第3章 第2节 第2课时 导数与函数的极值、最值-2022届高三数学一轮复习讲义(新高考)
- 格式:doc
- 大小:370.50 KB
- 文档页数:12
§3.3导数与函数的极值、最值考试要求 1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.1.函数的极值与导数条件f′(x0)=0x0附近的左侧f′(x)>0,右侧f′(x)<0x0附近的左侧f′(x)<0,右侧f′(x)>0图象极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点2.函数的最值与导数(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.微思考1.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的什么条件?提示必要不充分.2.函数的极大值一定大于极小值吗?提示不一定.函数的极大值可能大于、小于或等于函数的极小值.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f (x )在区间(a ,b )上不存在最值.( × ) (2)函数的极小值一定是函数的最小值.( × ) (3)函数的极小值一定不是函数的最大值.( √ ) (4)函数y =f ′(x )的零点是函数y =f (x )的极值点.( × ) 题组二 教材改编2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4 答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 3.当x >0时,ln x ,x ,e x 的大小关系是________. 答案 ln x <x <e x解析 构造函数f (x )=ln x -x ,则f ′(x )=1x -1,可得x =1为函数f (x )在(0,+∞)上唯一的极大值点,也是最大值点,故f (x )≤f (1)=-1<0,所以ln x <x .同理可得x <e x ,故ln x <x <e x . 4.现有一块边长为a 的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________. 答案227a 3 解析 容积V =(a -2x )2x ,0<x <a2,则V ′=2(a -2x )×(-2x )+(a -2x )2=(a -2x )(a -6x ),由V ′=0得x =a 6或x =a 2(舍去),则x =a6为V 在定义域内唯一的极大值点也是最大值点,此时V max=227a 3. 题组三 易错自纠5.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( ) A .(-∞,-6]∪[6,+∞) B .(-∞,-6)∪(6,+∞) C .(-6,6) D .[-6,6] 答案 B解析 f ′(x )=3x 2-2ax +2, 由题意知f ′(x )有变号零点,∴Δ=(2a )2-4×3×2>0, 解得a >6或a <- 6.6.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________.答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (多选)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数g (x )=xf ′(x )的图象如图所示,则下列结论中一定成立的是( )A .f (x )有两个极值点B .f (0)为函数的极大值C .f (x )有两个极小值D .f (-1)为f (x )的极小值 答案 BC解析 由题图知,当x ∈(-∞,-2)时,g (x )>0, ∴f ′(x )<0,当x ∈(-2,0)时,g (x )<0,∴f ′(x )>0, 当x ∈(0,1)时,g (x )<0,∴f ′(x )<0, 当x ∈(1,+∞)时,g (x )>0,∴f ′(x )>0. ∴f (x )在(-∞,-2),(0,1)上单调递减, 在(-2,0),(1,+∞)上单调递增. 故AD 错误,BC 正确. 命题点2 求已知函数的极值例2 已知函数f (x )=x 2-1-2a ln x (a ≠0),求函数f (x )的极值. 解 因为f (x )=x 2-1-2a ln x (x >0),所以f ′(x )=2x -2a x =2(x 2-a )x.①当a <0时,因为x >0,且x 2-a >0,所以f ′(x )>0对x >0恒成立.所以f (x )在(0,+∞)上单调递增,f (x )无极值.②当a >0时,令f ′(x )=0,解得x 1=a ,x 2=-a (舍去). 所以当x 变化时,f ′(x ),f (x )的变化情况如下表:↗所以当x =a 时,f (x )取得极小值,且f (a )=(a )2-1-2a ln a =a -1-a ln a .无极大值. 综上,当a <0时,函数f (x )在(0,+∞)上无极值.当a >0时,函数f (x )在x =a 处取得极小值a -1-a ln a ,无极大值. 命题点3 已知极值(点)求参数例3 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a +b =________. 答案 11解析 f ′(x )=3x 2+6ax +b ,由题意得⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, ∴f (x )在R 上单调递增, ∴f (x )无极值,所以a =1,b =3不符合题意, 当a =2,b =9时,经检验满足题意. ∴a +b =11.(2)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________. 答案 ⎝⎛⎭⎫0,12 解析 f (x )=x (ln x -ax ),定义域为(0,+∞), f ′(x )=1+ln x -2ax .由题意知,当x >0时,1+ln x -2ax =0有两个不相等的实数根, 即2a =1+ln xx有两个不相等的实数根,令φ(x )=1+ln x x (x >0),∴φ′(x )=-ln xx 2.当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0, ∴φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, 且φ(1)=1,当x →0时,φ(x )→-∞, 当x →+∞时,φ(x )→0, 则0<2a <1,即0<a <12.思维升华 函数极值的两类热点问题 (1)求函数f (x )极值的一般解题步骤 ①确定函数的定义域. ②求导数f ′(x ).③解方程f ′(x )=0,求出函数定义域内的所有根. ④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号. (2)根据函数极值情况求参数的两个要领①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求解后验证根的合理性.跟踪训练1 (1)(2020·滨州模拟)已知x =1是f (x )=[x 2-(a +3)x +2a +3]e x 的极小值点,则实数a 的取值范围是( ) A .(1,+∞) B .(-1,+∞) C .(-∞,-1) D .(-∞,1)答案 D解析 f ′(x )=[x 2-(a +1)x +a ]e x =(x -a )(x -1)e x . 令f ′(x )=0,得(x -a )(x -1)e x =0. 设g (x )=(x -1)(x -a ).①当a =1时,g (x )≥0,f ′(x )≥0,f (x )没有极值. ②当a >1时,当x >a 或x <1时,g (x )>0,f ′(x )>0; 当1<x <a 时,g (x )<0,则f ′(x )<0.∴x =1是函数f (x )的极大值点,不符合题意. ③当a <1时,当x >1或x <a 时,f ′(x )>0, 当a <x <1时,f ′(x )<0.所以x =1是f (x )的极小值点,符合题意. 综上所述,实数a 的取值范围是(-∞,1).(2)若函数f (x )=x 2-x +a ln x 有极值,则实数a 的取值范围是________.答案 ⎝⎛⎭⎫-∞,18 解析 f (x )的定义域为(0,+∞), f ′(x )=2x -1+a x =2x 2-x +ax ,由题意知y =f ′(x )有变号零点, 令2x 2-x +a =0, 即a =-2x 2+x (x >0),令φ(x )=-2x 2+x =-2⎝⎛⎭⎫x -142+18(x >0), 其图象如图所示,故a <18.题型二 利用导数求函数的最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ). (1)若a =1,求g (x )在区间[1,e]上的最大值; (2)求g (x )在区间[1,e]上的最小值h (a ). 解 (1)∵a =1,∴g (x )=ln x +x 2-3x , ∴g ′(x )=1x +2x -3=(2x -1)(x -1)x ,∵x ∈[1,e],∴g ′(x )≥0, ∴g (x )在[1,e]上单调递增, ∴g (x )max =g (e)=e 2-3e +1. (2)g (x )的定义域为(0,+∞),g ′(x )=ax +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x.①当a2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ;③当a2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.思维升华 (1)若函数在区间[a ,b ]上单调递增或递减,则f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在区间[a ,b ]内有极值,则要先求出函数在[a ,b ]上的极值,再与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.(4)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 跟踪训练2 已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞), 当a =-1时,f (x )=-x +ln x , f ′(x )=-1+1x =1-xx ,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. ∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不符合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎦⎤-1a ,e 上单调递减,∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2, 即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.课时精练1.函数f (x )=(x 2-1)2+2的极值点是( ) A .x =1B .x =-1C .x =1或-1或0D .x =0答案 C解析 f ′(x )=2(x 2-1)·2x =4x (x +1)(x -1), 令f ′(x )=0,解得x =0或x =-1或x =1. 2.函数y =xe x 在[0,2]上的最大值是( )A.1eB.2e 2 C .0 D.12e 答案 A解析 易知y ′=1-xe x ,x ∈[0,2],令y ′>0,得0≤x <1, 令y ′<0,得1<x ≤2,所以函数y =x e x 在[0,1)上单调递增,在(1,2]上单调递减,所以y =x e x 在[0,2]上的最大值是1e ,故选A.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( ) A .2 B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3,∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减, ∴f (x )的极大值为f (1)=12-3=-52.4.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163 答案 C解析 由题中图象可知f (x )的图象经过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,所以1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,x 1,x 2是方程3x 2-6x +2=0的两根,所以x 1+x 2=2,x 1·x 2=23,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4-2×23=83.5.(多选)函数y =f (x )的导函数f ′(x )的图象如图所示,则以下命题错误的是( )A .-3是函数y =f (x )的极值点B .-1是函数y =f (x )的最小值点C .y =f (x )在区间(-3,1)上单调递增D .y =f (x )在x =0处切线的斜率小于零 答案 BD解析 根据导函数的图象可知当x ∈(-∞,-3)时,f ′(x )<0,当x ∈(-3,+∞)时,f ′(x )≥0, ∴函数y =f (x )在(-∞,-3)上单调递减,在(-3,+∞)上单调递增,则-3是函数y =f (x )的极值点,∵函数y =f (x )在(-3,+∞)上单调递增,∴-1不是函数y =f (x )的最小值点, ∵函数y =f (x )在x =0处的导数大于0,∴y =f (x )在x =0处切线的斜率大于零. 故错误的命题为BD.6.(多选)(2021·烟台模拟)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( )A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为2答案 ABC解析 由f (x )=0,得x 2+x -1=0, ∴x =-1±52,故A 正确.f ′(x )=-x 2-x -2e x=-(x +1)(x -2)e x, 当x ∈(-∞,-1)∪(2,+∞)时,f ′(x )<0, 当x ∈(-1,2)时,f ′(x )>0,∴f (x )在(-∞,-1),(2,+∞)上单调递减,在(-1,2)上单调递增, ∴f (-1)是函数的极小值,f (2)是函数的极大值,故B 正确. 又f (-1)=-e ,f (2)=5e2,且当x →-∞时,f (x )→+∞,x →+∞时,f (x )→0, ∴f (x )的图象如图所示,由图知C 正确,D 不正确.7.函数f (x )=2x -ln x 的最小值为________. 答案 1+ln 2解析 f (x )的定义域为(0,+∞), f ′(x )=2-1x =2x -1x ,当0<x <12时,f ′(x )<0;当x >12时,f ′(x )>0.∴f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增, ∴f (x )min =f ⎝⎛⎭⎫12=1-ln 12=1+ln 2. 8.若函数f (x )=x 3-2cx 2+x 有两个极值点,则实数c 的取值范围为______________.答案 ⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 解析 若函数f (x )=x 3-2cx 2+x 有两个极值点,则f ′(x )=3x 2-4cx +1=0有两个不相等的实根,故Δ=(-4c )2-12>0,解得c >32或c <-32. 所以实数c 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞. 9.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π]. ①f (x )的最大值为f (x 0);②f (x )的最小值为f (x 0);③f (x )在[0,x 0]上是减函数;④f (x 0)为f (x )的极大值.那么上面命题中真命题的序号是________.答案 ①④解析 f ′(x )=cos x -13,由f ′(x )=0,得cos x =13,即x =x 0,因为x 0∈[0,π],当0≤x <x 0时,f ′(x )>0;当x 0<x ≤π时,f ′(x )<0,所以f (x )在[0,x 0)上单调递增,在(x 0,π]上单调递减,所以f (x 0)为f (x )的极大值且为最大值.故①④正确,②③不正确.10.已知不等式e x -1≥kx +ln x 对于任意的x ∈(0,+∞)恒成立,则k 的最大值为________. 答案 e -1解析 ∀x ∈(0,+∞),不等式e x-1≥kx +ln x 恒成立,等价于∀x ∈(0,+∞),k ≤e x -1-ln x x 恒成立,令φ(x )=e x -1-ln x x(x >0), 则φ′(x )=e x (x -1)+ln x x 2, 当x ∈(0,1)时,φ′(x )<0,当x ∈(1,+∞)时,φ′(x )>0,∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x )min =φ(1)=e -1,∴k ≤e -1.11.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x 2x, 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表. ↗故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值.(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x. 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0, 若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 故函数在x =1a处有极大值. 综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a. 12.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).解 (1)f ′(x )=ln x +1,x >0,由f ′(x )=0,得x =1e. 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0, 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,所以f (x )在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增. 所以x =1e是函数f (x )的极小值点,极大值点不存在. (2)g (x )=x ln x -a (x -1),则g ′(x )=ln x +1-a ,由g ′(x )=0,得x =e a -1.所以在区间(0,e a -1)上,g (x )单调递减,在区间(e a -1,+∞)上,g (x )单调递增.当e a -1≥e ,即a ≥2时,g (x )在(0,e]上单调递减,∴g (x )min =g (e)=a +e -a e ,当e a -1<e 即a <2时,g (x )在(0,e a -1)上单调递减,在(e a -1,e]上单调递增,∴g (x )min =g (e a -1)=a -e a -1,令g (x )的最小值为h (a ),综上有h (a )=⎩⎪⎨⎪⎧a -e a -1,a <2,a +e -a e ,a ≥2.13.已知函数f (x )=x +2sin x ,x ∈[0,2π],则f (x )的值域为( )A.⎣⎡⎦⎤4π3-3,2π3+3 B.⎣⎡⎦⎤0,4π3-3 C.⎣⎡⎦⎤2π3+3,2πD .[0,2π]答案 D解析 f ′(x )=1+2cos x ,x ∈[0,2π],令f ′(x )=0,得cos x =-12, ∴x =2π3或x =4π3, 又f ⎝⎛⎭⎫2π3=2π3+3,f ⎝⎛⎭⎫4π3=4π3-3,f (0)=0,f (2π)=2π,f ⎝⎛⎭⎫4π3-f ⎝⎛⎭⎫2π3=2π3-23<0, ∴f (0)<f ⎝⎛⎭⎫4π3<f ⎝⎛⎭⎫2π3<f (2π),∴f (x )max =f (2π)=2π,f (x )min =f (0)=0,∴f (x )的值域为[0,2π].14.(2020·邢台模拟)若函数f (x )=12x2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.答案 ⎣⎡⎭⎫32,+∞ 解析 对函数求导得f ′(x )=x -1+a ⎝⎛⎭⎫1-1x =(x +a )(x -1)x,x >0,因为函数存在唯一的极值,所以导函数存在唯一的零点,且零点大于0,故x =1是唯一的极值点,此时-a ≤0,且f (1)=-12+a ≥1,所以a ≥32. 15.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.答案 ⎝⎛⎭⎫-1e ,0 解析 f (x )=x ln x +m e x (x >0),∴f ′(x )=ln x +1+m e x (x >0),令f ′(x )=0,得-m =ln x +1e x,设g (x )=ln x +1e x, 则g ′(x )=1x -ln x -1e x (x >0),令h (x )=1x-ln x -1, 则h ′(x )=-1x 2-1x<0(x >0), ∴h (x )在(0,+∞)上单调递减且h (1)=0,∴当x ∈(0,1]时,h (x )≥0,即g ′(x )≥0,g (x )在(0,1]上单调递增;当x ∈(1,+∞)时,h (x )<0,即g ′(x )<0,g (x )在(1,+∞)上单调递减,故g (x )max =g (1)=1e, 而当x →0时,g (x )→-∞,当x →+∞时,g (x )→0,若f (x )有两极值点,只要y =-m 和g (x )的图象在(0,+∞)上有两个交点,只需0<-m <1e ,故-1e<m <0. 16.(2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.解 (1)f (x )的定义域为R ,f ′(x )=6x 2-2ax =2x (3x -a ).令f ′(x )=0,得x =0或x =a 3. 若a >0,则当x ∈(-∞,0)∪⎝⎛⎭⎫a 3,+∞时,f ′(x )>0,当x ∈⎝⎛⎭⎫0,a 3时,f ′(x )<0, 故f (x )在(-∞,0),⎝⎛⎭⎫a 3,+∞上单调递增,在⎝⎛⎭⎫0,a 3上单调递减; 若a =0,则f (x )在(-∞,+∞)上单调递增;若a <0,则当x ∈⎝⎛⎭⎫-∞,a 3∪(0,+∞)时,f ′(x )>0, 当x ∈⎝⎛⎭⎫a 3,0时,f ′(x )<0,故f (x )在⎝⎛⎭⎫-∞,a 3,(0,+∞)上单调递增,在⎝⎛⎭⎫a 3,0上单调递减. (2)当0<a <3时,由(1)知,f (x )在⎝⎛⎭⎫0,a 3上单调递减,在⎝⎛⎭⎫a 3,1上单调递增,所以f (x )在[0,1]的最小值为f ⎝⎛⎭⎫a 3=-a 327+2,最大值为f (0)=2或f (1)=4-a . 于是m =-a 327+2,M =⎩⎪⎨⎪⎧4-a ,0<a <2,2,2≤a <3. 所以M -m =⎩⎨⎧ 2-a +a 327,0<a <2,a 327,2≤a <3.①当0<a <2时,可知y =2-a +a 327单调递减, 所以M -m 的取值范围是⎝⎛⎭⎫827,2.②当2≤a <3时,y =a 327单调递增, 所以M -m 的取值范围是⎣⎡⎭⎫827,1.综上,M -m 的取值范围是⎣⎡⎭⎫827,2.。
第二讲 导数的简单应用1.[2021贵阳市四校第二次联考]图3-2-1已知y=x ·f'(x)的图象如图3-2-1所示,则f(x)的图象可能是 ( )A BCD2.[原创题]函数f(x)=(12x-1)e x +12x 的极值点的个数为 ( )3.[2021安徽省示范高中联考]若函数f(x)=(x-1)e x -ax(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( )A.(-1e ,0) B.(-∞,0) C.(-1e ,+∞)D.(0,+∞)4.[2021蓉城名校联考]已知函数f(x)=e |x|-1),b=f(2),c=f(log 20.2),则 ( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a5.[2021湖南六校联考]设函数f(x)的定义域为R,f'(x)是其导函数,若f(x)+f'(x)<0,f(0)=1,则不等式f(x)>e -x 的解集是( )A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)6.[2021四省八校联考]函数f(x)=x 3-bx 2+c,若f(1-x)+f(1+x)=2,则下列正确的是 ( )A.f(ln 2)+f(ln 4)<2B.f(-2)+f(5)<2C.f(ln 2)+f(ln 3)<2D.f(-1)+f(2)>27.[2020皖中名校联考]已知函数f(x)=(x 2-mx-m)e x +2m(m>-2,e 是自然对数的底数)有极小值0,则其极大值是( )-2或(4+ln 2)e -2+2ln 2-2或(4+ln 2)e 2+2ln 2-2或(4+ln 2)e -2-2ln 2-2或(4+ln 2)e 2-2ln 28.[2021河南省名校第一次联考]若函数f(x)={alnx -x 2-2(x >0),x +1x +a(x <0)的最大值为f(-1),则实数a 的取值范围为 . 9.[2021广州市高三阶段模拟]已知函数f(x)=1+lnx x -1-k x .(1)当k=0时,求函数f(x)的单调区间;(2)若f(x)>0对任意的x ∈(1,+∞)恒成立,求整数k 的最大值.10.[2021大同市调研测试]设函数f(x)=ln x-12ax 2-bx.(1)当a=b=12时,求函数f(x)的最大值;(2)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.11.[2021江苏省部分学校调考]定义在R上的偶函数f(x)的导函数为f '(x),若对任意x∈R,都有2f(x)+xf '(x)<2,则使x2f(x)-f(1)<x2-1成立的实数x的取值范围是( )A.{x|x≠±1}B.(-1,0)∪(0,1)C.(-1,1)D.(-∞,-1)∪(1,+∞)图3-2-212.[2021济南名校联考]如图3-2-2,在P地正西方向8 km的A处和正东方向1 km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<π2),为了节省建设成本,要使得PE+PF的值最小,此时AE=( )A.4 kmB.6 kmC.8 kmD.10 km13.[多选题]已知f(x)=e x-2x2有且仅有两个极值点,分别为x1,x2(x1<x2),则下列不等式中正确的有(参考数据:ln 2≈0.693 1,ln 3≈1.098 6) ( )1+x2<1141+x2>114C.f(x 1)+f(x 2)<0D.f(x 1)+f(x 2)>014.[多选题]已知函数y=f(x)在R 上可导且f(0)=1,其导函数 f'(x)满足f'(x)-f(x)x -1>0,对于函数g(x)=f(x)e x,下列结论正确的是( )A.函数g(x)在(1,+∞)上为单调递增函数B.x=1是函数g(x)的极小值点C.函数g(x)至多有两个零点D.x ≤0时,不等式f(x)≤e x 恒成立15.[2021洛阳市统考]已知函数f(x)=ln 1x-ax 2+x(a>0).(1)讨论f(x)的单调性﹔(2)若f(x)有两个极值点x 1,x 2,证明:f(x 1)+f(x 2)>3-2ln 2.16.[2019全国卷Ⅰ,12分]已知函数f(x)=sin x-ln(1+x),f '(x)为f(x)的导数,证明:(1)f '(x)在区间(-1,π2)上存在唯一极大值点; (2)f(x)有且仅有2个零点.17.[新角度题]直线x=a(a>0)分别与直线y=2x+1,曲线y=x+ln x 相交于A,B 两点,则|AB|的最小值为( )C.√2D.√318.[2020惠州市二调][交汇题]设函数f(x)=√3sin πxm,若存在f(x)的极值点x 0满足x 02+[f(x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)19.[角度创新]已知函数f(x)=ax-e x +2,其中a ≠0.(1)讨论f(x)的单调性.(2)是否存在a ∈R,对任意x 1∈[0,1],总存在x 2∈[0,1],使得f(x 1)+f(x 2)=4成立?若存在,求出实数a 的值;若不存在,请说明理由.答 案第二讲 导数的简单应用1.D 由题图可知,当x<0时,f'(x)<0,函数f(x)单调递减;当0<x<b 时,f'(x)>0,函数f(x)单调递增;当x>b 时,f'(x)<0,函数f(x)单调递减.又f'(b)=0,所以当x=b 时,f(x)取得极大值,综上,满足题意的f(x)的图象可能是D.2.A 由题意知f '(x)=12e x +(12x-1)e x +12=12[e x (x-1)+1].令g(x)=e x (x-1)+1,则g'(x)=e x (x-1)+e x =xe x ,令g'(x)=0,得x=0,则函数g(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,所以g(x)≥g(0)=0,由此可知f '(x)≥0,所以函数f(x)不存在极值点,故选A.3.A 由题意得f'(x)=xe x -a,因为函数f(x)=e x (x-1)-ax 有两个极值点,所以f'(x)=0有两个不等的实根,即a=xe x 有两个不等的实根,所以直线y=a 与y=xe x 的图象有两个不同的交点.令g(x)=xe x ,则g'(x)=e x (x+1).当x<-1时,g'(x)<0,当x>-1时,g'(x)>0,所以函数g(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,所以当x=-1时,g(x)取得最小值,且最小值为-1e.易知当x<0时,g(x)<0,当x>0时,g(x)>0,则可得函数g(x)的大致图象,如图D 3-2-1所示,则-1e<a<0,故选A.图D 3-2-14.D 当x ≥0时,f(x)=e x +cos x,则f '(x)=e x -sin x ≥e 0-sin x ≥0,所以f(x)在[0,+∞)上单调递增.又f(-x)=e |-x|+cos(-x)=e |x|-1)=f(103),b=f(2)<f(20)=f(1),c=f(log 20.2)=f(log 215)=f(-log 25)=f(log 25),又1=log 22<log 25<log 28=3<103,所以f(2)<f(log 25)< f(103),即b<c<a.故选D.5.C 令g(x)=e x f(x),则g'(x)=e x f(x)+e x f'(x),因为f(x)+f'(x)<0,所以g'(x)<0,所以g(x)在R 上单调递减.因为g(0)=e 0f(0)=f(0)=1,所以不等式f(x)>e -x 可转化为e x f(x)>1,即g(x)>1=g(0),又g(x)在R 上单调递减,所以x<0,故不等式f(x)>e -x 的解集为(-∞,0),故选C.6.A 解法一 f(1-x)+f(1+x)=2,分别令x=0,x=1(题眼),得{f(1)=1,f(0)+f(2)=2,即{1−b +c =1,c +8−4b +c =2,解得b=c=3,所以f(x)=x 3-3x 2+3,f '(x)=3x 2-6x=3x(x-2),令f '(x)=0,得x=0或x=2,所以当x<0或x>2时f '(x)>0,当0<x<2时f '(x)<0,所以函数f(x)在(0,2)上单调递减,在(-∞,0)和(2,+∞)上单调递增(题眼).由f(1-x)+f(1+x)=2,得f(x)+f(2-x)=2.对于A,2=f(ln 2)+f(2-ln 2)=f(ln 2)+f(ln e 22)>f(ln 2)+f(ln 4),故A 正确;对于B,2=f(-2)+f(4)<f(-2)+f(5),故B 不正确;对于C,2=f(ln 2)+f(2-ln 2)=f(ln 2)+f(ln e 22)<f(ln 2)+f(ln 3),故C 不正确;对于D,2=f(-1)+f(3)>f(-1)+f(2),故D 不正确.故选A.解法二 由f(1-x)+f(1+x)=2知函数f(x)图象的对称中心为(1,1)(题眼),又三次函数g(x)=ax 3+dx 2+ex+f(a ≠0)图象的对称中心为(-d3a,g(-d3a)),所以b3=1,解得b=3,所以f(b3)=f(1)=1,即1-3+c=1,得 c=3,所以f(x)=x 3-3x 2+3.以下同解法一.7.A 由题意知, f '(x)=[x 2+(2-m)x-2m]e x =(x+2)(x-m)e x .由f '(x)=0得x=-2或x=m.因为m>-2,所以函数f(x)在区间(-∞,-2)和(m,+∞)内单调递增,在区间(-2,m)内单调递减. 于是函数f(x)的极小值为f(m)=0,即(m 2-m 2-m)e m +2m=0,(2-e m )m=0,解得m=0或m=ln 2.当m=0时,f(x)的极大值为f(-2)=4e -2;当m=ln 2时,f(x)的极大值为f(-2)=(4+ln 2)·e -2+2ln 2.故选A.8.[0,2e 3] x<0时,f(x)≤f(-1)=a-2,x>0时,aln x-x 2-2≤a-2,即x 2-aln x+a ≥0恒成立.令t(x)=x 2-aln x+a,则t'(x)=2x 2-a x,a<0时,t'(x)>0,x →0时,t(x)→-∞,不合题意.a=0时,t(x)=x 2≥0恒成立.a>0时,t(x)在(0,√a2)上单调递减,在(√a2,+∞)上单调递增,所以t(x)min =a2-a ·ln √a2+a ≥0,解得0<a ≤2e 3.综上,a ∈[0,2e 3]. 9.(1)f(x)的定义域为(0,1)∪(1,+∞).当k=0时,f '(x)=-1x-lnx(x -1)2.令g(x)=-1x -ln x,则g'(x)=1−xx 2. 当x ∈(0,1)时,g'(x)>0,g(x)单调递增;当x ∈(1,+∞)时,g'(x)<0,g(x)单调递减.∴g(x)max =g(1)=-1<0,∴g(x)<0,∴f '(x)<0,∴f(x)的单调递减区间为(0,1),(1,+∞),无单调递增区间.(2)由f(x)>0对任意的x ∈(1,+∞)恒成立,得1+lnx x -1-k x >0(x>1),即k<[x(1+lnx)x -1]min (x>1).令h(x)=x(1+lnx)x -1,x>1,则h'(x)=x -2-lnx (x -1)2,令φ(x)=x-2-ln x,x>1,则φ'(x)=x -1x>0,∴φ(x)在(1,+∞)上单调递增,又φ(3)=1-ln 3<0,φ(4)=2-2ln 2>0,∴存在唯一x 0∈(3,4),使得φ(x 0)=0,即x 0-2-ln x 0=0,x 0-1=1+ln x 0,当x 变化时,h'(x),h(x)的变化情况如下表所示:x (1,x 0) x 0 (x 0,+∞)h'(x) - 0 +h(x)单调递减 极小值 单调递增∴h(x)min =h(x 0)=x 0(1+lnx 0)x 0-1=x 0∈(3,4),∴整数k 的最大值为3.10.(1)依题意,知f(x)的定义域为(0,+∞),当a=b=12时,f(x)=ln x-14x 2-12x,则f'(x)=1x -12x-12=-(x+2)(x -1)2x,令f '(x)=0,解得x=1或x=-2(舍去).当0<x<1时,f '(x)>0,此时f(x)单调递增;当x>1时,f '(x)<0,此时f(x)单调递减.所以f(x)的极大值为f(1)=-34,此即函数f(x)的最大值.图D 3-2-2(2)由题意可知,2mf(x)=x 2⇔2m(lnx+x)=x 2⇔12m =lnx+x x 2.设g(x)=lnx+x x 2,则g'(x)=1−2lnx -xx 3,令h(x)=1-2ln x-x,则h'(x)=-2x-1.因为x>0,所以h'(x)<0,h(x)在(0,+∞)上单调递减.因为h(1)=0,所以当x ∈(0,1)时,h(x)>0,当x ∈(1,+∞)时,h(x)<0,所以函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max =g(1)=1.又g(e -1)=-1+e -1e -2<0,且当x →+∞时,g(x)→0,所以可画出g(x)的大致图象,如图D 3-2-2所示,方程2mf(x)=x 2有唯一实数解就等价于直线y=12m与g(x)=lnx+x x 2的图象只有一个交点,由图象可知12m =1,即m=12.11.D 令g(x)=x 2f(x)-x 2,则g'(x)=2xf(x)+x 22f(x)-f(1)<x 2-1可化为x 2f(x)-x 2<f(1)-1,即g(x)<g(1),所以|x|>1,解得x>1或x<-1,故选D.12.A 因为PE ⊥PF,∠EPA=α,所以∠PFB=α,在Rt △PAE 中,PE=APcosα=8cosα,在Rt △PBF 中,PF=PBsinα=1sinα,则PE+PF=8cosα+1sinα .设f(α)=8cosα+1sinα,α∈(0,π2),则f '(α)=8sinαcos 2α-cosαsin 2α=8sin 3α-cos 3αcos 2αsin 2α,令f '(α)=8sin 3α-cos 3αcos 2αsin 2α=0,则tan α=12,当0<tan α<12时,f '(α)<0,当tan α>12时,f '(α)>0,所以当tan α=12时,f(α)取得最小值,此时AE=AP ·tan α=8×12=4,故选A.13.AD 由题意得f '(x)=e x -4x,则f '(14)=e 14-1>0,f '(12)=e 12-2<0,f '(2)=e 2-8<0.由ln 3≈1.098 6,得98>ln 3,所以f '(94)>0,从而14<x 1<12,2<x 2<94,所以x 1+x 2<114.因为f(0)=1,所以易得f(x 1)>1.因为f '(2ln 3)=9-8ln 3>0,所以x 2<2ln 3,因为f '(x 2)=0,所以f(x 2)=4x 2-2x 22.设g(x)=4x-2x 2,得g(x 2)>g(2ln 3)>g(2.2)=-0.88>-1,所以f(x 1)+f(x 2)>0. 14.ABC 因为f'(x)-f(x)x -1>0,所以当x>1时,f'(x)-f(x)>0;当x<1时,f'(x)-f(x)<0.因为g(x)=f(x)e x,所以g'(x)=f'(x)-f(x)e x,则当x>1时,g'(x)>0;当x<1时,g'(x)<0.所以函数g(x)在(1,+∞)上为单调递增函数,在(-∞,1)上为单调递减函数,则x=1是函数g(x)的极小值点,则选项A,B 均正确.当g(1)<0时,函数g(x)至多有两个零点,当g(1)=0时,函数g(x)有一个零点,当g(1)>0时,函数g(x)无零点,所以选项C 正确.g(0)=f(0)e 0=1,又g(x)在区间(-∞,1)上单调递减,所以当x ≤0时,g(x)=f(x)e x≥g(0)=1,又e x >0,所以f(x)≥e x ,故选项D 错误.故选ABC.15.(1)∵f(x)=ln 1x -ax 2+x =-ln x-ax 2+x(a>0,x>0), ∴f '(x)=-1x -2ax+1=-2ax 2-x+1x(a>0).令2ax 2-x+1=0,则其判别式Δ=1-8a.①当Δ≤0,即a ≥18时,f '(x)≤0,f(x)在(0,+∞)上单调递减.②当Δ>0,即0<a<18时,方程2ax 2-x+1=0有两个不相等的正根x 3= 1−√1−8a4a,x 4=1+√1−8a4a,则当0<x<x 3或x>x 4时,f '(x)<0,当x 3<x<x 4时,f '(x)>0,∴ f(x)在(0,1−√1−8a4a)上单调递减,在(1−√1−8a 4a,1+√1−8a4a)上单调递增,在(1+√1−8a4a,+∞)上单调递减.综上,当a ∈[18,+∞)时,f(x)在(0,+∞)上单调递减,无增区间; 当a ∈(0,18)时,f(x)在(0,1−√1−8a4a),(1+√1−8a4a,+∞)上单调递减,在(1−√1−8a 4a,1+√1−8a4a)上单调递增.(2)不妨设x 1<x 2.由(1)知,当且仅当a ∈(0,18)时,f(x)有极小值点x 1和极大值点x 2,∴x 1+x 2=12a,x 1x 2=12a.f(x 1)+f(x 2)=-lnx 1-a x 12+x 1-ln x 2-a x 22+x 2=-(ln x 1+ln x 2)-12(x 1-1)-12(x 2-1)+(x 1+x 2)=-ln(x 1x 2)+12(x 1+x 2)+1=ln(2a)+14a +1.令g(a)=ln(2a)+14a+1,a ∈(0,18),则g'(a)=1a-14a 2=4a -14a 2<0,∴g(a)在(0,18)上单调递减,∴g(a)>g(18)=ln(2×18)+14×18+1=3-2ln 2,即f(x 1)+f(x 2)>3-2ln 2.16.(1)设g(x)=f '(x),则g(x)=cos x-11+x,g'(x)=-sin x+1(1+x)2.当x ∈(-1,π2)时,g'(x)单调递减,而g'(0)>0,g'(π2)<0,可得g'(x)在(-1,π2)上有唯一零点,设为α.则当x ∈(-1,α)时,g'(x)>0;当x ∈(α,π2)时,g'(x)<0.所以g(x)在(-1,α)上单调递增,在(α,π2)上单调递减,故g(x)在(-1,π2)上存在唯一极大值点,即f '(x)在(-1,π2)上存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(i)当x ∈(-1,0]时,由(1)知,f '(x)在(-1,0)上单调递增,而f '(0)=0,所以当x ∈(-1,0)时,f '(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点.(ii)当x ∈(0,π2]时,由(1)知,f '(x)在(0,α)上单调递增,在(α,π2)上单调递减,而f '(0)=0,f '(π2)<0,所以存在β∈(α,π2),使得f'(β)=0,且当x ∈(0,β)时,f '(x)>0;当x ∈(β,π2)时,f '(x)<0.故f(x)在(0,β)上单调递增,在(β,π2)上单调递减. 又f(0)=0,f(π2)=1-ln(1+π2)>0,所以当x ∈(0,π2]时,f(x)>0.从而f(x)在(0,π2]上没有零点.(iii)当x ∈(π2,π]时,f '(x)<0,所以f(x)在(π2,π)上单调递减.而f(π2)>0,f(π)<0,所以f(x)在(π2,π]上有唯一零点. (iv)当x ∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.17.B 根据题意,设f(x)=2x+1-x-ln x=x+1-ln x,则f'(x)=1-1x =x -1x (x>0),所以函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以 f(x)min =f(1)=2-ln 1=2,所以|AB|min =2.故选B.18.C 由题意得,当πx m =k π+π2(k ∈Z),即x=(2k+1)m 2(k ∈Z)时,f(x)取得极值±√3.若存在f(x)的极值点x 0满足x 02+[f(x 0)]2<m 2,则存在k ∈Z,使[(2k+1)m 2]2+3<m 2成立,问题等价于存在k ∈Z 使不等式m 2(k+12)2+3<m 2成立,因为(k+12)2的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m>2或m<-2.故选C.19.(1)由f(x)=ax-e x +2,得f '(x)=a-e x .当a<0时,对任意x ∈R,f'(x)<0,所以f(x)单调递减.当a>0时,令f '(x)=0,得x=ln a,当x ∈(-∞,ln a)时,f '(x)>0,当x ∈(ln a,+∞)时,f '(x)<0,所以f(x)在(-∞,ln a)上单调递增,在(ln a,+∞)上单调递减.综上所述,当a<0时,f(x)在R 上单调递减,无增区间;当a>0时,f(x)在(-∞,ln a)上单调递增,在(ln a,+∞)上单调递减.(2)存在满足条件的实数a,且实数a 的值为e+1.理由如下:①当a ≤1,且a ≠0时,由(1)知,f(x)在[0,1]上单调递减,则x ∈[0,1]时,f(x)max =f(0)=1,则f(x 1)+f(x 2)≤2f(0)=2<4,所以此时不满足题意;②当1<a<e 时,由(1)知,在[0,ln a]上,f(x)单调递增,在(ln a,1]上,f(x)单调递减, 则当x ∈[0,1]时,f(x)max =f(ln a)=aln a-a+2.当x 1=0时,对任意x 2∈[0,1],f(x 1)+f(x 2)≤f(0)+f(ln a)=1+aln a-a+2=a(ln a-1)+3<3,所以此时不满足题意;③当a ≥e 时,令g(x)=4-f(x)(x ∈[0,1]),由(1)知,f(x)在[0,1]上单调递增,从而知g(x)在[0,1]上单调递减,所以g(x)max =g(0)=4-f(0),g(x)min =g(1)=4-f(1).若对任意的x 1∈[0,1],总存在x 2∈[0,1],使得f(x 1)+f(x 2)=4,则f(x)的值域为g(x)值域的子集,即{f(0)≥g(1),f(1)≤g(0),即{f(0)+f(1)≥4,f(1)+f(0)≤4,所以f(0)+f(1)=a-e+3=4,解得a=e+1.综上,存在满足题意的实数a,且实数a 的值为e+1.。
高考数学一轮复习学案:第2课时导数与函数的极值、最值1.函数的极值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.常用结论对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.[思考辨析]判断正误(正确的打“√”,错误的打“×”)(1)函数的极大值不一定比极小值大.( )(2)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.( )(3)函数的极大值一定是函数的最大值.( )(4)开区间上的单调连续函数无最值.( )答案:(1)√(2)×(3)×(4)√[诊断自测]1.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)( )A.无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点解析:选C.导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点.2.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________.解析:因为y ′=1-2sin x ,所以当x ∈⎣⎢⎡⎭⎪⎫0,π6时,y ′>0;当x ∈⎝⎛⎦⎥⎤π6,π2时,y ′<0. 所以当x =π6时,y max =π6+ 3.答案:π6+ 33.设a ∈R ,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是________. 解析:因为y =e x+ax ,所以y ′=e x+a . 因为函数y =e x+ax 有大于零的极值点, 所以方程y ′=e x +a =0有大于零的解, 因为当x >0时,-e x<-1,所以a =-e x<-1. 答案:(-∞,-1)用导数解决函数的极值问题(多维探究) 角度一 根据图象判断函数的极值设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)【解析】 由题图可知,当x <-2时,1-x >3,此时f ′(x )>0;当-2<x <1时,0<1-x <3,此时f ′(x )<0;当1<x <2时,-1<1-x <0,此时f ′(x )<0;当x >2时,1-x <-1,此时f ′(x )>0,由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.【答案】 D角度二 求函数的极值已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.【解】 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x, 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表x (0,2) 2 (2,+∞)f ′(x ) +0 -f (x )ln 2-1故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-axx(x >0),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点;当a >0时,当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )在定义域上无极值点,当a >0时,函数f (x )在x =1a处有一个极大值点.角度三 已知函数的极值点或极值求参数(1)(2021·丽水模拟)已知函数f (x )=x 22+(m +1)·e x+2(m ∈R )有两个不同的极值点,则实数m 的取值范围为( )A .(-1-1e ,-1)B .[-1e ,0]C .[-∞,-1e)D .(0,+∞)(2)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. 【解析】 (1)函数f (x )的定义域为R ,f ′(x )=x +(m +1)e x. 因为函数f (x )有两个不同的极值点,所以f ′(x )=x +(m +1)e x有两个不同的零点,故关于x 的方程-m -1=xe x 有两个不同的解.令g (x )=x e x ,则g (x )=xex 的图象与y =-m -1的图象有两个不同的交点.g ′(x )=1-xex ,当x ∈(-∞,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0,所以函数g (x )=xe x 在区间(-∞,1)上单调递增,在区间(1,+∞)上单调递减.故g (x )在x =1处取得最大值.又当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→0,且g (1)=1e ,所以0<-m -1<1e ,所以-1-1e <m <-1,故选A.(2)由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9, 经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.【答案】 (1)A (2)-7(1)利用导数研究函数极值问题的一般流程(2)已知函数极值点或极值求参数的两个要领①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.[提醒] 若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.1.设函数f (x )=ax 3-2x 2+x +c (a ≥0).(1)当a =1,且函数图象过点(0,1)时,求函数的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数图象过点(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2-4x +1,令f ′(x )>0,解得x <13,或x >1;令f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增;在⎝ ⎛⎭⎪⎫13,1上单调递减,极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立.①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a >0时,f ′(x )≥0或f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞. 2.已知函数f (x )=x ln 2x +(a -1)x 2-x 存在两个不同的极值点x 1,x 2. (1)求实数a 的取值范围; (2)求证:4x 1x 2>e 2.解:(1)由题易知函数f (x )的定义域为(0,+∞),且f ′(x )=ln 2x +1+2(a -1)x -1=ln 2x +2(a -1)x . 因为函数f (x )存在两个不同的极值点x 1,x 2, 所以f ′(x )=0在(0,+∞)上有两个不同的零点.显然当a ≥1时,f ′(x )单调递增,不可能有两个零点,因此a <1. 令F (x )=f ′(x )=ln 2x +2(a -1)x , 则F ′(x )=1x+2(a -1),故当x ∈⎝ ⎛⎭⎪⎫0,12(1-a )时,F ′(x )>0,F (x )单调递增,即f ′(x )单调递增;当x ∈⎝⎛⎭⎪⎫12(1-a ),+∞时,F ′(x )<0,F (x )单调递减,即f ′(x )单调递减. 因此若f ′(x )有两个零点,则需f ′⎝⎛⎭⎪⎫12(1-a )=ln 11-a +2(a -1)·12(1-a )=ln11-a -1>0,解得a >1-1e. 又a <1,所以实数a 的取值范围为⎝ ⎛⎭⎪⎫1-1e ,1.(2)因为x 1,x 2为函数f (x )的两个不同的极值点,所以⎩⎪⎨⎪⎧f ′(x 1)=ln 2x 1+2(a -1)x 1=0,f ′(x 2)=ln 2x 2+2(a -1)x 2=0,即⎩⎪⎨⎪⎧ln 2x 1=2(1-a )x 1,ln 2x 2=2(1-a )x 2, 两式相加得ln 4x 1x 2=2(1-a )(x 1+x 2),① 两式相减得ln x 1x 2=2(1-a )(x 1-x 2).②①÷②得ln 4x 1x 2ln x 1x 2=x 1+x 2x 1-x 2=x 1x 2+1x 1x 2-1.要证4x 1x 2>e 2,即证ln 4x 1x 2>2,即证x 1x 2+1x 1x 2-1×ln x 1x 2>2.不妨设0<x 1<x 2,则需证ln x 1x 2-2·x 1x 2-1x 1x 2+1<0.令t =x 1x 2,则t ∈(0,1),需证ln t -2·t -1t +1<0.令g (t )=ln t -2·t -1t +1, 则g ′(t )=1t-4(t +1)2=(t -1)2t (t +1)2,当t ∈(0,1)时,g ′(t )>0,故g (t )在t ∈(0,1)上单调递增. 又g (1)=0,所以当t ∈(0,1)时g (t )<0,因此ln x 1x 2-2·x 1x 2-1x 1x 2+1<0,即4x 1x 2>e 2.利用导数求函数的最值(值域)(师生共研)已知函数f (x )=(x -2x -1)e -x(x ≥12).(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围. 【解】 (1)因为(x -2x -1)′=1-12x -1,(e -x)′=-e-x,所以f ′(x )=⎝ ⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)·e -x=(1-x )(2x -1-2)e -x2x -1⎝ ⎛⎭⎪⎫x >12. (2)由f ′(x )=(1-x )(2x -1-2)e-x2x -1=0,解得x =1或x =52.于是当x 发生变化时,f ′(x ),f (x )的变化情况如下表x 12⎝ ⎛⎭⎪⎫12,1 1 ⎝ ⎛⎭⎪⎫1,5252 ⎝ ⎛⎭⎪⎫52,+∞ f ′(x )-0 +0 - f (x )12e -1212e -52又f (x )=12(2x -1-1)2e -x≥0,所以f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12.求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值.解:因为f (x )=1-xx+k ln x ,f ′(x )=-x -(1-x )x 2+k x =kx -1x2. (1)若k =0,则f ′(x )=-1x 2在⎣⎢⎡⎦⎥⎤1e ,e 上恒有f ′(x )<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减. 所以f (x )min =f (e)=1-e e ,f (x )max =f ⎝ ⎛⎭⎪⎫1e =e -1. (2)若k ≠0,f ′(x )=kx -1x 2=k ⎝ ⎛⎭⎪⎫x -1k x 2.①若k <0,则在⎣⎢⎡⎦⎥⎤1e ,e 上恒有k (x -1k )x 2<0, 所以f (x )在[1e,e]上单调递减,所以f (x )min =f (e)=1-e e +k ln e =1e +k -1,f (x )max =f ⎝ ⎛⎭⎪⎫1e =e -k -1. ②若k >0,由k <1e ,得1k >e ,则x -1k<0,所以k ⎝ ⎛⎭⎪⎫x -1k x 2<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减. 所以f (x )min =f (e)=1-e e +k ln e =1e+k -1,f (x )max =f ⎝ ⎛⎭⎪⎫1e=e -k -1.综上,k <1e 时,f (x )min =1e+k -1,f (x )max =e -k -1.函数极值与最值的综合问题(师生共研)已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 【解】 (1)由已知得f (x )的定义域为(0,+∞),f ′(x )=ax +2=a +2xx.当a =-4时,f ′(x )=2x -4x.所以当0<x <2时,f ′(x )<0,即f (x )单调递减; 当x >2时,f ′(x )>0,即f (x )单调递增.所以f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2. (2)因为f ′(x )=a +2xx, 所以当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在x ∈(0,+∞)上单调递增,没有最小值;当a <0时,由f ′(x )>0得,x >-a2,所以f (x )在⎝ ⎛⎭⎪⎫-a2,+∞上单调递增;由f ′(x )<0得,0<x <-a2,所以f (x )在⎝ ⎛⎭⎪⎫0,-a 2上单调递减.所以当a <0时,f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2+2⎝ ⎛⎭⎪⎫-a 2. 根据题意得f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2+2⎝ ⎛⎭⎪⎫-a 2≥-a ,即a [ln(-a )-ln 2]≥0.因为a <0,所以ln(-a )-ln 2≤0,解得-2≤a <0, 所以实数a 的取值范围是[-2,0).(1)利用导数研究函数极值、最值的综合问题的一般思路①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.③求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)已知最值求参数的范围主要采取分类讨论的思想,将导函数的零点与所给区间进行比较,利用导数的工具性得到函数在给定区间内的单调性,从而可求其最值,判断所求的最值与已知条件是否相符,从而得到参数的取值范围.已知函数f (x )=(x +a )ln x (a ∈R ).(1)当a =0时,求函数f (x )在区间[13,3]上的最大值与最小值.(2)①若函数f (x )有2个不同的极值点x 1,x 2(x 1<x 2),求实数a 的取值范围; ②在①的条件下,若x 1x 2≤b ,求实数b 的最小值. 解:(1)当a =0时,f (x )=x ln x ,f ′(x )=1+ln x , 令f ′(x )=0,解得x =1e,因此当x ∈⎣⎢⎡⎦⎥⎤13,1e 时,f ′(x )<0,函数f (x )单调递减, 当x ∈⎣⎢⎡⎦⎥⎤1e ,3时,f ′(x )>0,函数f (x )单调递增, 即当x =1e 时,函数f (x )取得最小值,为-1e,f (x )max =max ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫13,f (3)=3ln 3, 所以f (x )在⎣⎢⎡⎦⎥⎤13,3上的最小值为-1e ,最大值为3ln 3.(2)①f ′(x )=ln x +ax+1, 令g (x )=ln x +a x +1,则g ′(x )=x -ax 2, 当a ≤0时,g ′(x )>0,g (x )在(0,+∞)上单调递增,所以函数g (x )至多有1个零点,即函数f (x )至多有1个极值点,不合题意. 当a >0时,令g ′(x )=0,得x =a ,g (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,因此g (x )min =g (a )=ln a +2.当ln a +2≥0,即a ≥e -2时,g (x )≥0,因此函数f (x )在(0,+∞)上单调递增,函数f (x )无极值点,不合题意.当ln a +2<0,即0<a <e -2时,g (a )<0.令h (a )=g (a 2)=2ln a +1a+1(0<a <e -2), 则h ′(a )=2a -1a 2=2a -1a 2<0, 因此h (a )在(0,e -2)上单调递减,所以h (a )>-4+e 2+1=e 2-3>0, 即g (a 2)>0,所以g (a 2)g (a )<0.又g ⎝ ⎛⎭⎪⎫1e =a e>0, 所以g (a )g ⎝ ⎛⎭⎪⎫1e <0, 所以方程g (x )=0在(a 2,a )和⎝ ⎛⎭⎪⎫a ,1e 上各有一个根,分别为x 1,x 2,因此函数f (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增,所以函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值. 综上所述,当0<a <e -2时,函数f (x )有2个不同的极值点. ②由题意知f ′(x 1)=0且f ′(x 2)=0, 即⎩⎪⎨⎪⎧ln x 1+a x 1+1=0, ①ln x 2+a x 2+1=0, ② 由①-②得a =ln x 2-ln x 11x 1-1x 2, ③ 由①+②得ln x 1+ln x 2+a ⎝ ⎛⎭⎪⎫1x 1+1x 2+2=0, ④ 将③代入④得ln x 1x 2+(ln x 2-ln x 1)(x 2+x 1)x 2-x 1+2=0, 所以ln x 1x 2=-⎝ ⎛⎭⎪⎫x 2x 1+1ln x 2x 1x 2x 1-1-2.又x 1x 2≤b ,所以ln b +⎝ ⎛⎭⎪⎫x 2x 1+1ln x 2x 1x 2x 1-1+2≥0.令t =x 2x 1,则t >1,令k =ln b ,则k +(t +1)ln t t -1+2≥0, 因此(k +2)(t -1)t +1+ln t ≥0在(1,+∞)上恒成立. 令φ(t )=(k +2)(t -1)t +1+ln t (t >1),则φ′(t )=2(k +2)(t +1)2+1t =t 2+2(k +3)t +1t (t +1)2,若φ′(t )≥0,则t 2+2(k +3)t +1≥0(t >1),得⎩⎪⎨⎪⎧-2(k +3)2≤1,1+2(k +3)+1≥0,解得k ≥-4,此时函数φ(t )在(1,+∞)上单调递增,所以φ(t )>0, 所以k ≥-4符合题意.当k <-4时,令t 2+2(k +3)t +1=0,Δ=4(k +3)2-4=4(k +4)(k +2)>0,所以方程t 2+2(k +3)t +1=0有两个不相等的实数根x 3,x 4(x 3<x 4), 所以x 3+x 4=-2(k +3)>0,x 3x 4=1,因此x 3<1<x 4,函数φ(t )在(1,x 4)上单调递减,所以在(1,x 4)上,φ(t )<0,所以k <-4不合题意.综上,k ≥-4,即ln b ≥-4,b ≥e -4,所以实数b 的最小值为e -4.。
第2课时导数与函数的极值、最值一、教材概念·结论·性质重现1.函数的极值与导数条件f ′(x0)=0x0附近的左侧f ′(x)>0,右侧f ′(x)<0x0附近的左侧f ′(x)<0,右侧f ′(x)>0图象形如山峰形如山谷极值 f (x0)为极大值 f (x0)为极小值极值点x0为极大值点x0为极小值点(1)函数的极大值和极小值都可能有多个,极大值和极小值的大小关系不确定.(2)对于可导函数f (x),“f ′(x0)=0”是“函数f (x)在x=x0处有极值”的必要不充分条件.(1)函数f (x)在[a,b]上有最值的条件一般地,如果在区间[a,b]上函数y=f (x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f (x)在区间[a,b]上的最大值与最小值的步骤①求函数y=f (x)在区间(a,b)上的极值;②将函数y=f (x)的各极值与端点处的函数值f (a),f (b)比较,其中最大的一个是最大值,最小的一个是最小值.(1)求函数的最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.(2)若函数f (x)在区间[a,b]内是单调函数,则f (x)一定在区间端点处取得最值;若函数f (x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.(3)函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.1.判断下列说法的正误,对的打“√”,错的打“×”.(1)函数的极大值不一定比极小值大.(√)(2)对可导函数f (x),f ′(x0)=0是x0点为极值点的充要条件.(×)(3)函数的极大值一定是函数的最大值.(×)(4)开区间上的单调连续函数无最值.(√)2.f (x)的导函数f ′(x)的图象如图所示,则f (x)的极小值点的个数为()A.1B.2C.3D.4A解析:由题意知在x=-1处f ′(-1)=0,且其两侧导数符号为左负右正,f (x)在x=-1左减右增.故选A.3.函数f (x)=2x-x ln x的极大值是()A.1e B.2e C.e D.e2C解析:f ′(x)=2-(ln x+1)=1-ln x.令f ′(x)=0,得x=e.当0<x<e时,f ′(x)>0;当x>e时,f ′(x)<0.所以x=e时,f (x)取到极大值,f (x)极大值=f (e)=e.4.若函数f (x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4 B.2或6 C.2 D.6C解析:函数f (x)=x(x-c)2的导数为f ′(x)=3x2-4cx+c2.由题意知,f (x)在x=2处的导数值为12-8c+c2=0,解得c=2或6.又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正.当c =2时,f (x )=x (x -2)2的导数在x =2处左侧为负,右侧为正,即在x =2处有极小值.而当c =6时,f (x )=x (x -6)2在x =2处有极大值.故c =2.5.函数f (x )=2x 3-2x 2在区间[-1,2]上的最大值是________. 8 解析:f ′(x )=6x 2-4x =2x (3x -2). 由f ′(x )=0,得x =0或x =23.因为f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8,所以最大值为8.考点1 利用导数求函数的极值——综合性考向1 根据函数的图象判断函数的极值(多选题)已知函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则( )A .函数f (x )有极大值f (2)B .函数f (x )有极大值f (-2)C .函数f (x )有极小值f (-2)D .函数f (x )有极小值f (2)BD 解析:由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.根据函数的图象判断极值的方法根据已知条件,分情况确定导数为0的点,及导数为0点处左右两侧导数的正负,从而确定极值类型.考向2 已知函数解析式求极值已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,定义域为(0,+∞),且f ′(x )=1x -12=2-x2x . 令f ′(x )=0,解得x =2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表. x (0,2) 2 (2,+∞)f ′(x ) + 0 - f (x )↗ln 2-1↘(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x . 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0, x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点,且为x =1a .求函数极值的一般步骤(1)先求函数f (x )的定义域,再求函数f (x )的导函数; (2)求f ′(x )=0的根;(3)判断在f ′(x )=0的根的左、右两侧f ′(x )的符号,确定极值点;(4)求出函数f (x )的极值. 考向3 已知函数的极值求参数设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)·x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x , f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0. 所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.已知函数极值点或极值求参数的两个关键(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证该点左右两侧的正负.1.(多选题)定义在区间⎣⎢⎡⎦⎥⎤-12,4上的函数f (x )的导函数f ′(x )图象如图所示,则下列结论正确的是( )A .函数f (x )在区间(0,4)单调递增B .函数f (x )在区间⎝ ⎛⎭⎪⎫-12,0单调递减 C .函数f (x )在x =1处取得极大值 D .函数f (x )在x =0处取得极小值ABD 解析:根据导函数图象可知,f (x )在区间⎝ ⎛⎭⎪⎫-12,0上,f ′(x )<0,f (x )单调递减,在区间(0,4)上,f ′(x )>0,f (x )单调递增.所以f (x )在x =0处取得极小值,没有极大值.所以A ,B ,D 选项正确,C 选项错误.故选ABD .2.(2020·青岛一模)已知函数f (x )=⎩⎨⎧3x -9,x ≥0,x e x ,x <0(e =2.718…为自然对数的底数).若f (x )的零点为α,极值点为β,则α+β=( )A .-1B .0C .1D .2C 解析:当x ≥0时,f (x )=3x -9为增函数,无极值.令f (x )=0,即3x -9=0,解得x =2,即函数f (x )的一个零点为2;当x <0时,f (x )=x e x <0,无零点,f ′(x )=e x +x e x =(1+x )e x ,则当-1<x <0时,f ′(x )>0.当x <-1时,f ′(x )<0,所以当x =-1时,函数f (x )取得极小值.综上可知,α+β=2+(-1)=1.故选C .3.函数f (x )=2x +1x 2+2的极小值为________.-12 解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2. 令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增, 所以f (x )极小值=f (-2)=-12.4.设函数f (x )=ax 3-2x 2+x +c (a ≥0).(1)当a =1,且函数图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x+1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2-4x +1=(3x -1)(x -1).令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增;在⎝ ⎛⎭⎪⎫13,1上单调递减,极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立.①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a >0时,f ′(x )≥0或 f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.考点2 利用导数求函数的最值——应用性(2020·北京卷)已知函数f (x )=12-x 2. (1)求曲线y =f (x )的斜率等于-2的切线方程;(2)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.解:(1)因为f (x )=12-x 2, 所以f ′(x )=-2x .设切点为(x 0,12-x 20),则-2x 0=-2,即x 0=1,所以切点为(1,11). 由点斜式可得切线方程为y -11=-2(x -1),即2x +y -13=0. (2)显然t ≠0,因为y =f (x )在点(t,12-t 2)处的切线方程为y -(12-t 2)=-2t (x -t ), 即y =-2tx +t 2+12.令x =0,得y =t 2+12;令y =0,得x =t 2+122t .所以S (t )=12×(t 2+12)·t 2+122|t |=(t 2+12)24|t |,t ≠0,显然为偶函数. 只需考察t >0即可(t <0时,结果一样), 则S (t )=t 4+24t 2+1444t =14⎝ ⎛⎭⎪⎫t 3+24t +144t , S ′(t )=14⎝ ⎛⎭⎪⎫3t 2+24-144t 2 =3(t 4+8t 2-48)4t 2 =3(t 2-4)(t 2+12)4t 2 =3(t -2)(t +2)(t 2+12)4t 2. 由S ′(t )>0,得t >2;由S ′(t )<0,得0<t <2.所以S (t )在(0,2)上单调递减,在(2,+∞)上单调递增,所以t =2时,S (t )取得极小值,也是最小值为S (2)=16×168=32. 综上所述,当t =±2时,S (t )min =32.求函数f (x )在区间[a ,b ]上的最大值与最小值的步骤(1)求函数在区间(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.已知k ∈⎝ ⎛⎦⎥⎤12,1,函数f (x )=(x -1)e x -kx 2. (1)求函数f (x )的单调区间; (2)求函数f (x )在[0,k ]上的最大值.解:(1)由题意得f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ).因为k ∈⎝ ⎛⎦⎥⎤12,1,所以1<2k ≤2.令f ′(x )>0,所以⎩⎨⎧ x >0,e x -2k >0或⎩⎨⎧ x <0,e x-2k <0,解得x >ln 2k 或x <0. 所以函数f (x )的单调递增区间为(ln 2k ,+∞),(-∞,0). 令f ′(x )<0,所以⎩⎨⎧x >0,e x -2k <0或⎩⎨⎧x <0,e x-2k >0,解得0<x <ln 2k . 所以函数f (x )的单调递减区间为(0,ln 2k ).所以函数f (x )的单调递增区间为(ln 2k ,+∞),(-∞,0),单调递减区间为(0,ln 2k ).(2)令φ(k )=k -ln (2k ),k ∈⎝ ⎛⎦⎥⎤12,1,φ′(k )=1-1k =k -1k ≤0. 所以φ(k )在⎝ ⎛⎦⎥⎤12,1上是减函数. 所以φ(1)≤φ(k )<φ⎝ ⎛⎭⎪⎫12.所以1-ln 2≤φ(k )<12<k ,即0<ln (2k )<k . 所以f ′(x ),f (x )随x 的变化情况如下表:f (k )-f (0)=(k -1)e k -k 3-f (0) =(k -1)e k -k 3+1 =(k -1)e k -(k 3-1)=(k -1)e k -(k -1)(k 2+k +1) =(k -1)[e k -(k 2+k +1)]. 因为k ∈⎝ ⎛⎦⎥⎤12,1,所以k -1≥0.对任意的k ∈⎝ ⎛⎦⎥⎤12,1,y =e k 的图象恒在直线y =k 2+k +1的下方, 所以e k -(k 2+k +1)≤0.所以f (k )-f (0)≥0,即f (k )≥f (0).所以函数f (x )在[0,k ]上的最大值f (k )=(k -1)e k -k 3.考点3 极值与最值的综合应用——综合性(2020·山东师范大学附中高三质评)已知函数f (x )=x 2·e ax +1-b ln x -ax (a ,b ∈R ).(1)若b =0,曲线f (x )在点(1,f (1))处的切线与直线y =2x 平行,求a 的值; (2)若b =2,且函数f (x )的值域为[2,+∞),求a 的最小值. 解:(1)当b =0时,f (x )=x 2e ax +1-ax ,x >0, f ′(x )=x e ax +1(2+ax )-a . 由f ′(1)=e a +1(2+a )-a =2,得e a +1(2+a )-(a +2)=0,即(e a +1-1)(2+a )=0,解得a =-1或a =-2. 当a =-1时,f (1)=e 0+1=2,此时直线y =2x 恰为切线,舍去.所以a =-2.(2)当b =2时,f (x )=x 2e ax +1-2ln x -ax ,x >0. 设t =x 2e ax +1(t >0),则ln t =2ln x +ax +1, 故函数f (x )可化为g (t )=t -ln t +1(t >0).由g ′(t )=1-1t =t -1t ,可得g (t )的单调递减区间为(0,1),单调递增区间为(1,+∞),所以g (t )的最小值为g (1)=1-ln 1+1=2. 此时,t =1,函数f (x )的值域为[2,+∞). 问题转化为:当t =1时,ln t =2ln x +ax +1有解, 即ln 1=2ln x +ax +1=0,得a =-1+2ln xx . 设h (x )=-1+2ln x x,x >0,则h ′(x )=2ln x -1x 2, 故h (x )的单调递减区间为(0,e),单调递增区间为(e ,+∞), 所以h (x )的最小值为h (e)=-2e ,故a 的最小值为-2e .求解函数极值与最值综合问题的策略(1)求极值、最值时,要求步骤规范,函数的解析式含参数时,要讨论参数的大小.(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.1.(2021·福建三校联考)若方程8x =x 2+6ln x +m 仅有一个解,则实数m 的取值范围为( )A .(-∞,7)B .(15-6ln 3,+∞)C .(12-61n 3,+∞)D .(-∞,7)∪(15-6ln 3,+∞)D 解析:方程8x =x 2+6ln x +m 仅有一个解等价于函数m (x )=x 2-8x +6ln x +m (x >0)的图象与x 轴有且只有一个交点.对函数m (x )求导得m ′(x )=2x -8+6x =2x 2-8x +6x =2(x -1)(x -3)x. 当x ∈(0,1)时,m ′(x )>0,m (x )单调递增; 当x ∈(1,3)时,m ′(x )<0,m (x )单调递减; 当x ∈(3,+∞)时,m ′(x )>0,m (x )单调递增,所以m (x )极大值=m (1)=m -7,m (x )极小值=m (3)=m +6ln 3-15.所以当x 趋近于0时,m (x )趋近于负无穷,当x 趋近于正无穷时,m (x )趋近于正无穷,所以要使m (x )的图象与x 轴有一个交点,必须有m (x )极大值=m -7<0或m (x )极小值=m +6ln 3-15>0,即m <7或m >15-6ln 3.故选D . 2.已知函数f (x )=⎩⎨⎧-x 3+x 2(x <1),a ln x (x ≥1).(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值.解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0时,函数f (x )取得极小值为f (0)=0,函数f (x )的极大值点为x =23. (2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0, 所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e ]上单调递增, 则f (x )在 [1,e ]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e ]上的最大值为a ; 当a <2时,f (x )在[-1,e ]上的最大值为2.。