算法设计与分析-课后习题集答案
- 格式:doc
- 大小:579.50 KB
- 文档页数:12
算法设计与分析第二版课后习题解答算法设计与分析基础课后练习答案习题 4.设计一个计算的算法,n是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求//输入:一个正整数n2//输出:。
step1:a=1;step2:若a*a 5. a.用欧几里德算法求gcd。
b. 用欧几里德算法求gcd,比检查min{m,n}和gcd间连续整数的算法快多少倍?请估算一下。
a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513,105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1.b.有a可知计算gcd欧几里德算法做了11次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。
6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? Hint:对于任何形如0 gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次) b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次) gcd(5,8) 习题 1.(农夫过河)P—农夫 W—狼G—山羊C—白菜 2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数) 算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法 //输入:实系数a,b,c//输出:实根或者无解信息 If a≠0D←b*b-4*a*c If D>0temp←2*ax1←(-b+sqrt(D))/temp x2←(-b-sqrt(D))/temp return x1,x2else if D=0 return –b/(2*a) else return “no real roots” else //a=0if b≠0 return –c/b else //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出 b.伪代码算法 DectoBin(n)//将十进制整数n转换为二进制整数的算法 //输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中 i=1while n!=0 do { Bin[i]=n%2; n=(int)n/2; i++; } while i!=0 do{ print Bin[i]; i--; }9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进. 算法 MinDistance(A[0..n-1]) //输入:数组A[0..n-1] //输出:the smallest distance d between two of its elements习题1. 考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗? 解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count 4.(古老的七桥问题) 第2章习题7.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
算法设计与分析第三版第四章课后习题答案4.1 线性时间选择问题习题4.1问题描述:给定一个长度为n的无序数组A和一个整数k,设计一个算法,找出数组A中第k小的元素。
算法思路:本题可以使用快速选择算法来解决。
快速选择算法是基于快速排序算法的思想,通过递归地划分数组来找到第k小的元素。
具体步骤如下: 1. 选择数组A的一个随机元素x作为枢纽元。
2. 使用x将数组划分为两个子数组A1和A2,其中A1中的元素小于等于x,A2中的元素大于x。
3. 如果k等于A1的长度,那么x就是第k小的元素,返回x。
4. 如果k小于A1的长度,那么第k小的元素在A1中,递归地在A1中寻找第k小的元素。
5. 如果k大于A1的长度,那么第k小的元素在A2中,递归地在A2中寻找第k-A1的长度小的元素。
6. 递归地重复上述步骤,直到找到第k小的元素。
算法实现:public class LinearTimeSelection {public static int select(int[] A, int k) { return selectHelper(A, 0, A.length - 1, k);}private static int selectHelper(int[] A, int left, int right, int k) {if (left == right) {return A[left];}int pivotIndex = partition(A, left, righ t);int length = pivotIndex - left + 1;if (k == length) {return A[pivotIndex];} else if (k < length) {return selectHelper(A, left, pivotInd ex - 1, k);} else {return selectHelper(A, pivotIndex + 1, right, k - length);}}private static int partition(int[] A, int lef t, int right) {int pivotIndex = left + (right - left) / 2;int pivotValue = A[pivotIndex];int i = left;int j = right;while (i <= j) {while (A[i] < pivotValue) {i++;}while (A[j] > pivotValue) {j--;}if (i <= j) {swap(A, i, j);i++;j--;}}return i - 1;}private static void swap(int[] A, int i, int j) {int temp = A[i];A[i] = A[j];A[j] = temp;}}算法分析:快速选择算法的平均复杂度为O(n),最坏情况下的复杂度为O(n^2)。
算法设计与分析第二版课后习题及解答算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求 //输入:一个正整数n2//输出:。
step1:a1; step2:若a*an 转step 3,否则输出a; step3:aa+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。
b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。
a. gcd31415, 14142 gcd14142, 3131 gcd3131, 1618 gcd1618, 1513 gcd1513, 105 gcd1513, 105 gcd105, 43 gcd43, 19 gcd19, 5 gcd5, 4 gcd4, 1 gcd1, 0 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1?14142 和 2?14142之间,所以欧几里德算法比此算法快1?14142/11 ≈1300 与2?14142/11 ≈ 2600 倍之间。
6.证明等式gcdm,ngcdn,m mod n对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和rm mod nm-qn;显然,若d能整除n和r,也一定能整除mr+qn和n。
数对m,n和n,r具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcdm,ngcdn,r7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0mn的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcdm,ngcdn,m并且这种交换处理只发生一次.8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?1次b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?5次gcd5,8习题1.21.农夫过河P?农夫W?狼 G?山羊 C?白菜2.过桥问题1,2,5,10---分别代表4个人, f?手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c0的实根,写出上述算法的伪代码可以假设sqrtx是求平方根的函数算法Quadratica,b,c//求方程ax^2+bx+c0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D0temp←2*ax1←-b+sqrtD/tempx2←-b-sqrtD/tempreturn x1,x2else if D0 return ?b/2*ael se return “no real roots”else //a0if b≠0 return ?c/belse //ab0if c0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Kii0,1,2,商赋给n第二步:如果n0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBinn//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1n]中i1while n!0 doBin[i]n%2;nintn/2;i++;while i!0 doprint Bin[i];i--;9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.算法略对这个算法做尽可能多的改进.算法 MinDistanceA[0..n-1]//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements 习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.古老的七桥问题第2章习题2.17.对下列断言进行证明:如果是错误的,请举例a. 如果tn∈Ogn,则gn∈Ωtnb.α0时,Θαgn Θgn解:a这个断言是正确的。
计算机算法设计与分析习题及答案一.选择题1、二分搜索算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是 A ;A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是 A ;A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是B ;A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是 C ;A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是 D ;A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是D ;A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是D ;A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形; BA、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为B ;A、On2nB、OnlognC、O2nD、On13.分支限界法解最大团问题时,活结点表的组织形式是B ;A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是B;A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是A ;A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是C ;A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素 DA.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略BA.递归函数 B.剪枝函数 C;随机数函数 D.搜索函数19. D是贪心算法与动态规划算法的共同点;A、重叠子问题B、构造最优解C、贪心选择性质D、最优子结构性质20. 矩阵连乘问题的算法可由 B 设计实现;A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法21. 分支限界法解旅行售货员问题时,活结点表的组织形式是 A ;A、最小堆B、最大堆C、栈D、数组22、Strassen矩阵乘法是利用A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法23、使用分治法求解不需要满足的条件是 A ;A 子问题必须是一样的B 子问题不能够重复C 子问题的解可以合并D 原问题和子问题使用相同的方法解24、下面问题 B 不能使用贪心法解决;A 单源最短路径问题B N皇后问题C 最小生成树问题D 背包问题25、下列算法中不能解决0/1背包问题的是 AA 贪心法B 动态规划C 回溯法D 分支限界法26、回溯法搜索状态空间树是按照 C 的顺序;A 中序遍历B 广度优先遍历C 深度优先遍历D 层次优先遍历27.实现合并排序利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法28.下列是动态规划算法基本要素的是D ;A、定义最优解B、构造最优解C、算出最优解D、子问题重叠性质29.下列算法中通常以自底向下的方式求解最优解的是 B ;A、分治法B、动态规划法C、贪心法D、回溯法30.采用广度优先策略搜索的算法是A ;A、分支界限法B、动态规划法C、贪心法D、回溯法31、合并排序算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法32、背包问题的贪心算法所需的计算时间为 BA、On2nB、OnlognC、O2nD、On33.实现大整数的乘法是利用的算法C ;A、贪心法B、动态规划法C、分治策略D、回溯法34.0-1背包问题的回溯算法所需的计算时间为AA、On2nB、OnlognC、O2nD、On35.采用最大效益优先搜索方式的算法是A;A、分支界限法B、动态规划法C、贪心法D、回溯法36.贪心算法与动态规划算法的主要区别是B;A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解37. 实现最大子段和利用的算法是B ;A、分治策略B、动态规划法C、贪心法D、回溯法38.优先队列式分支限界法选取扩展结点的原则是 C ;A、先进先出B、后进先出C、结点的优先级D、随机39.背包问题的贪心算法所需的计算时间为 B ;A、On2nB、OnlognC、O2nD、On40、广度优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法41. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的 B ;A、重叠子问题B、最优子结构性质C、贪心选择性质D、定义最优解42.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 B ;A 、On2nB 、OnlognC 、O2nD 、On43. 以深度优先方式系统搜索问题解的算法称为 D ;A 、分支界限算法B 、概率算法C 、贪心算法D 、回溯算法44. 实现最长公共子序列利用的算法是B ;A 、分治策略B 、动态规划法C 、贪心法D 、回溯法45. Hanoi 塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B46. 动态规划算法的基本要素为 CA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用 47. 能采用贪心算法求最优解的问题,一般具有的重要性质为: AA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用48. 回溯法在问题的解空间树中,按 D 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先49. 分支限界法在问题的解空间树中,按 A 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先50. 程序块 A 是回溯法中遍历排列树的算法框架程序;A.B. C. D. 51. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO 分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO 分支限界法与优先队列式分支限界法;1.算法的复杂性有 时间 复杂性和 空间 ;2、程序是 算法用某种程序设计语言的具体实现;3、算法的“确定性”指的是组成算法的每条 指令 是清晰的,无歧义的;4. 矩阵连乘问题的算法可由 动态规划 设计实现;5、算法是指解决问题的 一种方法 或 一个过程 ;6、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 ;7、问题的 最优子结构性质 是该问题可用动态规划算法或贪心算法求解的关键特征;8、以深度优先方式系统搜索问题解的算法称为 回溯法 ;9、计算一个算法时间复杂度通常可以计算 循环次数 、 基本操作的频率 或计算步; Hanoi 塔A. void hanoiint n, int A, int C, int B{ if n > 0{ hanoin-1,A,C, B;moven,a,b; hanoin-1, C, B, A; }} B. void hanoiint n, int A, int B, int C { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }D. void hanoiint n, int C, int A, int B { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } } void backtrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1; swapxt, xi; } } void backtrack int t { if t>n outputx;elsefor int i=0;i<=1;i++ { xt=i; if legalt backtrackt+1; } }void backtrack int t { if t>n outputx; else for int i=0;i<=1;i++ { xt=i; if legalt backtrackt-1; } }voidbacktrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1;}}10、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划 ,需要排序的是回溯法 ,分支限界法 ;11、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只使用约束条件进行裁剪的是 N皇后问题 ;12、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;13、矩阵连乘问题的算法可由动态规划设计实现;14.贪心算法的基本要素是贪心选择性质和最优子结构性质 ;15. 动态规划算法的基本思想是将待求解问题分解成若干子问题 ,先求解子问题 ,然后从这些子问题的解得到原问题的解;16.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质;17、大整数乘积算法是用分治法来设计的;18、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法 ;19、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;20.快速排序算法是基于分治策略的一种排序算法;21.动态规划算法的两个基本要素是. 最优子结构性质和重叠子问题性质 ;22.回溯法是一种既带有系统性又带有跳跃性的搜索算法;23.分支限界法主要有队列式FIFO 分支限界法和优先队列式分支限界法;24.分支限界法是一种既带有系统性又带有跳跃性的搜索算法;25.回溯法搜索解空间树时,常用的两种剪枝函数为约束函数和限界函数 ;26.任何可用计算机求解的问题所需的时间都与其规模有关;27.快速排序算法的性能取决于划分的对称性 ;28.所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到 ;29.所谓最优子结构性质是指问题的最优解包含了其子问题的最优解 ;30.回溯法是指具有限界函数的深度优先生成法 ;31.用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为 Ohn ;32.回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;33.用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构;34.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构;35.旅行售货员问题的解空间树是排列树 ;三、算法填空1.背包问题的贪心算法void Knapsackint n,float M,float v,float w,float x{//重量为w1..n,价值为v1..n的 n个物品,装入容量为M的背包//用贪心算法求最优解向量x1..nint i; Sortn,v,w;for i=1;i<=n;i++ xi=0;float c=M;for i=1;i<=n;i++{if wi>c break;xi=1;c-=wi;}if i<=n xi=c/wi;}2.最大子段和: 动态规划算法int MaxSumint n, int a{int sum=0, b=0; //sum存储当前最大的bj, b存储bjfor int j=1; j<=n; j++{ if b>0 b+= aj ;else b=ai; ; //一旦某个区段和为负,则从下一个位置累和 ifb>sum sum=b;}return sum;}3.贪心算法求活动安排问题template<class Type>void GreedySelector int n, Type s, Type f, bool A{A1=true;int j=1;for int i=2;i<=n;i++if si>=fj{ Ai=true;j=i;}else Ai=false;}4.快速排序template<class Type>void QuickSort Type a, int p, int r{if p<r{int q=Partitiona,p,r;QuickSort a,p,q-1; //对左半段排序QuickSort a,q+1,r; //对右半段排序}}5. 回溯法解迷宫问题迷宫用二维数组存储,用'H'表示墙,'O'表示通道int x1,y1,success=0; //出口点void MazePathint x,int y{//递归求解:求迷宫maze从入口x,y到出口x1,y1的一条路径mazexy=''; //路径置为if x==x1&&y==y1 success=1; //到出口则成功else{if mazexy+1=='O' MazePathx,++y;//东邻方格是通路,向东尝试if success&&mazex+1y=='O' MazePath++x,y;//不成功且南邻方格是通路,向南尝试if success&&mazexy-1=='O' MazePathx,--y;//不成功且西邻方格是通路,向西尝试if success&&mazex-1y=='O' MazePath--x,y;//不成功且北邻方格是通路,向北尝试}if success mazexy=''; //死胡同置为}四、算法设计题1. 给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x,返回其在数组中的位置,如果未找到返回-1;写出二分搜索的算法,并分析其时间复杂度;template<class Type>int BinarySearchType a, const Type& x, int n{//在a0:n中搜索x,找到x时返回其在数组中的位置,否则返回-1Int left=0; int right=n-1;While left<=right{int middle=left+right/2;if x==amiddle return middle;if x>amiddle left=middle+1;else right=middle-1;}Return -1;}时间复杂性为Ologn2. 利用分治算法写出合并排序的算法,并分析其时间复杂度void MergeSortType a, int left, int right{if left<right {//至少有2个元素int i=left+right/2; //取中点mergeSorta, left, i;mergeSorta, i+1, right;mergea, b, left, i, right; //合并到数组bcopya, b, left, right; //复制回数组a}}算法在最坏情况下的时间复杂度为Onlogn;3.N皇后回溯法bool Queen::Placeint k{ //检查xk位置是否合法for int j=1;j<k;j++if absk-j==absxj-xk||xj==xk return false;return true;}void Queen::Backtrackint t{if t>n sum++;else for int i=1;i<=n;i++{xt=i;if 约束函数 Backtrackt+1;}}4.最大团问题void Clique::Backtrackint i // 计算最大团{ if i > n { // 到达叶结点for int j = 1; j <= n; j++ bestxj = xj;bestn = cn; return;}// 检查顶点 i 与当前团的连接int OK = 1;for int j = 1; j < i; j++if xj && aij == 0 // i与j不相连{OK = 0; break;}if OK { // 进入左子树xi = 1; cn++;Backtracki+1;xi = 0; cn--; }if cn+n-i>bestn { // 进入右子树xi = 0;Backtracki+1; }}5. 顺序表存储表示如下:typedef struct{RedType rMAXSIZE+1; //顺序表int length; //顺序表长度}SqList;编写对顺序表L进行快速排序的算法;int PartitionSqList &L,int low,int high //算法10.6b{//交换顺序表L中子表L.rlow..high的记录,枢轴记录到位,并返回其所在位置, //此时在它之前后的记录均不大小于它.int pivotkey;L.r0=L.rlow; //用子表的第一个记录作枢轴记录pivotkey=L.rlow.key; //枢轴记录关键字while low<high //从表的两端交替地向中间扫描{while low<high&&L.rhigh.key>=pivotkey --high;L.rlow=L.rhigh; //将比枢轴记录小的记录移到低端while low<high&&L.rlow.key<=pivotkey ++low;L.rhigh=L.rlow; //将比枢轴记录大的记录移到高端}L.rlow=L.r0; //枢轴记录到位return low; //返回枢轴位置}void QSortSqList &L,int low,int high{//对顺序表L中的子序列L.rlow..high作快速排序int pivotloc;if low<high //长度>1{pivotloc=PartitionL,low,high; //将L.rlow..high一分为二QSortL,low,pivotloc-1; //对低子表递归排序,pivotloc是枢轴位置 QSortL,pivotloc+1,high; //对高子表递归排序}}void QuickSortSqList &L{//对顺序表L作快速排序QSortL,1,L.length; }。
Program算法设计与分析基础中文版答案习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (“lazy deletion ”)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
算法分析与设计(李清勇)课后习题答案5-1凸多边形最优三⾓剖分问题//3d5 凸多边形最优三⾓剖分#include "stdafx.h"#includeusing namespace std;constint N = 7;//凸多边形边数+1int weight[][N] = {{0,2,2,3,1,4},{2,0,1,5,2,3},{2,1,0,2,1,4},{3,5,2,0,6,2},{1,2,1,6,0,1},{4,3,4,2,1,0}};//凸多边形的权intMinWeightTriangulation(intn,int **t,int **s);void Traceback(inti,intj,int **s);//构造最优解int Weight(inta,intb,int c);//权函数int main(){int **s = new int *[N];int **t = new int *[N];for(inti=0;is[i] = new int[N];t[i] = new int[N];}cout<<"此多边形的最优三⾓剖分值为:"<cout<<"最优三⾓剖分结构为:"<Traceback(1,5,s); //s[i][j]记录了Vi-1和Vj构成三⾓形的第3个顶点的位置return 0;}intMinWeightTriangulation(intn,int **t,int **s){for(inti=1; i<=n; i++){t[i][i] = 0;}for(int r=2; r<=n; r++) //r为当前计算的链长(⼦问题规模){for(inti=1; i<=n-r+1; i++)//n-r+1为最后⼀个r链的前边界{int j = i+r-1;//计算前边界为r,链长为r的链的后边界t[i][j] = t[i+1][j] + Weight(i-1,i,j);//将链ij划分为A(i) * ( A[i+1:j] )这⾥实际上就是k=i s[i][j] = i; for(int k=i+1; k//将链ij划分为( A[i:k] )* (A[k+1:j])int u = t[i][k] + t[k+1][j] + Weight(i-1,k,j);if(ut[i][j] = u;s[i][j] = k;}}}}return t[1][N-2];}voidTraceback(inti,intj,int **s){if(i==j) return;Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<"三⾓剖分顶点:V"<int Weight(inta,intb,int c){return weight[a][b] + weight[b][c] + weight[a][c];}5-4 数字三⾓形最短路径5-2 游艇租赁问题#includeusing namespace std;#define N 210int cost[N][N];int m[N];int main(){intn,i,j;while(cin>>n){for(i=1;ifor(j=i+1;j<=n;j++)cin>>cost[i][j];m[1]=0;int min;for(i=2;i<=n;i++){min=cost[1][i];for(j=1;j<=i-1;j++){if(cost[j][i]!=0 && m[j]+cost[j][i]min=m[j]+cost[j][i];}m[i]=min;}cout<}return 0;}5-6 合唱队形问题#include/doc/d0aa713f51e79b8969022686.html ing namespace std; 2.3.//⽤于保存⼦问题最优解的备忘录4.typedef struct5.{6.int maxlen; //当前⼦问题最优解7.int prev; //构造该⼦问题所⽤到的下⼀级⼦问题序号(⽤于跟踪输出最优队列)8.}Memo;9.10.//⽤于递归输出Memo B中的解11.void Display(int* A, Memo* M, int i)12.{13.if (M[i].prev == -1)14. {15. cout<16.return;17. }18. Display(A, M, M[i].prev);19. cout<20.}21.22.//算法主要部分23.void GetBestQuence(int* A, int n)24.{25.//定义备忘录并作必要的初始化26. Memo *B = new Memo[n]; //B[i]代表从A[0]到A[i]满⾜升序剔除部分元素后能得到的最多元素个数27. Memo *C = new Memo[n]; //C[i]代表从A[i]到A[n-1]满⾜降序剔除部分元素后能得到的最多元素个数28. B[0].maxlen = 1; //由于B[i]由前向后构造初始化最前⾯的⼦问题 (元素本⾝就是⼀个满⾜升序降序的序列)29. C[n-1].maxlen = 1; //同样C[i]由后向前构造30.for (int i=0; i31.//⽤于在跟踪路径时终⽌递归或迭代(因为我们并不知道最终队列从哪⾥开始)32. {33. B[i].prev = -1;34. C[i].prev = -1;35. }36.37.for (i=1; i38. {39.int max=1;40.for (int j=i-1; j>=0; j--) //查看前⾯的⼦问题找出满⾜条件的最优解并且记录41. {42.if (A[j]max)43. {44. max = B[j].maxlen+1; //跟踪当前最优解45. B[i].prev = j; //跟踪构造路径46. }47. }48. B[i].maxlen = max; //构造最优解49. }50.51.for (i=n-1; i>0; i--)52. {53.int max=1;54.for (int j=i; j解时可以直接⽤B[i]+C[i]-155.//否则我们得到的最优解始终为B[n-1]+C[n-1]56. {57.if (A[j]max) //⽐当前长度更长记录并构造58. {59. max = C[j].maxlen+1;60. C[i].prev = j;61. }62. }63. C[i].maxlen = max;64. }65.66.//遍历i 得到最⼤的B[i]+C[i]-1(-1是因为我们在B[i]和C[i]中均加上了A[i]这个数因此需要减去重复的)67.int maxQuence = 0; //记录当前最优解68.int MostTall; //记录i ⽤于跟踪构造路径69.for (i=0; i70. {71.if (B[i].maxlen+C[i].maxlen-1 > maxQuence)72. {73. maxQuence = B[i].maxlen+C[i].maxlen-1;74. MostTall = i;75. }76. }77.78. cout<<"最⼤合唱队形长度: "<79.80.//B由前向后构造因此prev指向前⾯的元素需要递归输出81. Display( A, B, MostTall);82.//C的prev指向后⾯元素直接迭代输出83.while (C[MostTall].prev != -1)84. {85. MostTall = C[MostTall].prev;86. cout<87. }88. cout<89.90.delete []B;91.delete []C;92.}93.int main()94.{95.//测试96.int *A;97.int n;98. cout<<"请输⼊合唱队员个数: "<99. cin>>n;100.101. A = new int[n];102. cout<<"输⼊队员⾝⾼ :"<103.for (int i=0; i104. {105. cin>>A[i];106. }107. GetBestQuence(A, n);108.delete []A;109.return 0;110.}5-7买票问题状态转移⽅程是f[i] := min(f[i - 1] + t[i], f[i - 2] + r[i - 1]); {i = 2 ~ n} 初值f[0] := 0; f[1] := t[1]; constmaxn = 1000;vari, j, n : longint;f, t, r : array[0..maxn] of longint;function min(a, b : longint) : longint;begin if a < b then exit(a); exit(b); end;beginreadln(n);for i := 1 to n do read(t[i]);for i := 1 to n - 1 do read(r[i]);f[0] := 0; f[1] := t[1];for i := 2 to n dof[i] := min(f[i - 1] + t[i], f[i - 2] + r[i - 1]);writeln(f[n]);end.伪代码BuyTicks(T, R)1n ← length[T]2f[0] ← 03f[1] ← T[1]4for i ← 2to n do5f[i] ← f[i-2]+R[i-1]6if f[i] > f[i-1]+T[i] then7f[i] ← f[i-1]+T[i]8return f5-8最⼤⼦段和问题#include#includeintmax_sum(intn,int *a,int *besti,int *bestj){ int *b = (int *)malloc(n * sizeof(int));int sum = 0;int i = -1;int temp = 0;for (i=0;i<=n-1;i++) {if (temp > 0)temp += a[i];elsetemp = a[i];b[i] = temp;}sum = b[0];for (i=1;i<=n-1;i++) {if (sum < b[i]) {sum = b[i];*bestj = i;}}for (i = *bestj;i>= 0;i--) {if (b[i] == a[i]) {*besti = i;break;}}free(b);return sum;}int main(void){int a[] = {-2,1,-4,13,-5,-2,-10,20,100};int length = sizeof(a)/sizeof(int);intbesti = -1;intbestj = -1;sum = max_sum(length,a,&besti,&bestj);printf("besti = %d,bestj = %d,max_sum=%d\n",besti,bestj,sum); return 0;}5-9 装箱问题发现就是0-1背包问题每个物品的体积就是花费同时也是价值,也就是说这题可以转化为在总体积为w下,可以得到最⼤的价值最后⽤总体积减去最⼤的价值就是剩下最少的空间状态转移⽅程d[j] = max(d[j], d[j - a[i]] + a[i]);第⼆⾏为⼀个整数,表⽰有n个物品;接下来n⾏,每⾏⼀个整数表⽰这n个物品的各⾃体积。
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
对于 0n n ≥,2()()f n n cg n <≤,即 ()(())f n g n =O 。
(3)因为 log log(log )()(log )nn f n n n ==,()/log log 2n g n n n n ==。
当 4n ≥ 时,log(log )()n f n nn =≥,()log 2n g n n n =<。
所以,可选 1c =,04n =,对于0n n ≥,()()f n cg n ≥,即 ()(())f n g n =Ω。
2-17. 证明:设2i n =,则 log i n =。
()22log 2n T n T n n ⎛⎫⎢⎥=+ ⎪⎢⎥⎣⎦⎝⎭2222log 2log 222n nn T n n ⎡⎤⎛⎫⎢⎥⎛⎫=+⨯⨯+⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦()2222log log22log 2n T n n n n ⎛⎫⎢⎥=+-+ ⎪⎢⎥⎣⎦⎝⎭22222log 22n T n n n ⎛⎫⎢⎥=+⨯- ⎪⎢⎥⎣⎦⎝⎭2322222log 22log 2222n n n T n n n ⎡⎤⎛⎫⎢⎥=+⨯⨯+⨯-⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎣⎦()3322log log422log 22n T n n n n n ⎛⎫⎢⎥=+-+⨯- ⎪⎢⎥⎣⎦⎝⎭33232log 242n T n n n n ⎛⎫⎢⎥=+⨯-- ⎪⎢⎥⎣⎦⎝⎭=()22log 24212k k n T kn n n n n k ⎛⎫⎢⎥=+----- ⎪⎢⎥⎣⎦⎝⎭()()()12221log 2422i T i n n n n n i -=+------()()()1242log log 121i n n n i i n -=⨯+---- ()2222log 2log log 3log 2n n n n n n n n =+---+ 2log log n n n n =+当2n ≥ 时,()22log T n n n ≤。
所以,()()2log T n n n =O 。
5-4. SolutionType DandC1(int left,int right) { while(!Small(left,right)&&left<right) { int m=Divide(left,right); if(x<P(m) right=m-1; else if(x>P[m]) left=m+1; else return S(P) } }5-7. template <class T>int SortableList<T>::BSearch(const T&x,int left,int right) const { if (left<=right) { int m=left+(right-left+1)/3; if (x<l[m]) return BSearch(x,left,m-1); else if (x>l[m]) return BSearch(x,m+1,right); else return m; } return -1; }7.m=left+(right-left+1)/3不能用:m=(left+right)/3 ,两者不同。
受对半搜索的影响:m=(left+right)/2和m=left+(right-left+1)/2是一样的 9.证明:因为该算法在成功搜索的情况下,关键字之间的比较次数至少为log n ⎢⎥⎣⎦,至多为log 1n +⎢⎥⎣⎦。
在不成功搜索的情况下,关键字之间的比较次数至少为log 1n +⎢⎥⎣⎦,至多为log 2n +⎢⎥⎣⎦。
所以,算法的最好、最坏情况的时间复杂度为()log n Θ。
假定查找表中任何一个元素的概率是相等的,为1n,那么, 不成功搜索的平均时间复杂度为()()log 1u EA n n n ==Θ+, 成功搜索的平均时间复杂度为()()21log s I n E n n EA n n n n n+-+===-=Θ。
其中,I 是二叉判定树的内路径长度,E 是外路径长度,并且2E I n =+。
12.(1)证明:当0n =或1n =或2n =时,程序显然正确。
当n=right-left+1>2时,程序执行下面的语句: int k=(right-left+1)/3; StoogeSort(left,right-k); StoogeSort(left+k,right); StoogeSort(left,right-k);①首次递归StoogeSort(left,right-k);时,序列的前2/3的子序列有序。
②当递归执行StoogeSort(left+k,right);时,使序列的后2/3的子序列有序,经过这两次递归排序,使原序列的后1/3的位置上是整个序列中较大的数,即序列后1/3的位置上数均大于前2/3的数,但此时,前2/3的序列并不一定是有序的。
③再次执行StoogeSort(left,right-k);使序列的前2/3有序。
经过三次递归,最终使序列有序。
所以,这一排序算法是正确的。
(2)最坏情况发生在序列按递减次序排列。
()()010T =T =,()21T =,()2313n n ⎛⎫T =T + ⎪⎝⎭。
设322in ⎛⎫= ⎪⎝⎭,则log 1log31n i -=-。
()2431331139n n n ⎡⎤⎛⎫⎛⎫T =T +=T ++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦49319n ⎛⎫=T ++ ⎪⎝⎭=122333313iii i n --⎡⎤⎛⎫=T +++++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()31322i i-=T +()31322i =- log 1log31312222n n --=⨯⨯- log3log313n-≤⨯log3log31n -⎛⎫=O ⎪ ⎪⎝⎭冒泡排序最坏时间复杂度为()2n O ,队排序最坏时间复杂度为()log n n O ,快速排序最坏时间复杂度为()log n n O 。
所以,该算法不如冒泡排序,堆排序,快速排序。
13. template <class T> select (T&x,int k) { if(m>n) swap(m,n); if(m+n<k||k<=0) {cout<<"Out Of Bounds"; return false;} int *p=new temp[k]; int mid,left=0,right=n-1,cnt=0,j=0,r=0; for(int i=0;i<m;i++) { while(k>0) { do { mid=(left+right)/2; if(a[mid]<b[i]) left=mid; else if(a[mid]>b[i]) right=mid; else {cnt=mid; break;} }while(left<right-1) if(a[left]<b[i]) cnt=left;else cnt=left-1;if(k>cnt){if(cnt>0){for(j=0;j<cnt;j++){temp[j]=a[r];r++;}left=cnt;k-=cnt;}else{temp[j]=b[i];left=0;k--;}}else{for(j=0;j<k;j++){temp[j]=a[r];r++;}left=cnt;k-=cnt;return temp[k-1];}}}}1.由题可得:012345601234561051576183,,,,,,,,,,,,2357141p p p p p p p w w w w w w w ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 所以,最优解为()01234562,,,,,,,1,,1,0,1,1,13x x x x x x x ⎛⎫= ⎪⎝⎭,最大收益为211051561835533+⨯++++=。
8.(n-1)%(K-1)=(11-1)%(3-1)=0, 故无需补充虚游程。
9普里姆算法。
因为图G 是一个无向连通图。
所以n-1<=m<=n (n-1)/2; O(n)<=m<=O(n 2);克鲁斯卡尔对边数较少的带权图有较高的效率,而()()1.992m n n =O ≈O ,此图边数较多,接近完全图,故选用普里姆算法。
10.T 仍是新图的最小代价生成树。
证明:假设T 不是新图的最小代价生成树,T ’是新图的最小代价生成树,那么cost(T ’)<cost(T)。