角的平分线问题专项训练(30道)
- 格式:docx
- 大小:234.91 KB
- 文档页数:12
角平分线专项练习30题(有答案)1.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.2.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+∠BAC.3.如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.4.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.5.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.求证:BC=AB+AE.6.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.7.如图,CD是Rt△ABC斜边上的高,∠BAC的平分线分别交BC、CD于点E、F.(1)求证:△ACF∽△ABE;(2)若AC=6cm,AF=3cm,AB=10cm,求出AE的长度.8.如图,CD∥AB,∠ABC,∠BCD的角平分线交于E点,且E在AD上,CE交BA的延长线于F点.(1)BE与CF互相垂直吗?若垂直,请说明理由;(2)若CD=3,AB=4,求BC的长.9.如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,(1)求证:AB∥CD;(2)在(1)的条件下,求∠AEM的度数.10.如图,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分别为B、C,E为线段AB上一点,(1)用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹);(2)若BE=3,请写出此时线段AE与AF的数量关系,并说明理由.11.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,(1)分别作出D到BA、BC的距离DE、DF;(2)求证:∠A+∠C=180°.12.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F,求证:BE=FC.13.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.14.如图,点D、B分别在∠A的两边上,C是∠DAB内一点,AB=AD,BC=CD,CE⊥AD于E,CF⊥AF于F,求证:CE=CF.15.如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.16.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.18.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC于D,PH⊥BA于H,求证:AP平分∠HAD.19.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB、AC于E、F两点.求证:AD⊥EF.(2)若∠MON=80°,求∠PAB的度数.21.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.22.如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D 到PE的距离与D到PF的距离相等.23.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.证明:BE=CF;(提示:连接线段BD、CD)25.如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.(2)ED=BC+BD.29.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.30.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM与DM相等,试说明你的理由.参考答案:1.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.2.证明:连接AP,且延长至G,∵PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,∴点P是△ABC三角平分线的交点,∴AP平分∠BAC,∴∠CAG=∠BAG=∠BAC,∵CP平分∠ACB,BP平分∠ABC,∴∠ACP=∠ACB,∠ABP=∠ABC,∴∠CPG=∠BAG+∠ABP=(∠BAC+∠ACB),∠BPG=∠BAG+∠ABP=(∠BAC+∠BC),∴∠BPC=∠CPG+∠BPG=(∠BAC+∠ACB)+(∠BAC+∠ABC)=∠BAC+(180°﹣∠BAC)=90°+∠BAC.3.证明:∵BD⊥AC,CE⊥AB,∠CDF=∠BEF=90°,在△CDF与△BEF中,,∴DF=EF,又∵BD⊥AC,CE⊥AB,∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上)4.解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.5.解:∵∠BAC=90°,BE平分∠ABC,DE⊥BC于D,∴AE=DE,∵BE是公共边,∴△BDE≌△BAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE6.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.7.(1)证明:∵∠ACB=90°,∠CDB=90°,∴∠ACD=90°﹣∠DCB,∠B=90°﹣∠DCB,∴∠ACD=∠B,(2分)∵AE平分∠CAB,∴∠CAE=∠EAB,(3分)∴△ACF∽△ABE;(7分)(2)解:∵△ACF∽△ABE,∴,(9分)∴AE===5cm8.解:(1)垂直.∵CD∥AB,∴∠ABC+∠BCD=180°,∵∠ABC,∠BCD的角平分线交于E点,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠EBC+∠ECB=∠ABC+∠BCD=(∠ABC+∠BCD)=90°,∴∠CEB=90°,∴BE与CF互相垂直.(2)∵∠CEB=90°,∴∠FEB=90°,在△FBE和△CBE中,∵,∴△FBE≌△CBE(ASA),∴BF=BC,EF=EC,∵CD∥AB,∴∠DCE=∠AFE,∵∠FEA=∠CED,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB,∴BF=BC=7.9.(1)证明:∵∠1+∠2+∠FEG=180°,∵∠1=50°,∠2=65°,∴∠FEG=65°,∵EG平分∠BEF,∴∠BEF=2∠FEG=130°,∴∠BEF+∠1=180°,∴AB∥CD.(2)∵∠AEM=∠BEF,∵∠BEF=130°,∴∠AEM=130°,答:∠AEM的度数是130°10.解:(1)以D为圆心,DE为半径交AN于F1或F2,如图,∵AD平分∠MAN,BD⊥AM,CD⊥AN,∴DB=DC,∵DE=DF,∴Rt△CDF≌Rt△BDE(HL);(2)∵DB=DC,DA=DA,∴Rt△DBA≌Rt△DCA(HL);∴AB=AC,∵Rt△CDF≌Rt△BDE,∴BE=CF,∴当F点在F1时,AF=AE;当F点在F2时,AF2=AC+CF2=AB+CF2=AE+BE+BE,∴AF﹣AE=2BE=6.11.解:(1)如图所示:.(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,∴DE=DF,∠E=∠DFC=90°,∴在Rt△DEA和Rt△DFC中∴Rt△DEA≌Rt△DFC(HL),∴∠C=∠EAD,∵∠BAD+∠EAD=180°,∴∠BAD+∠C=180°12.证明:过点E作EG⊥AB于点G,过F点作FH⊥AC于点H,∵△ABC中,∠ABC=90°,∴∠C+∠BAC=90°,∵BD⊥AC于D,∴∠ADB=90°,∴∠BAC+∠ABD=90°,∴∠C=∠ABD,∵点E在∠BAC的平分线上,∴GE=DE,∵EF∥DC且BD⊥AC于D,FH⊥AC于D∴ED=FH,∴GE=FH,在△BEG与△CFH中,,∴△BEG≌△CFH(AAS),∴BE=CF.13.证:(1)作CE⊥OB于E,∵∠A+∠OBC=180°,∠OBC+∠CBE=180°∴∠A=∠CBE,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴CD=CE,∴OC平分∠AOB.(2)∵OD=3DA=6,∴AD=BE=2,在Rt△ODC和Rt△OEC中∵∴Rt△ODC≌Rt△OEC(HL),∴OE=OD=6,∴OB=OE﹣BE=4.14.证明:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∵CE⊥AD于E,CF⊥AF于F,∴CE=CF15.解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB..设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.16.证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和CEQ中,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.17.证明:连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,EM=EN,∠EMB=∠ENC=90°.在Rt△BME和Rt△CNE中,∵BE=EC,EM=EN,∴Rt△BME≌Rt△CNE(HL)∴BM=CN.18.证明:过P作PF⊥BE于F,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF(角平分线上的点到角的两边距离相等).又∵CP平分∠ACE,PD⊥AC于D,PF⊥BE于F,∴PF=PD(角平分线上的点到角的两边距离相等).∴PD=PH(等量代换).∴AP平分∠HAD(到角的两边距离相等的点在这个角的平分线上).19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA,∵DE=DF,∴AD⊥EF三线合一)20.(1)证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于A,PB⊥ON于B,∴OP平分∠MON(到角的两边距离相等的点在角的平分线上);(2)解:∵∠MON=80°,PA⊥OM于A,PB⊥ON于B,∴∠APB=360°﹣90°×2﹣80°=100°,∵∠PAB=∠PBA,∴∠PAB=(180°﹣100°)=40°21.证明:(1)如图,过点P作PE⊥AB于E,∵∠1=∠2,PF⊥BC,∴PE=PF,在△APE和△CPF中,,∴△APE≌△CPF(HL),∴∠PAE=∠PCB,∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°;(2)∵△APE≌△CPF,∴AE=FC,∵BC=12cm,AB=6cm,∴AE=×(12﹣6)=3cm,BE=AB+AE=6+3=9cm,在Rt△PAE中,PE==4cm,在Rt△PBE中,PB==cm.22.证明:∵PE∥AB,PF∥AC,∴∠EPD=∠BAD,∠DPF=∠CAD,∵△ABC中,AD是它的角平分线,∴∠BAD=∠CAD,∴∠EPD=∠DPF,即DP平分∠EPF,∴D到PE的距离与D到PF的距离相等23.证明:连接BD,CD,∵AD平分∠BAC,且DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDE是直角三角形,∵,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线25.解:∵∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=50°;∴∠BOC=180°﹣50°=130°26.证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.28.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2;(2)在△AED和△ACF中,,∴△AED≌△ACF(ASA),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.29.证明:如图,连接CM,设AB、CD相交于点E,则CM是斜边上的中线,MC=MB=AM,∴∠MCB=∠B,∵CD平分∠ACB,∠C=90°,∴∠BCD=×90°=45°,∴∠MCD=∠MCB﹣45°=∠B﹣45°,又∵∠DEM=∠BEC=180°﹣∠B﹣45°=135°﹣∠B,∴∠D=90°﹣∠DEM=∠B﹣45°,∴∠D=∠MCD,∴MD=MC,∴MD=AM.30.解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,∴PC=PD,∵OM是公共边,∴△POC≌△POD(HL),∴OC=OD,∴△COM≌△DOM(SAS),∴CM=DM。
《角平分线》单元测试题(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《角平分线》单元测试题(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《角平分线》单元测试题(带答案)的全部内容。
基本定义从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线(bisectorof angle)。
三角形三个角平分线的交点叫做三角形的内心(中心)。
三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
相关性质1.角平分线上的点,到这个角的两边的距离相等。
2.角平分线分得的两个角相等,都等于该角的一半.3。
三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心,即以此点为圆心可以在三角形内部画一个内切圆。
基本作法在角AOB中,画角平分线方法一:1。
以点O为圆心,以任意长为半径画弧,两弧交角AOB 两边于点M,N。
2。
分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3.作射线OP.则射线OP为角AOB的角平分线.角平分线试题一、填空题(每小题3分,共30分)1.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为 .2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1。
5 cm,则M到OB的距离为_________。
4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________. 5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm。
角平分线模型对应练习1.如图,在ABC 中,ABC ∠的平分线与ACB ∠的外角平分线相交于D 点,50A ∠=,则(D ∠= ) A .1?5B . 25C . 30D . 302.如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是△A 1BD 的角平分线CA 2是△A 1CD 的角平分线,BA 3是A 2BD△的角平分线,CA 3是△A 2CD 的角平分线,若△A 1=α,则△A 2013为( ) A .B .C .D .3.如图,在∆ABC 中,∠A=80︒,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为() A .54B .58C .516D .5324.如图,已知BD ,CD 分别是ABC ∠和ACE ∠的角平分线,若45A ∠=︒,则D ∠的度数是( ) A .20 B .22.5 C .25 D .305.已知,如图△ABC 中,△A=50°,BE 、CD 分别是△ABC 、△BCE 的角平分线,则△CDE=__°.6.如图,在△ABC 中,△ABC ,△ACB 的角平分线相交于O 点. 如果△A=α,那么△BOC 的度数为____________.7.如图,在△ABC 中,BO 、CO 分别平分△ABC 、△ACB .若△BOC=110°,则△A=_____.8.如图,在△ABC 中,AI 和CI 分别平分△BAC 和△BCA ,如果△B=58°,那么△AIC=____________.9.如图,在△ABC 中,△B =42°,△ABC 的外角△DAC 和△ACF 的平分线交于点E ,则△AEC =____________.10.如图,在ABC 中,B ∠,C ∠的外角平分线相交于点O ,若74A ∠=,则O ∠=________度.11.如图,ABC 中,100A ∠=,BI 、CI 分别平分ABC ∠,ACB ∠,则BIC ∠=________,若BM 、CM 分别平分ABC ∠,ACB ∠的外角平分线,则M ∠=________.12.如图,ABC 中,30B ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠的度数为________.13.已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”. 在图2中,△DAB 和△BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .若△DAO=50°,△OCB=40°,△P=35°,△D = _________参考答案1.B【解析】【分析】根据角平分线的定义和三角形的外角的性质即可得到△D=12△A.【详解】解:△△ABC的平分线与△ACB的外角平分线相交于D点,△1=12△ACE,△2=12△ABC,又△D=△1-△2,△A=△ACE-△ABC,△△D=12△A=25°.故选B【点睛】此题综合考查了三角形的外角的性质以及角平分线定义,熟练掌握这些知识是解答此题的关键.2.D【详解】试题分析:根据角平分线的定义可得△A1BC=△ABC,△A1CD=△ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得△ACD=△A+△ABC,△A1CD=△A1BC+△A1,整理即可得解,同理求出△A2,可以发现后一个角等于前一个角的,根据此规律即可得解.解:△A1B是△ABC的平分线,A1C是△ACD的平分线,△△A1BC=△ABC,△A1CD=△ACD,又△△ACD=△A+△ABC,△A1CD=△A1BC+△A1,△(△A+△ABC)=△ABC+△A1,△△A1=△A,△△A1=α.同理理可得△A2=△A1=α则△A 2013=.故选D .点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键. 3.C 【详解】△△ABC 与△ACD 的平分线交于点A 1, △△A 1BC=12△ABC ,△A 1CD=12△ACD , 由三角形的外角性质,△ACD=△A+△ABC , △A 1CD=△A 1+△A 1BC ,△12(△A+△ABC )=△A 1+△A 1BC=△A 1+12△ABC , 整理得,△A 1=12△A=12×80°=40°,同理可得△A 2=12△A 1=12×40°=20°;……其规律为:△A n =(12)n △A=(802n )o . 当n=8时,∠A 8=(12)3△A=(8802)o =(516)o .故选C. 【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定义并求出后一个角是前一个角的12是解题的关键. 4.B 【分析】由外角关系与角平分线定义得2321A ∠=∠+∠和31D ∠=∠+∠可推出2A D ∠=∠即可. 【详解】解:1∠,2∠,3∠,4∠如图所示,△BD 是ABC ∠的角平分线, △12∠=∠,△CD 是ACE ∠的角平分线, △ 34∠=∠,△ 3412A ∠+∠=∠+∠+∠,31D ∠=∠+∠, △ 2321A ∠=∠+∠,23212D ∠=∠+∠, △ 2A D ∠=∠, △ 45A ∠=, △ 14522.52D ∠=⨯=. 故选择:B . 【点睛】本题考查角平分线的定义,三角形的外角的性质,掌握角平分线的定义,三角形的外角的性质,会利用外角构造等式解决问题是关键. 5.65 【解析】试题分析:根据三角形内角和定理可得:△ABC+△ACB=180°-50°=130°,根据角平分线的性质可得:△DBC+△DCB=130°÷2=65°,则根据三角形的外角的性质可得:△CDE=△DBC+△DCB=65°. 6.90°+12α 【解析】△△ABC 、△ACB 的角平分线相交于点O ,△△OBC=12△ABC ,△OCB=12△ACB , △△OBC+△OCB=12(△ABC+△ACB)=12(180°-△A)=90°-12△A ,△在△OBC 中,△BOC=180°-△OBC -△OCB ,△△BOC=180°-(90°-12△A)=90°+12△A=90°+12.7.40°【分析】先根据角平分线的定义得到△OBC=12△ABC,△OCB=12△ACB,再根据三角形内角和定理得△BOC+△OBC+△OCB=180°,则△BOC=180°﹣12(△ABC+△ACB),由于△ABC+△ACB=180°﹣△A,所以△BOC=90°+12△A,然后把△BOC=110°代入计算可得到△A的度数.【详解】解:△BO、CO分别平分△ABC、△ACB,△△OBC=12△ABC,△OCB=12△ACB,而△BOC+△OBC+△OCB=180°,△△BOC=180°﹣(△OBC+△OCB)=180°﹣12(△ABC+△ACB),△△A+△ABC+△ACB=180°,△△ABC+△ACB=180°﹣△A,△△BOC=180°﹣12(180°﹣△A)=90°+12△A,而△BOC=110°,△90°+12△A=110°△△A=40°.故答案为40°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.8.119°【详解】试题分析:根据△B=58°以及△ABC的内角和定理可得△BAC+△BCA=180°-58°=122°,根据角平分线的性质可得:△IAC+△ICA=122°÷2=61°,则根据△IAC的内角和定理可得:△AIC=180°-61°=119°.考点:(1)、角平分线的性质;(2)、三角形内角和定理9.69°.【解析】试题分析:△AEC=180°-△EAC-△ECA,因为△ABC的外角△DAC和△ACF的平分线交于点E,所以△EAC=12△DAC,△ECA=12△ACF,所以△AEC=180°-12△DAC-12△ACF=12(360°-△DAC-△ACF)=12(180°-△DAC+180°-△ACF)=12(△BAC+△ACB)=12(180°-△B)=69°.10.53【解析】【分析】根据三角形的内角和定理,得△ACB+△ABC=180°-74°=106°;再根据邻补角的定义,得两个角的邻补角的和是360°-106°=254°;再根据角平分线的定义,得△OCB+△OBC=127°;最后根据三角形的内角和定理,得△O=53°.【详解】解:△△A=74°,△△ACB+△ABC=180°-74°=106°,△△BOC=180°-12(360°-106°)=180°-127°=53°.故答案为53【点睛】此题综合运用了三角形的内角和定理以及角平分线定义.注意此题中可以总结结论:三角形的相邻两个外角的角平分线所成的锐角等于90°减去第三个内角的一半,即△BOC=90°-1 2△A.11.14040【解析】【分析】首先根据三角形内角和求出△ABC+△ACB的度数,再根据角平分线的性质得到△IBC=1 2△ABC,△ICB=12△ACB,求出△IBC+△ICB的度数,再次根据三角形内角和求出△I的度数即可;根据△ABC +△ACB 的度数,算出△DBC +△ECB 的度数,然后再利用角平分线的性质得到△1=12△DBC ,△2=12ECB ,可得到△1+△2的度数,最后再利用三角形内角和定理计算出△M 的度数. 【详解】 △△A =100°.△△ABC +△ACB =180°﹣100°=80°. △BI 、CI 分别平分△ABC ,△ACB ,△△IBC =12△ABC ,△ICB =12△ACB ,△△IBC +△ICB =12△ABC +12△ACB =12(△ABC +△ACB )=12×80°=40°,△△I =180°﹣(△IBC +△ICB )=180°﹣40°=140°;△△ABC +△ACB =80°,△△DBC +△ECB =180°﹣△ABC +180°﹣△ACB =360°﹣(△ABC +△ACB )=360°﹣80°=280°.△BM 、CM 分别平分△ABC ,△ACB 的外角平分线,△△1=12△DBC ,△2=12ECB ,△△1+△2=12×280°=140°,△△M =180°﹣△1﹣△2=40°. 故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出△ABC +△ACB 的度数. 12.75︒ 【分析】本题先通过三角形内角和求解△BAC 与△BCA 的和,继而利用邻补角以及角分线定义求解△EAC 与△ECA 的和,最后利用三角形内角和求解此题. 【详解】 △30B ∠=︒,△+150BAC BCA ∠∠=︒,又△180BAC DAC ︒∠=-∠,=180BCA FCA ∠-∠︒, △210DAC FCA ∠+∠=︒.△三角形的外角DAC ∠和ACF ∠的平分线交于点E , △12EAC DAC ∠=∠,12ECA ACF ∠=∠, △+105EAC ECA ∠∠=︒, 即18010575AEC ∠=︒-︒=︒. 故填:75︒. 【点睛】本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可. 13.30° 【解析】△△DAB 和△BCD 的平分线AP 和CP 相交于点P ,△DAO=50°,△OCB=40°, △△DAP=△PAB=25°,△DCP=△PCB=20°,在△DAM 和△PCM 中,根据三角形的内角和定理可得△DAM+△D=△DCP+△P ,即可求得△D=30°.点睛:本题考查了三角形内角和定理,角平分线的定义,对顶角相等的性质,整体思想的利用是解题的关键.。
三角形高中线角平分线专项练习30题(有答案)1.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,求AB和AC的长.4.如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.5.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.6.在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.7.在△ABC中.(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC= _________°,再用你已学过的数学知识加以说明.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=_________°.8.在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.求∠ABE、∠ACF和∠BHC的度数.9.如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.11.如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)指出AD是哪几个三角形的高.12.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.13.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线(1)求∠EAD的度数;(2)寻找∠DAE与∠B、∠C的关系并说明理由.14.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,(1)若∠B=47°,∠C=73°,求∠DAE的度数.(2)若∠B=α°,∠C=β°(α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,在△ABC中,AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.17.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.18.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.20.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度数40°60°90°120°∠BIC的度数∠BDI的度数21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA 的度数.22.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:(1)BE=_________=_________(2)∠BAD=__________________(3)∠AFB=_________=90°(4)S△ABC=_________S△ABE.23.如图,BM是△ABC的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长是差是多少?24.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.25.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?26.如图,在△ABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由.27.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.28.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.29.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.30.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.参考答案:1.(1)∵∠B=70°,CD⊥AB于D,∴∠BCD=90°﹣70°=20°,在△ABC中,∵∠A=30°,∠B=70°,∴∠ACB=180°﹣30°﹣70°=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE﹣∠BCD=40°﹣20°=20°,∴∠BCD=∠ECD;(2)∵CD⊥AB于D,DF⊥CE于F,∴∠CED=90°﹣∠ECD=90°﹣20°=70°,∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B相等的角有:∠CED和∠CDF.2.(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED =S△ABC =×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.3.∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=4,(2分)即AB﹣AC=4①,又AB+AC=14②,①+②得.2AB=18,解得AB=9,②﹣①得,2AC=10,解得AC=5,∴AB和AC的长分别为:AB=9,AC=5.4.∵DE是CA边上的高,∴∠DEA=∠DEC=90°,∵∠A=20°,∴∠EDA=90°﹣20°=70°,∵∠EDA=∠CDB,∴∠CDE=180°﹣70°×2=40°,在Rt△CDE中,∠DCE=90°﹣40°=50°,∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×50°=100°,在△ABC中,∠B=180°﹣∠BCA﹣∠A=180°﹣100°﹣20°=60°.故答案为:605.(1)∵∠B=30°,∠C=70°∴∠BAC=180°﹣∠B﹣∠C=80°∵AE是角平分线,∴∠EAC=∠BAC=40°∵AD是高,∠C=70°∴∠DAC=90°﹣∠C=20°∴∠EAD=∠EAC﹣∠DAC=40°﹣20°=20°;(2)由(1)知,∠EAD=∠EAC﹣∠DAC=∠BAC﹣(90°﹣∠C)①把∠BAC=180°﹣∠B﹣∠C代入①,整理得∠EAD=∠C ﹣∠B,∴2∠EAD=∠C﹣∠B.6.∵AD是高,∠C=60°,∴∠CAD=90°﹣∠C=90°﹣60°=30°;∵∠B=20°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣20°﹣60°=100°,∵AE是角平分线,∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣30°=20°.7.(1)∵BD、CE分别是边AC,AB上的高,∴∠ADB=∠BEC=90°,又∵∠BAC=60°,∴∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣60°=30°,∴∠BOC=∠EBD+∠BEO=90°+30°=120°;(2)如图所示:∠BAC+∠BOC=180°;理由如下:∵BD、CE分别是边AC,AB上的高,∴∠ADB=∠BEC=90°,∵∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣90°﹣∠BAD=90°﹣∠BAD,∠O=180°﹣∠BEO﹣∠DBA=90°﹣∠DBA=90°﹣(90°﹣∠BAD)=∠BAD,∵∠BAC=180°﹣∠DAB,∴∠BAC=180°﹣∠O,∴∠BAC+∠O=180°;(3)由(1)(2)可得∠BAC+∠BOC=180°.8.∵BE是AC上的高,∴∠AEB=90°,∵∠ABC=60°,∠ACB=50°,∴∠A=180°﹣60°﹣50°=70°,∴∠ABE=180°﹣90°﹣70°=20°,∵CF是AB上的高,∴∠AFC=90°,∴∠ACF=180°﹣90°﹣70°=20°,∵∠ABE=20°,∴∠EBC=∠ABC﹣∠ABE=60°﹣20°=40°,∵∠ACF=20°,∠ACB=50°,∴∠BCH=30°,∴∠BHC=180°﹣40°﹣30°=110°.9.(1)∵∠1+∠BCD=90°,∠1=∠B∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;(2)∵∠ACB=∠CDB=90°∴S△ABC =AC•BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===10.∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC∴∠BAE=15°∴∠AED=∠B+∠BAE=41°11.(1)∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD=30°,∴∠BAC=50°+30°=80°,∵AE是∠BAC的平分线,∴∠BAE=40°,∴∠DAE=50°﹣40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.12.∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.13.(1)∵在△ABC中,∠BAC=180°﹣∠C﹣∠B=180°﹣20°﹣60°=100°,又∵AE为角平分线,∴∠EAB=∠BAC=50°,在直角△ABD中,∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠EAB﹣∠BAD=50°﹣30°=20°;(2)根据(1)可以得到:∠EAB=∠BAC=(180°﹣∠B﹣∠C)∠BAD=90°﹣∠B,则∠EAD=∠EAB﹣∠BAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠B)=(∠B﹣∠C).14.∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°15.(1)∵∠B=47°,∠C=73°,∴∠BAC=180°﹣47°﹣73°=60°,∵AD是△ABC的BC边上的高,∴∠BAD=90°﹣47°=43°,∵AE是∠BAC的角平分线,∴∠BAE=∠BAC=30°,∴∠DAE=∠BAD﹣∠BAE=43°﹣30°=13°;(2))∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AD是△ABC的BC边上的高,∴∠BAD=90°﹣α°,∵AE是∠BAC的角平分线,∴∠BAE=∠BAC=(180°﹣α°﹣β°),∴∠DAE=∠BAD﹣∠BAE=90°﹣α°﹣(180°﹣α°﹣β°),=90°﹣α°﹣90°+α°+β°,=(β﹣α)°16.∵∠B=60°,∠C=45°,∴∠BAC=180°﹣60°﹣45°=75°,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=37.5°,在△ABD 中,∠ADB=180°﹣∠BAD ﹣∠B=82.5°, 则∠ADC=180°﹣∠ADB=97.5°. 17.∵∠ACB=90°, ∴∠1+∠3=90°, ∵CD ⊥AB , ∴∠2+∠4=90°,又∵BE 平分∠ABC , ∴∠1=∠2, ∴∠3=∠4, ∵∠4=∠5, ∴∠3=∠5,即∠CFE=∠CEF .18.(1)在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣50°﹣80°=50°; ∵AD 是角平分线, ∴∠DAC=∠BAC=25°;在△ADC 中,∠ADC=180°﹣∠C ﹣∠DAC=75°; 在△ADE 中,∠DAE=180°﹣∠ADC ﹣AED=15°. (2)∠DAE=180°﹣∠ADC ﹣AED=180°﹣∠ADC ﹣90°=90°﹣∠ADC=90°﹣(180°﹣∠C ﹣∠DAC )=90°﹣(180°﹣∠C ﹣∠BAC )=90°﹣[180°﹣∠C ﹣(180°﹣∠B ﹣∠C )]=(∠C ﹣∠B ). (3)(2)中的结论仍正确.∠A ′DE=∠B+∠BAD=∠B+∠BAC=∠B+(180°﹣∠B ﹣∠C )=90°+∠B ﹣∠C ;在△DA ′E 中,∠DA ′E=180°﹣∠A ′ED ﹣∠A ′DE=180°﹣90°﹣(90°+∠B ﹣∠C )=(∠C ﹣∠B ). 19.∵AB=6cm ,AD=5cm ,△ABD 周长为15cm , ∴BD=15﹣6﹣5=4cm , ∵AD 是BC 边上的中线, ∴BC=8cm ,∵△ABC 的周长为21cm , ∴AC=21﹣6﹣8=7cm . 故AC 长为7cm . 20.(1)填写表格如下:∠BAC 的度数 40°60° 90° 120° ∠BIC 的度数 110°120° 135° 150°∠BDI 的度数 110°120° 135° 150°(2)∠BIC=∠BDI ,理由如下:∵△ABC 的三条内角平分线相交于点I , ∴∠BIC=180°﹣(∠IBC+∠ICB ) =180°﹣(∠ABC+∠ACB ) =180°﹣(180°﹣∠BAC ) =90+∠BAC ; ∵AI 平分∠BAC , ∴∠DAI=∠DAE . ∵DE ⊥AI 于I , ∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC .∴∠BIC=∠BDI .21.∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°, 又∵AD 是高, ∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°, ∵AE 、BF 是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°, ∴∠DAE=∠DAC ﹣∠EAF=5°, ∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°, ∴∠DAC=30°,∠BOA=120°. 故∠DAE=5°,∠BOA=120°. 22.(1)∵AE 是中线, ∴BE=CE=BC , (2)∵AD 是角平分线, ∴∠BAD=∠CAD=∠BAC , (3)∵AF 是高,∴∠AFB=∠AFC=90°, (4)S △ABC =,S △ABE =,∵BC=2BE , ∴S △ABC=2S △ABE , 故答案为CE ,BC ,∠CAD ,∠BAC ,∠AFC ,223.∵BM是△ABC的中线,∴MA=MC,∴C△ABM﹣C△BCM=AB+BM+MA﹣BC﹣CM﹣BM=AB﹣BC=5﹣3=2cm.答:△ABM与△BCM的周长是差是2cm.24.方法1:由题意知:AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得:2AB+2AD+BC=60③,③﹣①得:2AD=26,∴AD=13cm.方法2:∵AB=AC,D是中点,且AB+AC+BC=34,∴BD=BC,AB=(AB+AC),∴AB+BD=(AB+AC)+BC=(AB+AC+BC)=17cm(周长的一半).∵AB+BD+AD=30cm,AD=30﹣17=13cm.25.能.由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD﹣(AB+BD+AD)=AC﹣AB=5.即AC与AB的边长的差为526.∵AD是BC边上的中线,∴BD=DC,∵AC=AB,AD=AD,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.27.错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.28.∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.29.∵AD是△ABC的中线,AE是△ACD的中线,∴BD=CD=2DE=4cm,∴BE=BD+DE=6cm,∴BC=2BD=8cm.30.∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=1.。
12.3 角的平分线的性质【提升训练】一、单选题1.如图,四边形ABCD 中,对角线AD 平分∠BAC ,138ACD ,42BCD ,则∠ADB 的度数为( )A .54°B .50°C .48°D .46°【答案】C【分析】 过D 作DE AB ⊥于E ,DF AC ⊥于F ,DG BC ⊥于G ,依据角平分线的性质,即可得到DE DG =,再根据三角形外角性质,根据角平分线的定义,即可得到11()22ADB DBE BAD CBE BAC ACB . 【详解】解:如图所示,过D 作DE AB ⊥于E ,DF AC ⊥于F ,DG BC ⊥于G ,AD 平分BAC ∠,DE AB ⊥于E ,DF AC ⊥于F ,DF DE ∴=,又138ACD,42BCD , 96ACB ,42DCF ∠=︒,CD ∴平分BCF ∠,又DF AC ⊥于F ,DG BC ⊥于G , DF DG ∴=,DE DG ∴=,BD ∴平分CBE ∠, 12DBE CBE , AD 平分BAC ∠,12BAD BAC ∴∠=∠, 111()9648222ADB DBE BAD CBE BAC ACB ,故选:C .【点睛】本题主要考查了角平分线的判定和性质,解题时注意:角平分线上的点到角两边的距离相等. 2.如图,在∠ABC 中,∠C =90°,AD 平分∠BAC ,DE ∠AB ,垂足为E ,下列结论:∠CD =ED ;∠BD =CD ;∠AC +BE =AB ;∠S ∠BDE :S ∠ACD =BD :AC ,其中正确的有( )A .∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠【答案】A【分析】 根据角平分线的性质,可得CD =ED ,易证得∠ADC ∠∠ADE ,可得AC +BE =AB ;又由CD =ED ,∠ABD 和∠ACD 的高相等,所以S ∠BDE :S ∠ACD =BE :AC .进而可以判断.【详解】解:∠正确,因为在∠ABC 中,∠C =90°,AD 平分∠BAC ,DE ∠AB 于E ,所以CD =ED ;∠错误,因为在Rt ∠BDE 中,DB >DE ,所以DB ≠CD ;∠正确,因为由HL 可知∠ADC ∠∠ADE ,所以AC =AE ,即AC +BE =AB ;∠错误,因为∠ADC ∠∠ADE ,∠DE =CD ,所以∠ADE 和∠ACD 面积相等,高相等都等于DE ,所以S ∠BDE :S ∠ACD =BE :AC .故选:A .【点睛】此题主要考查了全等三角形的判定与性质,角平分线的性质,解决本题的关键是掌握角平分线的性质:角平分线上的点到角的两边的距离相等.3.如图,在四边形ABCD 中,∠A =90°,AD =6,连接BD ,BD ∠CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为( )A .4B .6C .3D .12【答案】B【分析】 根据垂线段最短得出当DP∠BC 时,DP 的长度最小,求出∠ABD =∠CBD ,根据角平分线的性质得出AD =DP =6,即可得出选项.【详解】解:∠BD∠CD ,∠∠BDC =90°,∠∠C+∠CBD =90°,∠∠A =90°∠∠ABD+∠ADB =90°,∠∠ADB =∠C ,∠∠ABD =∠CBD ,当DP∠BC 时,DP 的长度最小,∠AD∠AB ,∠DP =AD ,∠AD =6,∠DP 的最小值是6,故选:B .【点睛】本题主要考查了垂线段最短和角平分线的性质,准确计算是解题的关键.4.如图,OB 平分MON ∠,A 为OB 的中点,AE ON ⊥,垂足为点E ,3EA =,D 为OM 上的一个动点,C是DA的延长线与BC的交点,//BC OM,则CD的最小值为()A.6B.8C.10D.12【答案】A【分析】根据两条平行线之间的距离可知当CD∠OM时,CD取最小值,利用全等三角形的判定和性质得出AC=AD=AE=3,进而解答即可.【详解】解:由题意可得,当CD∠OM时,CD取最小值,∠OB平分∠MON,AE∠ON于点E,CD∠OM,∠AD=AE=3,∠BC∠OM,∠∠DOA=∠B,∠A为OB的中点,∠AB=AO,在∠ABC与∠ADO中B DOAAB AOBAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠ABC∠∠AOD(ASA),∠AC=AD=3,∠CD=AC+AD=3+3=6,故选:A.【点睛】此题考查全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC=AD=AE=3.5.如图,AB∠CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC 上一动点,连接PE.若AD=8,BC=10,则PE的最小值为()A.8B.5C.4D.2【答案】C【分析】过E作EP∠BC于P,此时PE的值最小,求出AD∠CD,根据角平分线的性质求出AE=DE=PE,求出AE 的长即可.【详解】解:过E作EP∠BC于P,此时PE的值最小,∠AB∠CD,AD∠AB,∠AD∠CD,∠BE和CE分别平分∠ABC和∠BCD,∠AE =PE ,ED =PE ,∠AE =ED =PE ,∠AD =8,∠PE =4,即PE 的最小值是4,故选:C .【点睛】本题考查了角平分线的性质、平行线的性质、垂线段最短,解题关键是恰当的作出辅助线,找到最短线段,注意:角平分线上的点到角两边的距离相等.6.如图,在锐角△ABC 中,8AB =,16ABC S ∆=,BAC ∠的平分线交BC 于点D ,且AD BC ⊥,点,M N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .4B .5C .6D .8【答案】A【分析】 作BH∠AC ,垂足为H ,交AD 于M′点,过M′点作M′N′∠AB ,垂足为N′,根据AD 是∠BAC 的平分线可知M′H =M′N′,则BM′+M′N′为所求的最小值,最小值为BH 的长,进而即可求解.【详解】解:如图,作BH∠AC ,垂足为H ,交AD 于M′点,过M′点作M′N′∠AB ,垂足为N′,∠AD 是∠BAC 的平分线,∠M′H =M′N′,则BM′+M′N′= BM′+ M′H=BH ,∠BH 是点B 到直线AC 上各个点的最短距离,∠BM MN +的最小值= BH ,∠BAC ∠的平分线交BC 于点D ,且AD BC ⊥∠∠∠BAD=∠CAD,∠ADC=∠ADB=90°,AD=AD,∠∆BAD∠∆CAD,∠AC=AB=8,∠12AC∙BH=16ABCS∆=,∠BH=4,即BM MN+的最小值是4.故选A.【点睛】本题考查的是最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,化两条线段的和的最小值为一条垂线段的长.7.下列命题中,是假命题的是()A.两条直角边对应相等的两个直角三角形全等;B.每个命题都有逆命题;C.每个定理都有逆定理;D.在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.【答案】C【分析】根据全等三角形的判定,命题与定理及角平分线的判定等知识一一判断即可.【详解】解:A.两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是正确;B、每个命题都有逆命题,所以B选项正确;C、每个定理不一定有逆定理,所以C选项错误;D、在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上,正确.故选C.【点睛】本题考查了全等三角形的判定,命题与定理以及角平分线的判定方法,熟练利用这些判定定理是解题关键.8.如图,OC为∠AOB的平分线,CM∠OB,COM的面积为9,OM=6,则点C到射线OA的距离为()A.9B.6C.3D.4.5【答案】C【分析】作CN∠OA,利用面积求出CM,根据角平分线的性质定理可得CN=CM,即可得答案.【详解】解:过点C作CN∠OA,∠CM∠OB,COM的面积为9,OM=6,∠S∠COM=11OM CM=6CM=9 22⨯⨯⨯,∠CM=3,∠OC为∠AOB的平分线,CN∠OA,CM∠OB,∠CN=CM=3.故选C.【点睛】本题考查了三角形面积,角平分线的性质,角平分线上的点,到角两边的距离相等;熟练掌握角平分线的性质和面积公式是解题关键.9.如图,AE与BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法正确的是()∠=∠A.BAE GCEB.点O到ABC三边的距离相等==C.AO BO CO==D.OG OE OF【答案】B【分析】根据三角形角平分线的性质:三角形三条角平分线交于一点,且到三边的距离相等可以作判断.【详解】解:根据作图痕迹可知AE和BF为∠ABC的角平分线,O为交点,根据三角形三条角平分线交于一点,且到三边的距离相等可知点O到ABC三边的距离相等,故B选项正确,符合题意,其它选项皆不符合题意.故选:B.【点睛】本题考查了基本作图-角的平分线、角平分线的性质,明确三角形的角平分线交于同一点,且交点到三边的距离相等.10.如图,∠ABC和∠ADE是等腰直角三角形,且∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.则下列结论不正确的是()A.BD=CE B.BD∠CE C.AF平分∠CAD D.∠AFE=45°【答案】C【分析】作AM∠BD于M,AN∠EC于N,设AD交EF于O.证明∠BAD∠∠CAE,利用全等三角形的性质一一判断即可.【详解】解:如图,作AM ∠BD 于M ,AN ∠EC 于N ,设AD 交EF 于O .∠∠BAC =∠DAE =90°,∠∠BAD =∠CAE ,在∠BAD 与∠CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∠∠BAD ∠∠CAE (SAS ),∠EC =BD ,∠BDA =∠AEC ,故A 正确,∠∠DOF =∠AOE ,∠∠DFO =∠EAO =90°,∠BD ∠EC ,故B 正确,∠∠BAD ∠∠CAE ,AM ∠BD ,AN ∠EC ,∠AM =AN ,∠F A 平分∠EFB ,∠∠AFE =45°,故D 正确,若C 成立,则∠EAF =∠BAF ,∠∠AFE =∠AFB ,∠∠AEF =∠ABD =∠ADB ,推出AB =AD ,由题意知,AB 不一定等于AD ,所以AF 不一定平分∠CAD ,故C 错误,故选:C .【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,在OAB 和∠OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,连接OM .下列结论:∠AC BD =;∠40AMB ∠=︒;∠OM 平分BOC ∠;∠MO 平分BMC ∠.其中一定正确的为( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠【答案】B【分析】由SAS 证明∠AOC∠∠BOD 得出∠OCA=∠ODB ,AC=BD 即可判断∠;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,即可判断∠;作OG∠MC 于G ,OH∠MB 于H ,则∠OGC=∠OHD=90°,由AAS 证明∠OCG∠∠ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,即可判断∠;由∠AOB=∠COD ,得出当∠DOM=∠AOM 时,OM 平分∠BOC ,假设∠DOM=∠AOM ,由∠AOC∠∠BOD 得出∠COM=∠BOM ,由MO 平分∠BMC 得出∠CMO=∠BMO ,推出∠COM∠∠BOM ,得OB=OC ,而OA=OB ,所以OA=OC 即可判断∠;【详解】∠ ∠AOB=∠COD=40°,∠∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD , 在∠AOC 和∠BOD 中,OA OB OC ODAOC BOD =⎧⎪=⎨⎪∠=∠⎩, ∠∠AOC∠∠BOD (SAS ),∠∠OCA=∠ODB ,AC=BD ,故∠正确;∠∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,∠∠AMB=∠AOB=40°,故∠正确;作OG∠MC于G,OH∠MB于H,如图所示:则∠OGC=∠OHD=90°,在∠OCG和∠ODH中OCA ODBOGC OHD OC OD∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ ∠OCG∠∠ODH(AAS),∠OG=OH,∠MO平分∠BMC,故∠正确;∠∠AOB=∠COD,∠当∠DOM=∠AOM时,OM平分∠BOC,假设∠DOM=∠AOM,∠∠AOC∠∠BOD∠∠COM=∠BOM,∠MO平分∠BMC∠∠CMO=∠BMO,在∠COM和∠BOM中,COM BOMOM OMCMO BMO∠∠⎧⎪=⎨⎪∠=∠⎩,∠∠COM∠∠BOM(ASA)∠OB=OC,∠OA=OB,∠OA=OC与OA>OC矛盾,故∠错误;【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,角平分线的判定等知识,证明三角形全等是解题的关键;.12.如图,在四边形ABCD 中,90A BDC ∠=∠=︒,C ADB ∠=∠,点P 是BC 边上的一动点,连接DP ,若3AD =,则DP 的长不可能是( )A .2B .3C .4D .5【答案】A【分析】 由三角形的内角和定理和角的和差求出∠ABD =∠CBD ,角平分线的性质定理得AD =DH ,垂线段定义证明DH 最短,求出DP 长的最小值为3,即可得到正确答案 .【详解】过点D 作DH∠BC 交BC 于点H ,如图所示:∠∠A=∠BDC=90° ,又∠∠C +∠BDC +∠DBC =180°,∠ADB +∠A +∠ABD =180°,∠∠ABD =∠CBD ,∠BD 是∠ABC 的角平分线,又∠AD∠AB ,DH∠BC ,∠AD =DH ,∠DH =3,∠当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长等于3,即DP 长的最小值为3,故DP 的长不可能是2,故选:A .【点睛】本题综合考查了三角形的内角和定理,角的和差,角平分线的性质定理,垂线段的定义等知识点,重点掌握角平分线的性质定理,难点是作垂线段找线段的最小值.13.如图,在ABC 中,90C ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,若1CD =,4AB =,则ABD △的面积是( )A .2B .4C .6D .8【答案】A【分析】 由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC=1,根据公式可求面积.【详解】解:由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC ,1CD =,4AB =,所以,ABD △的面积为:141=22⨯⨯, 故选:A .【点睛】本题考查了角平分线的画法和性质,解题关键是知道AD 是角平分线,并根据角平分线的性质求出高. 14.如图,在∠ABC 中,AD 平分∠BAC ,过B 点作BE∠AD 于E ,过E 作EF //AC 交AB 于F ,则( )A .不确定B .AF=BFC .AF >BFD .AF <BF【答案】B【分析】 根据角平分线的定义和两直线平行,内错角相等的性质得到FAE FEA ∠=∠,即可得到AF=EF ,再根据BE∠AD ,得到90AEB =︒∠,再根据等角的余角相等得到ABE BEF ∠=∠,根据等边对等角的性质得到BF=EF ,即可得解;【详解】∠AD 平分∠BAC ,EF //AC ,∠FAE FEA ∠=∠,∠AF=EF ,∠BE∠AD ,∠90FAE ABE ∠+=︒,90AEF BEF ∠+∠=︒,∠ABE BEF ∠=∠,∠BF=EF ,∠AF=BF ;故答案选B .【点睛】本题主要考查了平行线的性质、三角形的角平分线,准确分析证明是解题的关键.15.如图AD 是ABC 的角平分线,DE AB ⊥于E ,点F ,G 分别是AB ,AC 上的点,且DF DG =,ADG 与DEF 的面积分别是10和3,则ADF 的面积是( )A .4B .5C .6D .7【答案】A【分析】 过点D 作DH∠AC 于H ,根据角平分线上的点到角的两边距离相等可得DF=DH ,然后利用“HL”证明Rt∠DEF 和Rt∠DGH 全等,根据全等三角形的面积相等可得S ∠EDF =S ∠GDH ,然后根据S ∠ADF =S ∠ADH 列出方程求解即可.【详解】解:如图,过点D 作DH∠AC 于H ,∠AD 是∠ABC 的角平分线,DF∠AB ,DH∠AC∠DF=DH ,在Rt∠DEF 和Rt∠DGH 中,DE DG DF DH ⎧⎨⎩== , ∠Rt∠DEF∠Rt∠DGH (HL ),∠S ∠EDF =S ∠GDH =3,同理Rt∠ADF∠Rt∠ADH ,∠S ∠ADF =S ∠ADH =ADG GDH △△S -S =10-3=7∠S ∠AED = =7-3=4ADF EDF SS -,故选:A .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.16.如图,AB∠CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD∠AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .5【答案】A【分析】 当EP∠BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可. 【详解】解:当EP∠BC 时,EP 最短,∠AB∠CD ,AD∠AB ,∠AD∠CD ,∠BE 平分∠ABC ,AE∠AB ,EP∠BC ,∠EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】 本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键. 17.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .5【答案】D【分析】过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,则CM 即为CF EF +的最小值,再根据三角形的面积公式求出CM 的长,即为CF EF +的最小值.【详解】解:过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,BD 平分ABC ∠,'MF AB ⊥于点M ,''F E BC ⊥于'E ,'''MF F E ∴=,'''''CM CF MF CF E F ∴=+=+的最小值.三角形ABC 的面积为10,4AB =, ∴14102CM ⨯⋅=,21054CM ⨯∴==. 即CF EF +的最小值为5,故选:D .【点睛】本题考查的是轴对称-最短路线问题,根据题意作出辅助线是解题的关键.18.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°【答案】A【分析】 根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∠O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∠点O 是三角形三条角平分线的交点,∠∠BAC=70°,∠∠ABC+∠ACB=180°-70°=110°, ∠∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在∠OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用.19.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .64【答案】B【分析】 过O 作OE ∠AB 于E ,OF ∠AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ∠AB 于E ,OF ∠AC 于F ,连接OA ,∠点O 为∠ABC 与∠ACB 的平分线的交点,OD ∠BC 于D ,OD =4,∠OE =OD =4,OF =OD =4,∠AB +AC =16,∠四边形ABOC 的面积S =S ∠ABO +S ∠ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.20.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠D .PC PE = 【答案】D根据角平分线的性质定理判断A 选项;证明∠OPC∠∠OPD 判断B 选项;根据∠OPC∠∠OPD 即可判断C 选项;证明∠DPE∠∠CPF 判断D 选项.【详解】∠OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∠PC=PD ,故A 选项正确;∠∠ODP=∠OCP=90︒,又∠OP=OP ,PC=PD ,∠Rt∠OPC∠Rt∠OPD ,∠OC=OD ,故B 选项正确;∠∠OPC∠∠OPD ,∠CPO DPO ∠=∠,故C 选项正确;∠∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∠∠DPE∠∠CPF ,∠PE=PF ,∠PF>PC ,∠PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键. 21.如图所示,已知AB∠CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm【答案】B过点O作MN,MN∠AB于M,证明MN∠CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度,再把它们求和即可.【详解】如图,过点O作MN,MN∠AB于M,交CD于N,∠AB∠CD,∠MN∠CD,∠AO是∠BAC的平分线,OM∠AB,OE∠AC,OE=3cm,∠OM=OE=3cm,∠CO是∠ACD的平分线,OE∠AC,ON∠CD,∠ON=OE=3cm,∠MN=OM+ON=6cm,即AB与CD之间的距离是6cm,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:∠角的平分线上的点到角的两边的距离相等,∠从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,∠平行线间的距离处处相等.22.下列命题的逆命题是假命题的是()A.直角三角形两锐角互余B.全等三角形对应角相等C.两直线平行,同位角相等D.角平分线上的点到角两边的距离相等【答案】B【分析】先分别写出这些定理的逆命题,再进行判断即可.【详解】解:A .直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B .全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C .两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D .角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题. 故选:B .【点睛】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题. 23.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,E 是边AB 上一点,若6CD =,则DE 的长可以是( )A .1B .3C .5D .7【答案】D【分析】 过点D 作DF AB ⊥于点F ,根据角平分线的性质定理得6CD DF ==,而DE 的长一定是大于等于点D 到AB 的距离也就是DF 的长,即可得出结果.【详解】解:如图,过点D 作DF AB ⊥于点F ,∠AD 平分BAC ∠,DF AB ⊥,90C ∠=︒,∠6CD DF ==,∠DE DF ≥,∠6DE ≥,则只有D 选项符合.故选:D .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质定理.24.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 【答案】B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∠点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∠点P 到OB 的距离为5,∠点Q 是OB 边上的任意一点,∠PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键. 25.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACDS :S 为( )A .5:4B .5:3C .4:3D .3:4【答案】B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∠AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∠DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=,∠AB 5=, ∠ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∠ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键. 26.如图,OB 平分∠MON ,A 为OB 的中点,AE∠ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .12【分析】根据两条平行线之间的距离可知当CD ∠OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ∠OM 时,CD 取最小值,∠OB 平分∠MON ,AE ∠ON 于点E ,CD ∠OM ,∠AD =AE =3,∠BC ∠OM ,∠∠DOA =∠B ,∠A 为OB 中点,∠AB =AO ,在∠ADO 与∠ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠ADO ∠∠ABC (SAS ),∠AC =AD =3,∠336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.27.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .9【分析】求出DE的值,代入面积公式得出关于AB的方程,求出即可.【详解】解:∠AD平分∠BAC,DE∠AB,DF∠AC,∠DE=DF=2,∠S∠ABC=S∠ABD+S∠ACD,∠12=12×AB×DE+12×AC×DF,∠24=AB×2+3×2,∠AB=9,故选:D.【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.28.如图,点O是∠ABC中∠BCA,∠ABC的平分线的交点,已知∠ABC的面积是12,周长是8,则点O到边BC的距离是()A.1B.2C.3D.4【答案】C【分析】过点O作OE∠AB于E,OF∠AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据∠ABC 的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE∠AB于E,OF∠AC于F,连接OA.∠点O 是∠ABC ,∠ACB 平分线的交点,∠OE =OD ,OF =OD ,即OE =OF =OD∠S ∠ABC =S ∠ABO +S ∠BCO +S ∠ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×OD×(AB +BC +AC )=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.29.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒【答案】A【分析】 由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠A .【详解】解:∠点O 到ABC 三边的距离相等,∠BO 平分ABC ∠,CO 平分ACB ∠,∠ ()180A ABC ACB ∠=︒-∠+∠()=︒-∠+∠1802OBC OCB()1802180BOC=︒-⨯︒-∠()=︒-⨯-︒1802180110︒=︒.40故选A.【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键.30.如图,在∠ABC中,点E和F分别是AC,BC上一点,EF∠AB,∠BCA的平分线交AB于点D,∠MAC 是∠ABC的外角,若∠MAC=α,∠EFC=β,∠ADC=γ,则α、β、γ三者间的数量关系是()A.β=α+γB.β=2γ﹣αC.β=α+2γD.β=2α﹣2γ【答案】B【分析】根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD,根据∠ADC是∠BDC的外角,得到∠ADC=∠B+∠BCD,由三角形外角的性质得到∠MAC=∠B+∠ACB,于是得到结果.【详解】解:∠EF∠AB,∠EFC=β,∠∠B=∠EFC=β,∠CD平分∠BCA,∠∠ACB=2∠BCD,∠∠ADC是∠BDC的外角,∠∠ADC=∠B+∠BCD,∠∠ADC=γ,∠∠BCD=γ-β,∠∠MAC是∠ABC的外角,∠∠MAC=∠B+∠ACB ,∠∠MAC=α,∠α=β+2(γ-β),∠β=2γ-α,故选:B .【点睛】本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键. 31.如图,已知AE 平分∠BAC ,BE∠AE 于E ,ED∠AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°【答案】B【分析】 根据角平分线的性质和平行线的性质计算即可;【详解】∠AE 平分∠BAC ,∠BAE =34°,∠34EAC ∠=︒,∠ED∠AC ,∠18034146AED ∠=︒-︒=︒,∠BE∠AE ,∠90AEB =︒∠,∠36090146124BED ∠=︒-︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键 。
题(有答案)三角形高中线角平分线专项练习30题(有答案)1.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).2.如图,AD为△ABC的中线,BE为三角形ABD中线,中线,的度数;(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;边上的高;(2)在△BED中作BD边上的高;边的距离为多少?(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,的长.求AB和AC的长.4.如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求的大小.∠B的大小.5.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.的大小.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.是否相等?若相等,请说明理由.6.在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.的度数.7.在△ABC中.中.(如图)(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC= _________°,再用你已学过的数学知识加以说明.,再用你已学过的数学知识加以说明.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=_________°.8.在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.的交点.的度数.求∠ABE、∠ACF和∠BHC的度数.9.如图,△ACB中,∠ACB=90°,∠1=∠B.的高;(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.的长.10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.的度数.11.如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.的平分线.(1)求∠DAE的度数;的度数;是哪几个三角形的高.(2)指出AD是哪几个三角形的高.12.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,的度数.求∠ABE、∠ACF和∠BHC的度数.13.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线为角平分线的度数;(1)求∠EAD的度数;的关系并说明理由.(2)寻找∠DAE与∠B、∠C的关系并说明理由.14.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.的度数.15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,的角平分线,的度数.(1)若∠B=47°,∠C=73°,求∠DAE的度数.的代数式表示)(2)若∠B=α°,∠C=β°(α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,在△ABC中,AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.的度数.17.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.18.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?确吗?为什么?19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.长.20.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)之间有何数量关系,请写出来,并说明其中的道理.(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.40°60°90°120°∠BAC的度数的度数∠BIC的度数∠BDI的度数21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA 的度数.的度数.22.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:是高,填空:(1)BE=_________=_________(2)∠BAD=__________________(3)∠AFB=_________=90°(4)S△ABC=_________S△ABE.23.如图,BM是△ABC的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长是差是多少?的周长是差是多少?24.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.的长.25.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?的边长的差吗?26.如图,在△ABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由.,请说明理由.27.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.的角平分线,对吗?说明理由.28.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,的长.求AC的长.29.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.的长.30.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.的周长的差.参考答案:1.(1)∵∠B=70°,CD ⊥AB 于D , ∴∠BCD=90°﹣70°=20°,在△ABC 中,∵∠A=30°,∠B=70°, ∴∠ACB=180°﹣30°﹣70°=80°, ∵CE 平分∠ACB , ∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE ﹣∠BCD=40°﹣20°=20°, ∴∠BCD=∠ECD ;(2)∵CD ⊥AB 于D ,DF ⊥CE 于F , ∴∠CED=90°﹣∠ECD=90°﹣20°=70°, ∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B 相等的角有:∠CED 和∠CDF . 2.(1)∵∠BED 是△ABE 的一个外角,的一个外角, ∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF 即是△BED 中BD 边上的高.边上的高. (3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线, ∴S △BED =S △ABC =×60=15; ∵BD=5,∴EF=2S △BED ÷BD=2×15÷5=6, 即点E 到BC 边的距离为6.3.∵AD 是BC 边上的中线,边上的中线, ∴BD=CD ,∴△ABD 的周长﹣△ADC 的周长=(AB+AD+BD )﹣(AC+AD+CD )=AB ﹣AC=4,(2分)分) 即AB ﹣AC=4①, 又AB+AC=14②, ①+②得.2AB=18, 解得AB=9,②﹣①得,2AC=10, 解得AC=5,∴AB 和AC 的长分别为:AB=9,AC=5. 4.∵DE 是CA 边上的高,边上的高, ∴∠DEA=∠DEC=90°, ∵∠A=20°,∴∠EDA=90°﹣20°=70°, ∵∠EDA=∠CDB ,∴∠CDE=180°﹣70°×2=40°,在Rt △CDE 中,∠DCE=90°﹣40°=50°, ∵CD 是∠BCA 的平分线,的平分线,∴∠BCA=2∠DCE=2×50°=100°,在△ABC 中,∠B=180°﹣∠BCA ﹣∠A=180°﹣100°﹣20°=60°.故答案为:60 5.(1)∵∠B=30°,∠C=70° ∴∠BAC=180°﹣∠B ﹣∠C=80° ∵AE 是角平分线,是角平分线, ∴∠EAC=∠BAC=40°∵AD 是高,∠C=70° ∴∠DAC=90°﹣∠C=20°∴∠EAD=∠EAC ﹣∠DAC=40°﹣20°=20°;(2)由(1)知,∠EAD=∠EAC ﹣∠DAC=∠BAC ﹣(90°﹣∠C )①把∠BAC=180°﹣∠B ﹣∠C 代入①,整理得,整理得 ∠EAD=∠C ﹣∠B ,∴2∠EAD=∠C ﹣∠B .6.∵AD 是高,∠C=60°,∴∠CAD=90°﹣∠C=90°﹣60°=30°; ∵∠B=20°,∠C=60°,∴∠BAC=180°﹣∠B ﹣∠C=180°﹣20°﹣60°=100°, ∵AE 是角平分线,是角平分线, ∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAE ﹣∠CAD=50°﹣30°=20°. 7.(1)∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°, 又∵∠BAC=60°,∴∠ABD=180°﹣∠ADB ﹣∠A=180°﹣90°﹣60°=30°, ∴∠BOC=∠EBD+∠BEO=90°+30°=120°; (2)如图所示:)如图所示:∠BAC+∠BOC=180°;理由如下:∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°,∵∠ABD=180°﹣∠ADB ﹣∠BAD=180°﹣90°﹣∠BAD=90°﹣∠BAD ,∠O=180°﹣∠BEO ﹣∠DBA=90°﹣∠DBA=90°﹣(90°﹣∠BAD )=∠BAD , ∵∠BAC=180°﹣∠DAB , ∴∠BAC=180°﹣∠O , ∴∠BAC+∠O=180°; (3)由(1)(2)可得∠BAC+∠BOC=180°.8.∵BE是AC上的高,上的高,∴∠AEB=90°,∵∠ABC=60°,∠ACB=50°,∴∠A=180°﹣60°﹣50°=70°,∴∠ABE=180°﹣90°﹣70°=20°,∵CF是AB上的高,上的高,∴∠AFC=90°,∴∠ACF=180°﹣90°﹣70°=20°,∵∠ABE=20°,∴∠EBC=∠ABC﹣∠ABE=60°﹣20°=40°,∵∠ACF=20°,∠ACB=50°,∴∠BCH=30°,∴∠BHC=180°﹣40°﹣30°=110°.9.(1)∵∠1+∠BCD=90°,∠1=∠B ∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC •BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===10.∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC ∴∠BAE=15°∴∠AED=∠B+∠BAE=41°11.(1)∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD=30°,∴∠BAC=50°+30°=80°,∵AE是∠BAC的平分线,的平分线,∴∠BAE=40°,∴∠DAE=50°﹣40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.的高.12.∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.13.(1)∵在△ABC中,∠BAC=180°﹣∠C﹣∠B=180°﹣20°﹣60°=100°,又∵AE为角平分线,为角平分线,∴∠EAB=∠BAC=50°,在直角△ABD中,∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠EAB﹣∠BAD=50°﹣30°=20°;(2)根据(1)可以得到:∠EAB=∠BAC=(180°﹣∠B﹣∠C)∠BAD=90°﹣∠B,则∠EAD=∠EAB﹣∠BAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠B )=(∠B﹣∠C).14.∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°15.(1)∵∠B=47°,∠C=73°,∴∠BAC=180°﹣47°﹣73°=60°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣47°=43°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=30°,∴∠DAE=∠BAD﹣∠BAE=43°﹣30°=13°;(2))∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣α°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=(180°﹣α°﹣β°),∴∠DAE=∠BAD﹣∠BAE=90°﹣α°﹣(180°﹣α°﹣β°),=90°﹣α°﹣90°+α°+β°,=(β﹣α)°16.∵∠B=60°,∠C=45°,∴∠BAC=180°﹣60°﹣45°=75°,∵AD为∠BAC的角平分线,的角平分线,∴∠BAD=∠CAD=∠BAC=37.5°,在△ABD 中,∠ADB=180°﹣∠BAD ﹣∠B=82.5°, 则∠ADC=180°﹣∠ADB=97.5°. 17.∵∠ACB=90°, ∴∠1+∠3=90°, ∵CD ⊥AB , ∴∠2+∠4=90°,又∵BE 平分∠ABC , ∴∠1=∠2, ∴∠3=∠4, ∵∠4=∠5, ∴∠3=∠5,即∠CFE=∠CEF.18.(1)在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣50°﹣80°=50°; ∵AD 是角平分线,是角平分线, ∴∠DAC=∠BAC=25°;在△ADC 中,∠ADC=180°﹣∠C ﹣∠DAC=75°; 在△ADE 中,∠DAE=180°﹣∠ADC ﹣AED=15°. (2)∠DAE=180°﹣∠ADC ﹣AED=180°﹣∠ADC ﹣90°=90°﹣∠ADC=90°﹣(180°﹣∠C ﹣∠DAC )=90°﹣(180°﹣∠C ﹣∠BAC )=90°﹣[180°﹣∠C ﹣(180°﹣∠B ﹣∠C )]=(∠C ﹣∠B ). (3)(2)中的结论仍正确.)中的结论仍正确.∠A ʹDE=∠B+∠BAD=∠B+∠BAC=∠B+(180°﹣∠B ﹣∠C )=90°+∠B ﹣∠C ;在△DA ʹE 中,∠DA ʹE=180°﹣∠A ʹED ﹣∠A ʹDE=180°﹣90°﹣(90°+∠B ﹣∠C )=(∠C ﹣∠B ). 19.∵AB=6cm ,AD=5cm ,△ABD 周长为15cm , ∴BD=15﹣6﹣5=4cm , ∵AD 是BC 边上的中线,边上的中线, ∴BC=8cm ,∵△ABC 的周长为21cm , ∴AC=21﹣6﹣8=7cm . 故AC 长为7cm . 20.(1)填写表格如下:)填写表格如下:∠BAC 的度数40° 60° 90°120° ∠BIC 的度数的度数 110°120°135°150°∠BDI 的度数110° 120° 135°(2)∠BIC=∠BDI ,理由如下:,理由如下:∵△ABC 的三条内角平分线相交于点I , ∴∠BIC=180°﹣(∠IBC+∠ICB ) =180°﹣(∠ABC+∠ACB ) =180°﹣(180°﹣∠BAC ) =90+∠BAC ; ∵AI 平分∠BAC , ∴∠DAI=∠DAE . ∵DE ⊥AI 于I , ∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC . ∴∠BIC=∠BDI .21.∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°, 又∵AD 是高,是高, ∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°, ∵AE 、BF 是角平分线,是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°, ∴∠DAE=∠DAC ﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°, ∴∠DAC=30°,∠BOA=120°. 故∠DAE=5°,∠BOA=120°. 22.(1)∵AE 是中线,是中线, ∴BE=CE=BC , (2)∵AD 是角平分线,是角平分线, ∴∠BAD=∠CAD=∠BAC , (3)∵AF 是高,是高,∴∠AFB=∠AFC=90°,(4)S △ABC =,S △ABE =,∵BC=2BE,∴S△ABC=2S△ABE,故答案为CE,BC,∠CAD,∠BAC,∠AFC,2 23.∵BM是△ABC的中线,的中线,∴MA=MC,∴C△ABM﹣C△BCM=AB+BM+MA﹣BC﹣CM﹣BM =AB﹣BC=5﹣3=2cm.答:△ABM与△BCM的周长是差是2cm.24.方法1:由题意知:AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得:2AB+2AD+BC=60③,③﹣①得:2AD=26,∴AD=13cm.方法2:∵AB=AC,D是中点,且AB+AC+BC=34,∴BD=BC,AB=(AB+AC),∴AB+BD=(AB+AC)+BC=(AB+AC+BC)=17cm (周长的一半).∵AB+BD+AD=30cm,AD=30﹣17=13cm.25.能..能.由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD﹣(AB+BD+AD)=AC﹣AB=5.即AC与AB的边长的差为5 26.∵AD是BC边上的中线,∴BD=DC,∵AC=AB,AD=AD,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.27.错误..错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.的平分线.28.∵AD是BC边上的中线,边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.29.∵AD是△ABC的中线,AE是△ACD的中线,的中线, ∴BD=CD=2DE=4cm,∴BE=BD+DE=6cm,∴BC=2BD=8cm.30.∵AD是△ABC中BC边上的中线,边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=1.。
尺规作图:角平分线专项训练一.选择题(共8小题)1.数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB于D,E两点;(2)分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点C;(3)作射线OC并连接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE2.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上.A.0 B.1 C.2 D.35.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.O、E两点关于CD所在直线对称D.C、D两点关于OE所在直线对称6.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是()A.20°B.25°C.30°D.40°7.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a﹣1,b),则a与b的数量关系为()A.3a+b=1 B.3a+b=﹣1 C.3a﹣b=1 D.a=b8.如图,AE与BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.CG也是△ABC的一条内角平分线C.AO=BO=CO D.点O到△ABC三边的距离相等二.填空题(共3小题)9.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为.11.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB 的大小为度.三.解答题(共4小题)12.如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.13.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.14.在学完全等三角形后,李老师给出了下列题目:求证:角的内部到角的两边距离相等的点在角的平分线上.已知:求证:证明:15.在本学期我们学习了角平分线的性质定理和判定定理,那么,你还是否记得它们的具体内容.(1)请把下面两个定理所缺的内容补充完整:角平分线性质定理:角平分线上的点到的距离相等.角平分线判定定理:到角的两边距离相等的点在.(2)老师在黑板上画出了图形,把判定定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整已知:如图1,点P是∠AOB内一点,PD⊥AO,PE⊥OB,垂足分别为D、E,且PD=,求证:点P在∠AOB的上(3)请你完成证明过程:(4)知识运用:如图2,三条公路两两相交,现在要修建一加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有处.尺规作图:角平分线专项训练参考答案与试题解析一.选择题(共8小题)1.数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB于D,E两点;(2)分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点C;(3)作射线OC并连接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE【分析】利用画法可判定OE=OD,CE=CD,则根据“SSS”可判定△OCE≌△OCD,于是可对A、B、C进行判断;然后根据线段垂直平分线的判定方法可对D进行判断.【解答】解:由作法得OE=OD,CE=CD,而OC为公共边,所以可根据“SSS”可判定△OCE≌△OCD,所以∠1=∠2,S△OCE=S△OCD,因为OE=OD,CE=CD,所以OC垂直平分DE.故选C.2.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据作图得出符合全等三角形的判定定理SSS,即可得出答案.【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选D.3.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上.A.0 B.1 C.2 D.3【分析】由角平分线的作法可知AD是BAC的平分线,由直角三角形两锐角互余可知∠CAB=60°,从而可知∠BAD=30°,由此可将∠BAD=∠B=30°,从而得到AD=DB,根据到线段两端距离相等的点在线段的垂直平分线上可判断③;由三角形的外角的性质可知∠ADC=∠B+∠BAD可判断.【解答】解:由角平分线的作法可知①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°.∵AD是∠BAC的平分线,∴∠BAD=30°.∴∠BAD=∠B=30°.∴AD=DB.∴点D在AB的垂直平分线上.∴③正确.∵∠ADC=∠B+∠BAD,∴∠ADC=30°+30°=60°.故②正确.故选:D.5.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.O、E两点关于CD所在直线对称D.C、D两点关于OE所在直线对称【分析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图不能得出CD平分OE,判断C错误;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE 是CD的垂直平分线,判断D正确.【解答】解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意;D、根据作图得到OC=OD,射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;故选C.6.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是()A.20°B.25°C.30°D.40°【分析】根据题意可得AH平分∠CAB,再根据平行线的性质可得∠CAB的度数,再根据角平分线的性质可得答案.【解答】解:由题意可得:AH平分∠CAB,∵AB∥CD,∴∠C+∠CAB=180°,∵∠ACD=140°,∴∠CAB=40°,∵AH平分∠CAB,∴∠HAB=20°,∴∠AHC=20°.故选A.7.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a﹣1,b),则a与b的数量关系为()A.3a+b=1 B.3a+b=﹣1 C.3a﹣b=1 D.a=b【分析】由题意知点P在第二象限角平分线上,即可得3a﹣1=﹣b,从而得出答案.【解答】解:由题意知,点P在第二象限角平分线上,∴3a﹣1=﹣b,则3a+b=1,故选:A.8.如图,AE与BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.CG也是△ABC的一条内角平分线C.AO=BO=CO D.点O到△ABC三边的距离相等【分析】根据三角形角平分线的性质:三角形三条角平分线交于一点,且到三边的距离相等可以作判断.【解答】解:A、由尺规作图的痕迹可知:AE、BF是△ABC的内角平分线,所以选项A正确;B、根据三角形三条角平分线交于一点,且点O在CG上,所以CG也是△ABC的一条内角平分线,所以选项B正确;C、三角形三边中垂线的交点到三个顶点的距离相等,所以选项C不正确;D、因为角平分线的点到角两边的距离相等得:点O到△ABC三边的距离相等,所以选项D正确;本题选择说法不正确的,故选C.二.填空题(共3小题)9.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°。
12.3.2角的平分线的判定夯实基础篇一、单选题:1.在ABC 中,AB BC =,两个完全一样的三角尺按如图所示摆放.它们一组较短的直角边分别在AB ,BC 上,另一组较长的对应边的顶点重合于点P ,BP 交边AC 于点D ,则下列结论错误的是()A .BP 平分ABC∠B .AD DC =C .BD 垂直平分ACD .2AB AD=【答案】D【知识点】等腰三角形的性质;角平分线的判定【解析】【解答】解:如图.由题意得,PE ⊥AB ,PF ⊥BC ,PE =PF ,∴BP 平分∠ABC ,∵AB =BC ,∴AD =DC ,BD ⊥AC ,即BD 垂直平分AC ,故A 、B 、C 三个选项正确,不符合题意;只有当△ABC 是等边三角形时,才能得出AB =2AD ,故选项D 错误,符合题意.故答案为:D.【分析】由题意得,PE ⊥AB ,PF ⊥BC ,PE =PF ,根据角平分线的判定可得BP 平分∠ABC ,然后结合等腰三角形的三线合一可推出AD =DC ,BD 垂直AC ,据此判断即可.2.如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =P B.则对点P 位置的判断,正确的是()A .P 为∠A 、∠B 两角平分线的交点B .P 为∠A 的角平分线与AB 的垂直平分线的交点C .P 为AC 、AB 两边上的高的交点D .P 为AC 、AB 两边的垂直平分线的交点【答案】B【知识点】线段垂直平分线的判定;角平分线的判定【解析】【解答】解: P 到∠A 的两边的距离相等,∴P 在∠A 的角平分线上,PA =PB ,∴P 在线段AB 的垂直平分线上,故P 为∠A 的角平分线与AB 的垂直平分线的交点,故答案为:B.【分析】根据角平分线的判定、线段垂直平分线的判定进行解答即可.3.如图,已知BD AE ⊥于点B ,DC AF ⊥于点C ,且DB DC =,40BAC ︒∠=,130ADG ︒∠=,则CDG ∠的度数为()A .30︒B .40︒C .50︒D .60︒【答案】D 【知识点】角平分线的判定;角平分线的定义【解析】【解答】∵BD ⊥AE 于B ,DC ⊥AF 于C ,且DB =DC ,∴AD 是∠BAC 的平分线,∵∠BAC =40°,∴∠CAD =12∠BAC =20°,∴∠CDA =90°-20°=70°,∵130ADG ︒∠=,∴∠CDG =∠ADG -∠CDA =130°-70°=60°.故答案为:D .【分析】根据角平分线的判定得出AD 是∠BAC 的平分线,得出∠CAD =12∠BAC =20°,从而求出∠CDA =70°,利用∠CDG =∠ADG -∠CDA ,即可求解.4.如图,在△AB C 中,∠B =42°,AD ⊥BC 于点D ,点E 是BD 上一点,EF ⊥AB 于点F ,若ED =EF ,则∠AEC 的度数为()A .60°B .62°C .64°D .66°【答案】D 【知识点】三角形内角和定理;三角形的外角性质;角平分线的判定【解析】【解答】∵∠B =42°,AD ⊥BC ,∴∠BAD =48°,∵ED =EF ,AD ⊥BC ,EF ⊥AB ,∴∠BAE =∠DAE =24°,∴∠AEC =∠B +∠BAE =66°,故答案为:D【分析】根据三角形的内角和得出∠BAD =48°,根据到角两边距离相等的点在这个角的角平分线上得出AE 平分∠BAD ,根据角平分线的定义得出∠BAE =∠DAE =24°,根据三角形的外角定理即可算出答案。
2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题12.2 角平分线的性质与尺规作图(专项拔高30题)考试时间:90分钟试卷满分:100分难度:0.52姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•兴城市期末)如图,△ABC中,AD是∠BAC的角平分线,DE⊥AC,F是BC中点,连接AF,若AB=4,AC=6,DE=3,则S△AFC为()A.7.5 B.12 C.15 D.302.(2分)(2022秋•涪陵区期末)如图,在△ABC中,∠ABC=90°,AD平分∠BAC交BC于点D,若BD=5cm,则点D到边AC的距离DE的长为()A.4cm B.5cm C.5.5cm D.6cm3.(2分)(2022秋•青秀区校级期末)如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质()A.SAS B.ASA C.AAS D.SSS4.(2分)(2022秋•镇江期末)如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知,BC=8,DE=2,则△BCE的面积等于()A.4 B.6 C.8 D.105.(2分)(2023•武安市二模)在正方形网格中,M,N,P,Q均是格点,∠AOB的位置如图所示,则到∠AOB 的两边距离相等的格点是()A.点M B.点N C.点P D.点Q6.(2分)(2023春•北林区期末)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,过点C 作CG⊥AB于点G,交AD于点E,过点D作DF⊥AB于点F,下列这些结论:①∠CED=∠CDE;②S△AEC:S=AC:AG;③∠ADF=2∠FDB;④CE=DF,其中正确的是()△AEGA.①②④B.②③④C.①③D.①②③④7.(2分)(2022秋•建昌县期末)如图,AD平分∠BAC,DE⊥AC于点E,S△ABC=8,DE=2,AC=4,则AB的长是()A.2 B.4 C.6 D.88.(2分)(2022秋•罗湖区期末)如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是∠ABC的平分线,BE交AD于点F,下面说法:①∠BAD=∠C;②AE=AF;③∠CAD=2∠CBE;④S△BCE=BC•AE.其中正确的说法有()个.A.1 B.2 C.3 D.49.(2分)(2023春•尉氏县期末)如图,Rt△ABC中,∠C=90°,BG平分∠ABC,交AC于点G,若CG=1,P为AB上一动点,则GP的最小值为()A.1 B.C.2 D.无法确定10.(2分)(2022秋•武汉期末)如图,在△ABC中,AD平分∠CAB,下列说法:①若CD:BD=2:3,则S△ACD:S△ABD=4:9;②若CD:BD=2:3,则AC:AB=2:3;③若∠C=90°,AC+AB=20,CD=3,则S△ABC=30;④若∠C=90°,AC:AB=5:13,BC=36,则CD=10.其中正确的是()A.①②B.②③C.①③④D.②③④评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•广东期末)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=4,DE=2,则S△ACD=.12.(2分)(2023春•武功县期末)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是.13.(2分)(2022秋•宝山区期末)在△ABC中,∠ABC和∠ACB的平分线交于点D,DE⊥BC于点E,如果DE =1,△ABC的面积是6,则△ABC的周长是.14.(2分)(2022秋•番禺区校级期末)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2.5,则PQ的最小值为.15.(2分)(2022秋•唐河县期末)如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=5,DC=6,则△ABD的面积为.16.(2分)(2023春•南海区校级期中)如图,OC平分∠AOB,点P在OC上,PD⊥OA于D,PD=3cm,点E 是射线OB上的动点,则PE的最小值为cm.17.(2分)(2022秋•龙潭区校级期末)如图,在△ABC中,BD是AC边上的高,AE平分∠BAC,交BD于点E,若AB=12,DE=5,则△ABE的面积为.18.(2分)(2022秋•雨花区期末)如图所示,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=10cm,AB=7cm,那么DE的长度为cm.19.(2分)(2022秋•黄岛区校级期末)如图,∠ABC=∠ACB,△ABC的内角∠ABC的角平分线BD与∠ACB 的外角平分线交于点D,△ABC的外角∠MBC的角平分线与CD的反向延长线交于点E,以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④BD平分∠ADC;⑤∠BAC+2∠BEC=180°.其中正确的结论有.(填序号)20.(2分)(2022春•菏泽期末)如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F 分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为.评卷人得分三.解答题(共10小题,满分60分)21.(4分)(2022秋•秦淮区期末)如图,在△ABC中,∠ACB、∠ABC的平分线l1、l2相交于点O.(1)求证:点O在∠BAC的平分线上;(2)连接OA,若AB=AC=5,BO=4,AO=2,则点O到三角形三条边的距离是.22.(4分)(2022秋•西丰县期末)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.23.(6分)(2021秋•渑池县期末)已知:如图,在△ABC中,∠ABC和∠ACB的角平分线相交于点P,且PE ⊥AB,PF⊥AC,垂足分别为E、F.(1)求证:PE=PF;(2)若∠BAC=60°,连接AP,求∠EAP的度数.24.(6分)(2021秋•右玉县校级期末)阅读并理解下面内容,解答问题.三角形的内心:定义:三角形的三条内角平分线相交于一点,这个点叫做三角形的内心.如图1,已知AM,BN,CP是△ABC的三条内角平分线.求证:AM,BN,CP相交于一点.证明:如图2,设AM,BN相交于点O,过点O分别作OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为D,E,F.∵点O是∠BAC的平分线AM上的一点,∴OE=OF(依据1),同理,OD=OF,∴OD=OE(依据2).∵CP是∠ACB的平分线,∴点O在CP上,(依据3).∴AM,BN,CP相交于一点.请解答以下问题:(1)上述证明过程中的“依据1”“依据2”“依据3”分别是指什么?(2)如果BC=a,AC=b,AB=c,OD=r,请用a,b,c,r表示△ABC的面积.25.(6分)(2023春•巴州区期中)如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD在直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=40°,求∠AOB的度数;(2)若OA平分∠BOE,求∠DOF的度数.26.(4分)(2022秋•江都区期末)如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.27.(6分)(2022秋•孝感期中)如图,在△ABC中,O为∠ABC,∠ACB的平分线的交点OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D,E,F.(1)求证:AO平分∠BAC;(2)若△ABC的周长是30,△ABC的面积为45,求OF的长.28.(8分)(2021秋•遂宁期末)如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC 于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.29.(8分)(2021秋•扶绥县期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.30.(8分)(2022秋•朝阳区校级期中)在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图1,当点D是BC边的中点时,S△ABD:S△ACD=;(2)如图2,当AD平分∠BAC时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m、n的式子表示);(3)如图3,AD平分∠BAC,延长AD到E.使得AD=DE,连接BE,若AC=3,AB=5,S△BDE=10,求S△ABC的值.。
角平分线专题训练1. 如图, 已知∠COB=3∠AOC, OD平分∠AOB, 且∠AOB=120°, 求∠COD的度数.2. OC, OD是分别从∠AOB的顶点O引出的两条射线, 若∠AOB=75°, ∠COB=45°并且OD平分∠AOC, 试求∠BOD的度数.3. 如图, 已知∠BOC=2∠AOB, OD平分∠AOC, ∠BOD=14°, 求∠AOB的度数.4. 如图, 已知∠AOE是平角, OD平分∠COE, OB平分∠AOC,∠COD:∠BOC=2:3, 求∠COD, ∠BOC的度数.5. 如图, 已知A.O、B三点在一条直线上, OC平分∠AOD, ∠AOC+∠EOB=90°, 试问: ∠DOE和∠EOB之间有怎样的关系?请说明理由.6. 如图, 已知∠BOC=2∠AOC, OD平分∠AOB, 且∠COD=20°, 求∠AOB的度数.7. 如图, 已知∠BOC=2∠AOC, OD平分∠AOB, 且∠BOC=84°, 求∠COD的度数.8. 如图, ∠AOC=140°, OD平分∠AOC, OE平分∠BOC.(1)求∠BOE的度数. (2)求∠DOE的度数.9. 已知: 如图, BD平分∠ABC, ∠ABD=3∠DBE, ∠ABE=40°, 求∠EBC的度数.10. 如图所示, 已知∠AOB=90°, ∠BOC=30°, OM平分∠AOC, ON平分∠BOC;(1)求∠MON;(2)∠AOB=α, ∠BOC=β, 求∠MON的度数.11. 如图, O为直线AB上一点, ∠AOC=50°, OD平分∠AOC, ∠DOE=90°(1)请你数一数, 图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.12. (1)如图, 已知∠AOB=90°, ∠BOC=30°, OM平分∠AOC, ON平分∠BOC, 求∠MON的度数.(2)若(1)中∠AOB=α°, 其它条件不变, 求∠MON的度数.(3)若(1)中∠BOC=β°(β为锐角), 其它条件都不变(∠AOB仍是90°), 求∠MON的度数.(4)从(1)(2)(3)的结果中能看出什么规律?。
角的平分线问题专项训练(30道)【题型1 单角平分线型】1.如图,已知∠AOB=90°,∠BOC=60°,OD平分∠AOC.求∠BOD的度数.2.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC 的度数.∠EOC,若∠DOE=3.如图,OB,OE是∠AOC内的两条射线,OD平分∠AOB,∠BOE=1255°,∠AOC=140°,求∠EOC的度数.4.如图,O是直线AB上的一点,∠AOE=∠FOD=90°,OB平分∠COD,且∠BOC=28°.(1)求∠DOE和∠BOF的度数;(2)求∠COE+∠DOE的度数.5.如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数;∠DOB,求∠AOC的度数.(2)如图2,若∠COE=136.如图,已知∠AOB﹣∠COD=60°,OB是∠DOE的平分线.设∠AOC的度数为x,(1)用含x的式子表示∠BOD的度数;(2)若∠DOE+∠AOC=97°16',求∠AOC的度数.7.如图,点A、O、C在一直线上,OE是∠BOC的平分线,∠EOF=90°,∠1比∠2大75°.(1)求∠2的度数.(2)求∠COF的度数.8.如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC;(填“互余”“相等”“互补”或“没有特殊关系”)(2)OF是∠BOC的平分线吗?为什么?(3)反向延长射线OA至G,∠COG与∠FOG的度数比为2:5,求∠AOD的度数.9.已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=10°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数;(3)试猜想∠AOM与∠NOC之间的数量关系,并说明理由.10.如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON 的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.【题型2 双角平分线(不交叉型)】11.如图,∠AOC:∠COD:∠DOB=3:4:5,OM平分∠AOC,ON平分∠DOB,且∠MON =96°,求∠AOB的度数.12.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD与∠EOC具有的数量关系并说明理由.13.如图,已知∠AOD=156°,∠DON=48°,射线OB,OM,ON在∠AOD内部,OM平分∠AOB,ON平分∠BOD.(1)求∠MON的度数;(2)若射线OC在∠AOD内部,∠NOC=23°,求∠COM的度数.14.已知:OC,OD是∠AOB内部的射线,OE平分∠AOC,OF平分∠BOD.(1)若∠AOB=120°,∠COD=30°,如图∠,求∠EOF的度数;(2)若∠AOB=α,∠COD=β,如图∠,如图∠,请直接用含α、β的式子表示∠EOF的大小;图∠结论:;图∠结论:.15.已知OD、OE分别是∠AOB、∠AOC的角平分线.(1)如图1,OC是∠AOB外部的一条射线.∠若∠AOC=32°,∠BOC=126°,则∠DOE=°;∠若∠BOC=164°,求∠DOE的度数;(2)如图2,OC是∠AOB内部的一条射线,∠BOC=n°,用n的代数式表示∠DOE的度数.16.如图,已知∠AOB内部有三条射线,若OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=100°,求∠EOC的度数;(2)若∠AOB=70°,如果将题中“平分”的条件改为∠EOA=14∠AOD,∠DOC=23∠DOB且∠DOE:∠DOC=3:2,求∠EOC的度数.17.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON 的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.18.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.19.将一副三角尺OAB与OCD进行如下按摆放,其中两三角尺的一顶点重合于点O,∠AOB =60°,∠COD=45°,OM平分∠AOD,ON平分∠COB.(1)当点D在OB边上时(如图1),求∠MON的度数;(2)当点D不在OB边上时(如图2或3),其中∠BOD=a,求∠MON的度数.20.已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【题型3 双角平分线(交叉型)】21.如图,O为直线AB上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,若∠BOC=54°,求∠COE和∠DOF的度数.22.如图,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)若∠AOB=100°,∠BOC=60°,求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).23.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,求∠MON的度数.(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=°.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?请说明理由.24.如图,∠AOC=5∠BOC,OD平分∠AOB,OE平分∠AOD,且∠COE=70°.(1)求∠AOB的度数;(2)若∠BOD+∠BOF=90°,求∠BOF的度数.25.如图,已知∠AOB是直角,∠BOC在∠AOB的外部,且OF平分∠BOC,OE平分∠AOC.(1)当∠BOC=60°时,求∠EOF的度数;(2)当∠BOE=20°,求∠BOC的度数.26.已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE.(1)如图1,若OC平分∠AOD,且∠BOE=3∠DOE,∠COE=70°,求∠BOE的度数.(2)如图2,若∠BOD:∠COD=3:2,过点O引射线OF平分∠COD,OE是∠BOC的平分线,且∠DOE=12°,求∠EOF的度数.27.已知:如图∠所示,OC是∠AOB内部一条射线,且OE平分∠AOC,OF平分∠BOC.(1)若∠AOC=80°,∠BOC=50°,则∠EOF的度数是.(2)若∠AOC=α,∠BOC=β,求∠EOF的度数,并根据计算结果直接写出∠EOF与∠AOB 之间的数量关系.(写出计算过程)(3)如图∠所示,射线OC在∠AOB的外部,且OE平分∠AOC,OF平分∠BOC.试着探究∠EOF与∠AOB之间的数量关系.(写出详细推理过程)28.如图,已知O为直线AD上一点,OB是∠AOC内部的一条射线且满足∠AOB与∠AOC 互补,OM,ON分别为∠AOC,∠AOB的平分线.(1)∠COD与∠AOB相等吗?请说明理由;(2)∠AOB=30°,试求∠MON的度数;(3)若∠MON=α,请直接写出∠AOC的度数.(用含α的式子表示)29.如图,已知∠AOB=58°,∠AOC在∠AOB外部,ON、OM分别平分∠AOC、∠BOC.(1)若∠AOC=32°,则∠MON=;(2)若∠AOC=n°(0<n<90°),ON、OM依旧分别平分∠AOC、∠BOC,∠MON的大小是否改变?;(3)试说明(2)的结论的理由.30.已知∠AOD=160°,OB为∠AOD内部的一条射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,∠MON的度数为;(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.。