线性规划模型。
多目标线性规划模型需要考虑多个目标之间的权衡和平衡。
四、线性规划的求解方法1. 图形法:图形法是一种直观的求解线性规划问题的方法,它适用于二维或三维的线性规划问题。
通过绘制约束条件的图形,可以找到最优解所在的区域。
2. 单纯形法:单纯形法是一种高效的求解线性规划问题的方法,它适用于多维的线性规划问题。
单纯形法通过迭代计算,逐步接近最优解。
3. 整数规划法:整数规划是线性规划的一种扩展,它要求决策变量只能取整数值。
整数规划问题的求解相对困难,可以使用分支定界法等方法求解。
五、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、运输问题、投资组合、市场营销等。
线性规划可以帮助决策者优化资源利用,提高效益。
系统工程在城市规划中的应用近年来,城市规划成为了一个备受关注的话题。
城市化进程的加速导致城市发展的需求愈发迫切。
而这些需求不仅需要人们的思考和实践经验,更需要依靠系统工程的方法论来解决。
系统工程是一种从整体出发,包括规划、设计、管理、评价和优化等多个方面,对复杂系统进行综合研究的方法。
而城市规划作为一个复杂的系统,需要系统工程来进行研究。
首先,在城市规划的初期,系统工程的方法可以用来设计和制定城市规划方案。
这些方案需考虑到多方面的因素,例如环保、公共设施、安全等等。
如果不用系统工程,各种因素很可能会相互制约、冲突,严重影响城市规划的质量和可行性。
而通过系统工程,可以建立和完善设计和评价的体系,规划出更加科学、合理的城市发展方案。
其次,系统工程的方法可以用来建立城市规划的信息体系。
在城市规划中,信息的获取、处理和分析是非常重要的环节,可以减少许多不必要的错误和浪费。
而系统工程可以通过将城市规划相关的信息输入,进行数据整合和模拟,从而作出适合城市规划的主观判断,使得城市规划在全面信息的支持下更加实际、可行。
最后,系统工程的方法还可以用来优化城市规划。
城市规划通常包括多个维度,例如城市的基础设施、建筑、环境、文化和社会等等。
而这些维度之间的平衡是重要的,任何一个方面出现问题,都会影响整个城市规划的品质。
而系统工程可以对城市规划的不同维度进行模拟和仿真,从而找出具有优化作用的策略和方法。
例如,对城市交通系统的优化,可以运用系统工程的思想,分析出最优的路线、线路等等。
总而言之,系统工程的方法无疑在城市规划中有着重要的应用价值。
它可以从总体、细节、信息和优化几个角度出发,构建更加完善的城市规划方案。
而这些方案可以更好地体现出城市规划的实际作用,促进城市化进程的健康发展。
系统工程学方法在城市规划中的应用摘要:教科书对于城市规划的定义是“对一定时期内城市的经济和社会发展,土地利用,空间布局以及各项建设的综合部署,具体安排和实施管理".然而,作为一门学科,城市规划的重要特色之一是诸多要素紧密集合,综合性、系统性很强.实际上,城市本身就是一个复杂的巨系统,长期以来以一般系统理论为基础的系统分析方法,已经帮助了规划工作者认识许多复杂的城市问题.虽然,城市规划工作者比较容易理解系统工程基于系统论的城市规划研究,学的一些基本思想.但是,朴素的系统观点和简单的系统分析方法都不足以满足实际工作的需要。
应该讲,在我国城市规划中必然要运用系统工程理论,发展城市规划系统工程学。
关键词:城市规划、系统工程、系统思想、系统方法、应用、运用一、系统工程系统工程学是研究分析有关复杂信息反馈系统的动态趋势的学科。
系统工程学以控制论、控制工程、系统工程、信息处理和计算机仿真技术为基础,研究复杂系统随时间推移而产生的行为模式。
系统工程的研究对象对象是将“系统”;其工程的内涵不仅是“硬件”,还包括了“软件”,即工程技术中的实体,还包括社会、经济、管理等非实体即概念对象在内。
这就是系统工程与传统工程的区别。
其工程的任务,是在传统工程单一技术任务的基础上,还要解决系统的全盘统筹问题, 即要解决系统内部各子系统之间、系统与外部环境之间的总体协调问题。
其工程方法是以系统的主要观点和方法为基础,运用先进的科学技术和手段,从全局、整体、长远出发去考察问题,拟订目标和功能,并在规划、开发、组织、协调各关键时刻,进行分析、综合、评价求得优化方案,然后用传统工程行之有效的方法进行工程设计、生产、安装、建造新的系统或改造旧的系统,并使之整个寿命期最优。
二、城市规划系统工程城市系统工程也就是将系统工程的原理、观点和方法运用于城市系统中。
其中包括城市规划系统工程、城市管理系统工程、城市建设系统工程和城市信息系统工程。
线性规划问题的解线性规划(Linear Programming, LP)是数学规划的一种重要方法,其应用领域十分广泛。
线性规划的目标是在给定的线性约束条件下,寻找使目标函数最大或最小的变量取值。
本文将介绍线性规划问题的解以及如何求解线性规划问题。
一、线性规划问题的解的基本概念1. 可行解:满足线性约束条件的变量取值被称为可行解。
可行解集合构成了解空间。
2. 最优解:在可行解集合中,使目标函数取得最大或最小值的可行解被称为最优解。
二、线性规划问题的求解方法线性规划问题的求解方法通常有两种:图形法和单纯形法。
1. 图形法:适用于二维或三维线性规划问题,即变量的个数较少,可以通过绘制图形来确定最优解。
图形法的基本思路是绘制等式约束和不等式约束的直线或平面,并通过观察它们的交点或交线来确定可行解和最优解。
2. 单纯形法:适用于多维线性规划问题,即变量的个数较多。
单纯形法通过迭代计算,逐步逼近最优解。
其基本思路是从一个初始可行解开始,通过调整变量的取值来提高目标函数的值,直到找到最优解或确定问题无解。
三、线性规划问题的示例下面以一个简单的线性规划问题为例。
假设有两种产品A和B,它们的生产需要使用以下资源:钢材、机器时数和人工时数。
每单位产品A需要2吨钢材、4机器时数和6人工时数;每单位产品B需要3吨钢材、5机器时数和4人工时数。
公司目前有100吨钢材、120机器时数和150人工时数可用。
已知产品A的利润为1000元/单位,产品B的利润为2000元/单位。
问如何安排生产,使得利润最大化?1. 建立数学模型:令x为产品A的产量,y为产品B的产量。
则目标函数为最大化利润:1000x+2000y。
约束条件为:2x+3y≤100(钢材约束),4x+5y≤120(机器时数约束),6x+4y≤150(人工时数约束),x≥0,y≥0。
2. 通过图形法找到可行解和最优解:先绘制钢材约束的直线2x+3y=100,机器时数约束的直线4x+5y=120,人工时数约束的直线6x+4y=150。
线性规划问题的基本概念及求解方法线性规划是一种优化方法,用于找到一个线性方程的最大或最小值,同时满足一组线性约束条件。
线性规划问题广泛应用于经济、工业、运输、物流等各个领域。
本文将讲述线性规划问题的基本概念和求解方法。
一、线性规划的基本概念线性规划问题可表示为:$\max_{x} z = c^Tx$$\text{s.t.} \qquad Ax \leq b$其中,x表示决策变量,z表示目标函数,c和b为常数系数,A为系数矩阵。
目标函数表示要最大化或最小化的数量,约束条件表示限制决策变量取值的条件。
二、线性规划的求解方法线性规划问题的求解方法有两种,即图形法和单纯形法。
1. 图形法图形法是一种用图形的方式来求解线性规划问题的方法。
它可以用于二元线性规划问题求解,但对于多元线性规划问题,它的应用受到了限制。
对于二元线性规划问题,我们可以将目标函数表示为直线,约束条件表示为线段,然后在可行域内寻找能让目标函数最大或最小的点。
2. 单纯形法单纯形法是一种通过交换决策变量的取值来寻找最优解的方法。
它通过构建初始单纯形表格,逐步利用高斯消元法将问题转化为标准型,然后不断交换基变量和非基变量,直到找到最优解。
单纯形法在求解多元线性规划问题时具有广泛的应用,因为它能够较快地寻找最优解。
但是,它也存在一些问题,例如当问题的维度较高时,算法的计算复杂度会相应增加,计算机的处理能力也会受到限制。
三、线性规划的应用线性规划在各个领域中都有着广泛的应用。
以下是一些典型的应用案例:1. 运输问题运输问题是一种线性规划问题,旨在确定一组产品从生产场所运往销售场所的最优方案。
这种问题通常涉及到对物流成本、物流时间等多种因素的优化。
2. 设备维护问题设备维护问题是一种线性规划问题,旨在通过优化设备的维护策略来最大化设备的使用寿命和效益。
这种问题通常涉及到对机器的使用寿命、维修成本、机器停机时间等多种因素的优化。
3. 生产计划问题生产计划问题是一种线性规划问题,旨在通过对原材料和生产线的安排来优化产品的生产过程。
线性规划的方法论线性规划(Linear Programming, LP)是一种运筹学方法,用于解决线性约束条件下的优化问题。
它的目标是找到一个最优的决策方案,使得目标函数值最大化或最小化。
线性规划在经济、管理、工程、决策科学等领域得到广泛应用,是运筹学的重要分支之一。
线性规划的方法论主要包括六个基本步骤:问题建模、目标函数的确定、约束条件的建立、单纯形法求解、解的解释和灵敏度分析。
下面我将逐一介绍这些步骤。
1. 问题建模问题建模是线性规划的第一步,需要将实际问题转化为数学模型。
首先需要明确决策变量,即需要进行决策的变量。
然后确定目标函数,即需要最大化或最小化的函数。
最后建立约束条件,即限制决策变量取值的条件。
2. 目标函数的确定目标函数是衡量决策结果优劣的函数,可以是最大化利润、最小化成本等。
目标函数的形式可以是线性函数、多项式函数或指数函数等,但在线性规划中,目标函数通常是线性函数。
3. 约束条件的建立约束条件是限制决策变量取值的条件,它们可以是等式约束或不等式约束。
线性规划中的约束条件是由给定的问题决定的,比如资源约束、技术约束等。
约束条件的形式需要与目标函数形式匹配,即线性约束条件与线性目标函数相匹配。
4. 单纯形法求解单纯形法是一种求解线性规划问题的算法,它通过不断迭代来找到最优解。
单纯形法的基本思想是从可行解中找到一个改进的方向,然后沿该方向进行移动,直到找到最优解为止。
单纯形法的求解过程中,需要对角度表和单纯形表进行操作,通过选择基本变量和非基本变量进行迭代计算。
5. 解的解释线性规划求解得到的解需要进行解释和分析。
解的解释是对最优解的实际意义进行解释,包括各个决策变量的取值以及目标函数的值。
解的分析是对解进行灵敏度分析,分析最优解的变化情况对问题的影响。
6. 灵敏度分析灵敏度分析是对线性规划解进行分析,分析结果对问题的解释和应用。
灵敏度分析可以分为参数变化分析和解的变化分析两个部分。
系统工程在城市规划中的应用探索一、引言城市规划是一门综合性学科,旨在合理规划和管理城市发展,以满足人们对良好生活环境的需求。
而系统工程作为一种学科和方法论,主要关注于对复杂系统的综合分析、设计和管理。
本文旨在探讨系统工程在城市规划中的应用,以期为城市规划实践的改进提供一些启示。
二、系统工程理论与城市规划系统工程理论强调整体性思维,将城市视为一个复杂的系统,由各个子系统相互关联组成。
在城市规划中,必须考虑城市的空间组成部分(如道路、建筑物、公园等)以及其它功能组成(如居住、商业、交通等),并分析它们之间的相互影响和关联。
这种整体性思维使得规划者能够更好地了解城市系统的运行机制,并做出正确的决策。
三、系统工程在城市规划设计中的应用1. 数据采集与分析在城市规划中,系统工程可以提供有效的方法和工具来采集和分析各种数据。
例如,通过使用传感器网络和物联网技术,规划者可以收集城市各个方面的数据,如交通流量、空气质量、噪音水平等。
通过对这些数据进行分析,规划者可以了解城市的现状和问题,为决策提供科学依据。
2. 模型建立与优化系统工程提供了建立和优化城市规划模型的方法。
通过建立模型,可以模拟城市系统的运行情况,预测其未来发展趋势,并评估不同规划方案的效果。
例如,在交通规划中,可以利用交通模型来预测交通流量、拥堵情况等,并根据模型结果制定相应的规划方案。
3. 决策支持与风险评估在城市规划中,决策是一个复杂的过程,需要综合考虑各种因素。
系统工程可以提供决策支持的方法和工具,帮助规划者进行多目标优化、风险评估等分析,从而选择最优方案。
例如,在土地利用规划中,可以利用多目标优化方法来平衡不同目标的权重,实现最佳的土地利用效果。
四、系统工程在城市规划实践中的案例分析1. 深圳城市道路交通规划在深圳的城市道路交通规划中,系统工程被广泛应用。
规划者采用了大数据分析技术,对城市的交通流量、拥堵程度等进行全面调查和分析,并建立了交通模型。
规划的综合方法一、线性规划法线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
英文缩写LP。
它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。
为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
线性规划方法是在第二次世界大战中发展起来的一种重要的数量方法,线性规划方法是企业进行总产量计划时常用的一种定量方法。
线性规划是运筹学的一个最重要的分支,理论上最完善,实际应用得最广泛。
主要用于研究有限资源的最佳分配问题,即如何对有限的资源作出最佳方式地调配和最有利地使用,以便最充分地发挥资源的效能去获取最佳的经济效益。
由于有成熟的计算机应用软件的支持,采用线性规划模型安排生产计划,并不是一件困难的事情。
在总体计划中,用线性规划模型解决问题的思路是,在有限的生产资源和市场需求条件约束下,求利润最大的总产量计划。
该方法的最大优点是可以处理多品种问题。
数学模型:1)列出约束条件及目标函数2)画出约束条件所表示的可行域3)在可行域内求目标函数的最优解及最优值从实际问题中建立数学模型一般有以下三个步骤;1.根据影响所要达到目的的因素找到决策变量;2.由决策变量和所在达到目的之间的函数关系确定目标函数;3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。
所建立的数学模型具有以下特点:1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n 为决策变量个数。
决策变量的一组值表示一种方案,同时决策变量一般是非负的。
2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。
3、约束条件也是决策变量的线性函数。
当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。
城市规划设计方法引言城市规划是指为了实现城市的可持续开展以及提高城市居民的生活质量而进行的有组织的行动。
在城市规划过程中,设计方法起着重要的作用。
设计方法是指根据城市规划的目标和要求,通过系统性的思考和分析,提出解决方案的一种方法论。
本文将介绍一些常用的城市规划设计方法。
1. 线性规划方法线性规划方法是一种常用的城市规划设计方法,它主要基于线性关系来进行规划。
这种方法通过建立一套数学模型,利用数学规划的技术手段进行求解。
线性规划方法主要适用于城市土地利用规划、交通规划等方面。
该方法的特点是简单、易于操作,并且能够提供比拟可靠的解决方案。
2. 非线性规划方法非线性规划方法是一种更为复杂的城市规划设计方法,它相比于线性规划方法更为灵巧。
非线性规划方法可以考虑更多的因素,包括各种非线性关系和不确定性因素。
这种方法适用于一些问题较为复杂的城市规划工程,如城市环境规划、城市景观规划等。
非线性规划方法的特点是能够提供更加准确和全面的解决方案。
3. 地理信息系统〔GIS〕技术地理信息系统〔GIS〕技术是一种基于计算机的城市规划设计方法,它通过整合地理空间数据和属性数据,帮助规划者进行分析和决策。
GIS技术能够提供精确的地理信息,可视化地展示城市的各个要素,并进行空间分析和模拟。
这种方法在城市规划中的应用非常广泛,可以帮助规划者更好地了解城市现状,优化规划方案。
4. 可持续开展评估方法可持续开展评估方法是一种将可持续开展原那么融入城市规划设计的方法,它主要通过评估城市规划方案对环境、经济和社会的影响,以及方案的可持续性,来指导规划过程。
这种方法强调平衡开展,注重生态保护和资源利用,可以确保城市规划的长期可持续开展。
5. 参与式规划设计方法参与式规划设计方法是一种将城市居民及其他利益相关方纳入规划过程的方法,它强调参与、合作和共享责任。
这种方法通过组织公众参与讨论、开展社区调查等方式,收集各方意见,并将其纳入规划方案的制定。