华师大版九年级数学上 第24章 解直角三角形《练闯考》2015年秋章末检测(含答案)
- 格式:doc
- 大小:570.00 KB
- 文档页数:12
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,在正方形中,是等边三角形,,的延长线分别交于点,,连接,,与相交于点.有下列结论:① ;② ;③ ;④.其中正确的个数是()A.1B.2C.3D.42、如图,一艘船由港沿北偏东65°方向航行至港,然后再沿北偏西40°方向航行至港,港在港北偏东20°方向,则,两港之间的距离为().A. B. C. D.3、如图,中,,,,若,则的长为()A.6B.C.7.5D.104、如图,⊙O直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足M,OM:OD=3:5,则AB 的长是()A. cmB. cmC. cmD. cm5、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16B.18C.20D.16或206、△ABC中,∠B=90°,AC=,tan∠C=,则BC边的长为()A.2B.2C.D.47、以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数为()A.1个B.2个C.3个D.4个8、如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面FA,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.99、如图,在直角坐标系中,四边形 OABC 为菱形,对角线 OB、AC 相交于 D 点,已知 A点的坐标为(10,0),双曲线 y= ( x>0 )经过 D 点,交BC 的延长线于 E 点,且OB•AC=120(OB>AC),有下列四个结论:①双曲线的解析式为y=(x>0);②E 点的坐标是(4,6);③sin∠CO A= ;④EC= ;⑤AC+OB=8 .其中正确的结论有()A.4 个B.3 个C.2 个D.1 个10、如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A. B. C. D.11、如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A.①②③B.①②④C.①③④D.①②③④12、两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A.4个B.5个C.8个D.10个13、三角形两条边分别为3和7,则第三边可以为()A.9B.3C.2D.1014、下列长度的各组线段中可组成三角形的是( )A.1,2,3B.2,3,5C.3,3,6D. ,,15、以长为3cm,5cm,7cm,10cm的四条线段中的三条线段为边可以画出三角形的个数为( )A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,直线y=﹣x+4与两坐标轴交A、B两点,点P为线段OA上的动点,连接BP,过点A作AM垂直于直线BP,垂足为M,当点P从点O运动到点A 时,则点M运动路径的长为________.17、如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为________.18、如图,水库大坝的横截面是梯形,坝顶AD宽5米,坝高10米,斜坡CD的坡角为45°,斜坡AB的坡度i=1:1.5,那么坝底BC的长度为________米.19、如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为________米.20、如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC= ,则BC的长为________.21、已知三角形的两边长是3和4,周长是偶数,则这样的三角形的第三边是________.22、如图,当太阳光与地面成角时,直立于地面的玲玲测得自己的影长为1.25m,则玲玲的身高约为________ m.(精确到0. 01m)(参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428).23、将一张长方形纸片ABCD如图所示折叠,使顶点C落在点,已知,,则折痕DE的长为________(用含a的式子表示).24、如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上。
第24章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( )A .sin A =32 B .tan A =12 C .cos B =32D .tan B =32.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b 3.计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5 3D .5 4.(2014·巴中)在Rt △ABC 中,∠C =90°,sin A =513,则tan B 的值为( )A 、1213B 、512C 、1312D 、1255.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠A 的正弦值是( )A 、3510B 、12C 、255D 、556.如果∠A ,∠B 均为锐角,且2sin A -1+(3tan B -3)2,那么△ABC 是( )A .锐角三角形B .直角三角形C .等边三角形D .钝角三角形7.(2014·凉山州)如图,河堤横断面迎水坡AB 的坡比是1∶3,堤高BC =10 m ,则坡面AB 的长度是( )A .15 mB .20 3 mC .20 mD .10 3 m第7题图 第8题图 第9题图8.如图,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α,AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D ,且AC =3,BD =6,CD =11,则tan α的值为( )A 、113B 、311C 、911D 、1199.(2014·绵阳)如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( )A .40 2 海里B .40 3 海里C .80海里D .40 6 海里10.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( )A .20米B .10 3 米C .15 3 米D .5 6 米 二、填空题(每小题3分,共24分)11.(2014·锦州)计算:tan 45°-13(3-1)0=____.12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinA 的值是____.13.如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为____米.第12题图 第13题图 第14题图14.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE =6 cm ,sinA =35,则菱形ABCD 的面积是____cm 2、15.将一副三角尺如图所示叠放在一起,则BEEC的值是____.16.如图,△ABC 的顶点A ,C 的坐标分别是(0,4),(3,0),且∠ACB =90°,∠B =30°,则顶点B 的坐标是_____________.第15题图 第16题图 第18题图17.△ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为. 18.(2014·宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5 米,宽2、2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(2≈1、4)三、解答题(共66分) 19.(8分)计算:(1)(-2)2+|-3|+2sin 60°-12; (2)6tan 230°-3cos 30°-2sin 45°、20.(8分)(2014·重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sinC 的值.21.(8分)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A,B,C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.22.(10分)(2014·乐山)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E,若AD=1,AB=23,求CE的长.23、(10分)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0、01米;参考数据:sin62°≈0、88,cos62°≈0、47,tan50°≈1、20)24.(10分)(2014·泰州)图①,②分别是某型号跑步机的实物图与示意图,已知踏板CD 长为1、6 m,CD与地面DE的夹角∠CDE为12°,支架AC长为0、8 m,∠ACD为80°,求跑步机手柄的一端A的高度h、(精确到0、1 m;参考数据:sin12°=cos78°≈0、21,sin68°=cos22°≈0、93,tan68°≈2、48)25.(12分)如图,已知斜坡AB长602米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE、(1)若修建的斜坡BE的坡比为3∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°,点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?参考答案一、选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( D )A .sin A =32 B .tan A =12 C .cos B =32D .tan B =32.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( A )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b 3.计算6tan45°-2cos60°的结果是( D )A .4 3B .4C .5 3D .5 4.(2014·巴中)在Rt △ABC 中,∠C =90°,sin A =513,则tan B 的值为( D )A 、1213B 、512C 、1312D 、1255.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠A 的正弦值是( D )A 、3510B 、12C 、255D 、556.如果∠A ,∠B 均为锐角,且2sin A -1+(3tan B -3)2,那么△ABC 是( B )A .锐角三角形B .直角三角形C .等边三角形D .钝角三角形7.(2014·凉山州)如图,河堤横断面迎水坡AB 的坡比是1∶3,堤高BC =10 m ,则坡面AB 的长度是( C )A .15 mB .20 3 mC .20 mD .10 3 m第7题图 第8题图 第9题图8.如图,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α,AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D ,且AC =3,BD =6,CD =11,则tan α的值为( D )A 、113B 、311C 、911D 、1199.(2014·绵阳)如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( A )A .40 2 海里B .40 3 海里C .80海里D .40 6 海里10.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .10 3 米C .15 3 米D .5 6 米 二、填空题(每小题3分,共24分)11.(2014·锦州)计算:tan 45°-13(3-1)0=__23__.12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinA 的值是4. 13.如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为__100__米.第12题图 第13题图 第14题图14.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE =6 cm ,sinA =35,则菱形ABCD 的面积是__60__cm 2、15.将一副三角尺如图所示叠放在一起,则BE EC 的值是3.16.如图,△ABC 的顶点A ,C 的坐标分别是(0,4),(3,0),且∠ACB =90°,∠B =30°,则顶点B 的坐标是.第15题图 第16题图 第18题图17.△ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为. 18.(2014·宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5 米,宽2、2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出__17__个这样的停车位.(2≈1、4)点拨:如图,BC =2、2×sin 45°≈1、54,CE =5×sin 45°≈3、5,BE =BC +CE ≈5、04,EF =2、2÷sin 45°≈3、14,(56-5、04)÷3、14+1≈16+1=17(个),故这个路段最多可以划出17个这样的停车位 三、解答题(共66分) 19.(8分)计算:(1)(-2)2+|-3|+2sin 60°-12; 解:4(2)6tan 230°-3cos 30°-2sin 45°、 解:12-220.(8分)(2014·重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sinC 的值.解:121321.(8分)如图,湖中的小岛上有一标志性建筑物,其底部为A ,某人在岸边的B 处测得A 在B 的北偏东30°的方向上,然后沿岸边直行4公里到达C 处,再次测得A 在C 的北偏西45°的方向上(其中A ,B ,C 在同一平面上).求这个标志性建筑物底部A 到岸边BC 的最短距离.解:过A 作AD ⊥BC 于点D ,则AD 的长度就是A 到岸边BC 的最短距离.在Rt △ACD 中,∠ACD =45°,设AD =x ,则CD =AD =x ,在Rt △ABD 中,∠ABD =60°,BD =xtan60°=33x ,又BC =4,即BD +CD =4,所以33x +x =4,解得x =6-23,则这个标志性建筑物底部A 到岸边BC 的最短距离为(6-23)公里22.(10分)(2014·乐山)如图,在梯形ABCD 中,AD ∥BC ,∠ADC =90°,∠B =30°,CE ⊥AB ,垂足为点E ,若AD =1,AB =23,求CE 的长.解:过点A 作AH ⊥BC 于点H ,则AD =HC =1,在△ABH 中,BH =AB ·cos 30°=3,∴BC =BH +BC =4,∵CE ⊥AB ,∴CE =BC ·sin 30°=223、(10分)如图,一堤坝的坡角∠ABC =62°,坡面长度AB =25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB =50°,则此时应将坝底向外拓宽多少米?(结果保留到0、01米;参考数据:sin 62°≈0、88,cos 62°≈0、47,tan 50°≈1、20)解:过A 点作AE ⊥CD 于点E ,在Rt △ABE 中,AE =AB ·sin 62°≈22,BE =AB ·cos 62°≈11、75,在Rt △ADE 中,DE =AE tan50°≈18、33,∴DB =DC -BE ≈6、58,故此时应将坝底向外拓宽大约6、58米24.(10分)(2014·泰州)图①,②分别是某型号跑步机的实物图与示意图,已知踏板CD 长为1、6 m ,CD 与地面DE 的夹角∠CDE 为12°,支架AC 长为0、8 m ,∠ACD 为80°,求跑步机手柄的一端A 的高度h 、(精确到0、1 m ;参考数据:sin 12°=cos 78°≈0、21,sin 68°=cos 22°≈0、93,tan 68°≈2、48)解:过C 点作FG ⊥AB 于点F ,交DE 于点G 、∵CD 与地面DE 的夹角∠CDE 为12°,∠ACD 为80°,∴∠ACF =90°+12°-80°=22°,∴∠CAF =68°,在Rt △ACF 中,CF =AC ·sin ∠CAF ≈0、744,在Rt △CDG 中,CG =CD ·sin ∠CDE ≈0、336,∴FG =FC +CG ≈1、1,故跑步机手柄的一端A 的高度约为1、1 m25.(12分)如图,已知斜坡AB 长602米,坡角(即∠BAC )为45°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE 、(1)若修建的斜坡BE 的坡比为3∶1,求休闲平台DE 的长是多少米?(2)一座建筑物GH 距离A 点33米远(即AG =33米),小亮在D 点测得建筑物顶部H 的仰角(即∠HDM )为30°,点B ,C ,A ,G ,H 在同一个平面内,点C ,A ,G 在同一条直线上,且HG ⊥CG ,问建筑物GH 高为多少米?解:(1)∵FM ∥CG ,∴∠BDF =∠BAC =45°,∵斜坡AB 长602,D 是AB 的中点,∴BD =302,∴DF =BD ·cos ∠BDF =30,BF =DF =30,∵斜坡BE 的坡比为3∶1,∴BF EF =31,∴EF =103,∴DE =DF -EF =30-103,即休闲平台DE 的长是(30-103)米 (2)设GH =x 米,则MH =GH -GM =x -30,DM =AG +AP =33+30=63,在Rt △DMH 中,tan 30°=MH DM ,即x -3063=33,解得x =30+213,则建筑物GH 的高为(30+213)米。
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、下列各组长度的线段能构成三角形的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,112、如图,在2×2正方形网格中,以格点为顶点的△ABC的面积等于,则sin∠CAB=()A. B. C. D.3、如图,已知菱形ABCD,DF1BC交AC于点,交C于点F,若tan∠BDF= ,AB=30,则CE的长是()A. B. C. D.4、在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为()(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<165、在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2,则AC长为()A.4B.2C.1D.6、如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A. B. C. D.7、如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50B.60C.70D.808、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的一组是()A.2、4、6B.4、6、8C.8、10、12D.6、8、109、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB的值为()A. B. C. D.310、如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;② ;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④11、在下面四根木棒中,选一根能与长为4cm,9cm的两根木棒首尾依次相接钉成一个三角形的是()A.4cmB.5cmC.9cmD.13cm12、下列是无理数的是()A. B. C.0.202002000… D.13、已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根,则这个三角形的周长为( )A.11B.17C.17或19D.1914、在△ABC中,∠C=90°,cosA=, AC=6,则AB的长度为()A.8B.10C.12D.1415、如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是()A.30°B.60°C.45°D.75°二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.17、如图,在Rt△ABC中,∠ACB=90°,,CM是斜边AB的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A=________.18、点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°, 点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是________.19、一个直角三角形斜边上的高与中线分别是5㎝和6㎝,则它的面积是________ .20、等腰三角形的两边长为3 和,那么它的周长为________.21、如图,已知,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE.点P,C,E在一条直线上,,M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,点M、N之间的距离最短为________.22、在扇形纸片AOB中,∠AOB=90°,OA=4,将扇形纸片AOB按如图所示折叠,使对折后点A与点O重合,折痕为DE,则的长度为________.23、如图,Rt△ACB中,∠ACB=90°,AC=2BC=4,点P为AB边中点,点D为AC 边上不与端点重合的一动点,将△ADP沿着直线PD折叠得△PDE,若DE⊥AB,则AD的长度为________。
第24章 解直角三角形检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分) 1.计算:tan 45° + Sin 30° =( )2. 在直角三角形ABC 中,已知ZC = 9O% ZA = 40o, BC = 3,则AC = () A. 3sin 40oB. 3sin 50oC. 3taιι 40oD. 3tail 50°3. (2013 <江温州中考)如图,在ZMBC 中,ZC=903AB = 5,3C = 3,则Sin A 的値是()c∙l4•如图•四边形個S 是梯形,AD//BC. Ci 是Z 万C 的平分线,且ABLAa ZIg1, Q6,则 tan B≡( ) 5.如图.Rt △遊中,ΛB = 9,BC = 6,ZB = 90o,将△磁折叠,使月点与庞的中点Q 重合. 折痕为MV,则线段Ey 的长为()7.已知AD//BC^ AB 丄AP ,点E,点尸分别在射线初,射线兀上,若点E 与点B 关于AC 对称,点E 与点F 关于对称,AC 与3D 相交于点G •则() A. 1+ tan ZADB = V∑C. ZAEB+22? = ZDEFA-2C. 一l + √3 2β∙iA. 2y 3B. 2vr2c∙τ第3題图C.4D. 56.在△/!恭中, 若三边 BU CA,曲满足 BC : CA : AB=5 : 12 : 13,则 COS 庆(12 13 D.Z13B. 2BC = 5CF D. 4cosZAGB = >∕62第5题图B第8题图第9题图8•河堤横断面如图所示,堤高於6 m,迎水坡曲的坡比为1 : v J,则曲的长为(A. 12 InB. 4√3 mC. 5√3 mD. 6√3 m9•如图∙ 一个小球由地而沿着坡度/=1:2的坡面向上前进了 10 m,此时小球距离地面的髙 度为( )•310.如图,在菱形ABCD 中,DE 丄ΛB ∙ cosA = - , BE=2,贝IJtanZDBE 的值是()第17题图16. 已知等腰三角形的腰长为2,腰上的A. 5 mB. 2A /5 mA. 1B-2 c∙T11.已知直角三角形两直角边长之和为7,而积为6,则斜边长为(A. 5B- √37C. 712•如图•已知:45o<ZJ<90o,则下列各式成立的是( )A. Sin A=COS AB. Sin A>cos AC. Sin Λ>tan A->填空题(每小题3分,共18分)D. Sin A<cos A13•比较大小:8cos 31° _______ 届.(填“>—二”或 “V”)14. 如图,在△月氏中,Z 血¢30° , AB^Aa 肋是證边上的中线,Z M 决丄ZBAC 9CE 交朋于点E …交AD 于点氏若Be=‰则前的长 2 为 ___________ ・ 15. 如图,小兰想测量南塔的髙度,她在A 处仰望塔顶,测得仰角为 30° ,再往塔的方向前进50 m 至B 处,测得仰角为60° ,那么塔髙约为 ____________ 血(小兰身髙忽略不计,≈ 1.732)第Iel 题)高为1,则它的底角等于 ___________ ・17.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的宜角三角形围成的,^AC =6, SC = 5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是 ________________________________ •18•在Rt△遊中,ZC二90° , AB^2BG现给出下列结论:①Sin A=—:②COS 5=1 :③tan A=—:④tan 5=75 ,2 2 3苴中正确的结论是 ____________ •(只需填上正确结论的序号)三、解答题(共78分)19 (8分)计算下列各题:ω√2(2cos45β-s in60β)+^; (2) (-2)° -3tan30β+1√3 - 24 I21.(10分)如图.在一笔直的海岸线2上有乩万两个观测站,月在万的正东方向,AB-2 (单位:加)・有一艘小船在点P处,从E测得小船在北偏西60°的方向,从万测得小船在北偏东45°的方向・(1)求点P到海岸线』的距离:(2)小船从点尸处沿射线汕的方向航行一段时间后,到达点Q处,此时,从万测得小船在北偏西15°的方向•求点Q与点万之间的距离.(上述2小题的结果都保留根号)22.(10分)如图,为了测量某建筑物切的髙度,先在地面上用测角仪自月处测得建筑物顶部的仰角是30° ,然后在水平地而上向建筑物前进了 IoOllb此时自万处测得建筑物顶部的仰角是45°・已知测角仪的高度是1. 5 m,请你计算出该建筑物的髙度•(取√323.(8 分)如图,在梯形ABCD中,AD//BC. AB = CD = AD. BDLCD.(1)求SinZDBC的值:(2)若BC长度为4 cm,求梯形ABCD的而积.24.(10分)如图,在一次数学课外实践活动中,小文在点Q处测得树的顶端川的仰角为37° ,Q20 m,求树的高度月3(参考数据:Sin 37 ≈0.60, COS 37 ≈0.80, tan 37 ≈0.75 )25.(10分)如图,在小山的东侧A处有一热气球,以每分钟30 m的速度沿着仰角为60。
第24章《解直角三角形》单元测试参考答案一.选择题(每小题3分,共24分)1答案:D.解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.2.答案:D.解:在直角△OAC中,OC=2,AC=3,则OA===,则sin∠AOB===.故选D.3.答案:A.解:在Rt△BDC中,BF=CF,∴DF=BC,Rt△ABC中,AE=CE,∴BE=AC,∵BC<AC,∴BE>DF,故选:A.4.答案:D.解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.5.答案:C.解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.6.答案:C.解:作ME⊥OB于E,∵MD⊥OB,∠OMD=75°,∴∠MOD=15°,∵OM平分∠AOB,∴∠AOB=2∠MOD=30°,∵MC∥OB,∴∠ECM=∠AOB=30°,∴EM=MC=4,∵OM平分∠AOB,MD⊥OB,ME⊥OB,∴MD=ME=4,故选:C.7.答案:B.解:连接AH,CH,∵在四边形ABCD中,∠BCD=∠BAD=90°,H是BD的中点,∴AH=CH=BD.∵点G时AC的中点,∴HG是线段AC的垂直平分线,∴∠EGH=90°.∵∠BEC=80°,∴∠GEH=∠BEC=80°,∴∠GHE=90°﹣80°=10°.故选B.8.答案:C.解:如图:过点M作MN⊥AC于点N,根据题意得:∠MAN=60°﹣30°=30°,∠BCM=75°,∠DCA=60°,∴∠MCN=180°﹣75°﹣60°=45°,设MN=x米,在Rt△AMN中,AN==x(米),在Rt△CMN中,CN==x(米),∵AC=1000米,∴x+x=1000,解得:x=500(﹣1),∴AN=x≈634(米).故选C.二.填空题(每小题3分,共24分)9.答案:55°.解:∵sinα=cos35°,∴α=90°﹣35°=55°,故答案为55°.10.答案:.解:∵A(﹣1,3),∴OA=,∴角α的余弦值为=;故答案为:.11.答案:0°<∠A<45°.解:∵∠A是Rt△ABC的一个内角,∴∠A<90°,∵sinA<,∴0°<∠A<45°.12.答案:.解:∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BDA=∠ADC=90°,∴∠CBE=∠DAC,∵∠ADC=90°,AD=4,AC=6,∴CD=,∴sin,∴sin∠EBC=,故答案为:.13.答案:.解:令α=45°,β=30°,则sin15°=×﹣×,=.故答案为:.14.答案:1﹣.解:∵30°<α<β<90°,∴cosβ<cosα,cosβ<.∴原式=|cosβ﹣cosα|+cosβ﹣+1﹣cosα=﹣cosβ+cosα+cosβ﹣+1﹣cosα=1﹣.故答案为:1﹣.15.答案:150a.解:如图,作BA边的高CD,设与BA的延长线交于点D,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD=×20×15=150m2,∵每平方米售价a元,∴购买这种草皮的价格为150a 元.故答案为:150a.16.答案:.解:如图,延长AD交地面于E,过D作DF⊥CE于F.∵∠DCF=45°,∠A=60°,CD=4m,∴CF=DF=m,EF=DFtan60°=(m).∵,∴(m).三.解答题(8个小题,共72分)17. 解:(1)原式=4×﹣×+×=1+3;(2)原式=•+()2﹣+2×=+﹣+=1+.18. 解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.19. 解:∵点E是Rt△ABC,Rt△ACD斜边AC的中点,∴BE=DE=AC=CE,DE⊥AC,∴∠ACB=∠EBC,∠BDE=∠EBD,又∵∠ACB=30°,∴∠AEB=∠EBC+∠ECB=30°+30°=60°∴∠BED=∠BEA+∠DEA=60°+90°=150°∴∠BDE=(180°﹣∠BED)=(180°﹣150°)=15°.20. 解:如图,PQ⊥AB于点C.∵在Rt△QBC中,QC:BC=5:12,∴设QC=5x米,BC=12x米,∵BQ=13米,∴(5x)2+(12x)2=132,∴x=±1(负值舍去),∴QC=5米,BC=12米.∵AB=8米,∴AC=AB+BC=20米.∵tanα=0.75,∴=0.75,即=0.75,∴PC=15.∴PQ=PC﹣QC=15﹣5=10米.答:香樟树PQ的高度为10米.21.解:如图,作BE⊥l于点E,DF⊥l于点F.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.22.解:(1)作AD⊥OC,易知台风中心O与A市的最近距离为AD的长度,∵由题意得:∠DOA=45°,OA=60km,∴AD=DO=60÷=60km,∵60>50,∴A市不会受到此台风的影响;(2)作BG⊥OC于G,∵由题意得:∠BOC=30°,OB=80km,∴BG=OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∴EG==30km,∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5小时,∴影响时间约为1.5小时.23. 解:过点N作NF⊥AE于点F,则四边形NDEF为矩形,ND=EF,设BF=x米,在Rt△BMF中,∵∠BMF=30°,∴MF=BF=x,∵MN=10米,∴NF=x﹣10,∵∠ANF=45°,∴AF=NF=x﹣10,∴x﹣10+1.7=18.7,解得:x=9,则AB=AF﹣BF=17﹣9.即广告屏幕AB的长度为(17﹣9)米.24.解:(1)△A1A2B2是等边三角形,理由如下:连结A1B2.∵甲船以每小时30海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=30×=10,又∵A2B2=10,∠A1A2B2=60°,∴△A1A2B2是等边三角形;(2)如图,∵B1N∥A1A2,∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,∴∠A1B1B2=75°﹣15°=60°.∵△A1A2B2是等边三角形,∴∠A2A1B2=60°,A1B2=A1A2=10,∴∠B1A1B2=105°﹣60°=45°.在△B1A1B2中,∵A1B2=10,∠B1A1B2=105°﹣60°=45°,∠A2A1B2=60°,由阅读材料可知,=,解得B1B2==,所以乙船每小时航行:÷=20海里.。
九年级数学上册第24章解直角三角形检测卷华东师大版有答案第24章检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( C )A.55B.5C.12 D.2,第1题图) ,第2题图) ,第3题图) ,第4题图)2.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比为1∶3(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是( A ) A.53米 B.102米 C.15米 D.10米3.如图,正方形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则cos∠OMN的值为( B )A.12B.22C.32 D.14.如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=35,AB=4,则AC的长为( C )A.3 B.165 C.203 D.1635.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( D )A.4 B.5 C.23 D.833,第5题图) ,第9题图) ,第10题图)6.在△ABC中,若sinA=32,tanB=1,则这个三角形是( A ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形7.式子2cos30°-tan45°-(1-tan60°)2的值是( B )A.23-2 B.0 C.23 D.28.李红同学遇到了这样一道题:3tan(α+20°)=1,你认为锐角α的度数应是( D )A.40° B.30° C.20° D.10°9.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有( C )A.1组 B.2组 C.3组 D.4组10.如图,某人在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡角i为1∶3,点P,H,B,C,A在同一个平面上,点H,B,C 在同一条直线上,且PH⊥HC.则A,B两点间的距离是( B )A.15米 B.203米 C.202米 D.103米二、细心填一填(每小题3分,共24分)11.若α为锐角,cosα=35,则sinα=__45__,tanα=__43__.12.在Rt△ABC中,∠C=90°,tanA=512,△ABC的周长为18,则S△ABC=__545__.13.在△ABC中,若|2cosA-1|+(3-tanB)2=0,则∠C=__60°__.14.如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°,根据图形计算tan15°=__2-3__.,第14题图) ,第15题图) ,第16题图) ,第17题图) 15.(2017•仙桃)为加强防汛工作,某市对一拦水坝进行加固.如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=123米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE=3133,则CE的长为__8__米.16.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为__123__.(结果保留根号)17.如图,在Rt△ABC中,∠C=90°,AC=3,tanA=43.点D,E分别是边BC,AC上的点,且∠EDC=∠A.将△ABC沿DE所在直线对折,若点C恰好落在边AB上,则DE的长为__12548__.18.(2017•舟山)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=13,tan∠BA3C=17,计算tan∠BA4C=__113__,…按此规律,写出tan∠BAnC=__1n2-n+1__(用含n的代数式表示).三、用心做一做(共66分)19.(10分)解下列各题:(1)先化简,再求代数式(1x+x+1x)÷x+2x2+x的值,其中x=3cos30°+12;解:原式=x+1,当x=2时,原式=3(2)已知α是锐角,且sin(α+15°)=32.计算8-4cosα-(π-3.14)0+tanα+(13)-1的值.解:α=45°,原式=320.(8分)解下列各题:(1)已知∠A,∠B,∠C是锐角三角形ABC的三个内角,且满足(2sinA -3)2+tanB-1=0,求∠C的度数;解:75°(2)(原创题)已知tanα的值是方程x2-x-2=0的一个根,求式子3sinα-cosα2cosα+sinα的值.解:∵方程的根为x1=2,x2=-1.又∵tanα>0,∴tanα=2,∴原式=3tanα-12+tanα=3×2-12+2=5421.(10分)如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=12,求AD的长.解:(1)∵AD是BC上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°,在Rt△ABD和Rt△ADC中,∵tanB=ADBD,cos∠DAC=ADAC,又tanB =cos∠DAC,∴ADBD=ADAC,∴AC=BD (2)在Rt△ADC中,sinC=1213,故可设AD=12k,AC=13k,∴CD=AC2-AD2=5k.∵BC=BD+CD,AC=BD,∴BC=13k+5k=18k,∴18k=12,∴k=23,∴AD=12k =12×23=822.(8分)(2017•绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB=30 m.(1)求∠BCD的度数;(2)求教学楼的高BD.(结果精确到0.1 m,参考数据:tan20°≈0.36,tan18°≈0.32)解:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD =∠DCE+∠BCE=18°+20°=38°(2)由题意得:CE=AB=30 m,在Rt△CBE中,BE=CE•tan20°≈10.80(m),在Rt△CDE中,DE=CE •tan18°≈9.60(m),∴教学楼的高BD=BE+DE=10.80+9.60≈20.4(m),则教学楼的高约为20.4 m23.(8分)(2017•南京)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C 在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:过C作CH⊥AD于H.设CH=x km,在Rt△ACH中,∠A=37°,∵tan37°=CHAH,∴AH=CHtan37°=xtan37°,在Rt△CEH中,∵∠CEH=45°,∴CH=HD. ∵CH⊥AD,BD⊥AD,∴CH∥BD,∴AHHD=ACCB. ∵AC=CB,∴AH=HD,∴xtan37°=x+5,∴x=5•tan37°1-tan37°≈15,∴AE=AH+HE=15tan37°+15≈35(km),∴E处距离港口A有35 km24.(10分)(2017•内江)如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)解:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC-∠EBC =60°-30°=30°.又∵∠BCD=90°,∴∠BDC=90°-∠DBC=90°-60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=x m.则DE=BE=2EC=2x m,DC=EC+DE=x+2x=3x m,BC=BE2-EC2=(2x)2-x2=3x,由题知,∠DAC=45°,∠DCA=90°,AB=60,∴△ACD 为等腰直角三角形,∴AC=DC.∴3x+60=3x,解得:x=30+103,2x=60+203.答:塔高约为(60+23) m25.(12分)(2017•资阳)如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1∶3的斜坡向上走到点F时,DF正好与水平线CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.01).(注:sin67°≈0.92,tan67°≈2.36,2≈1.41,3≈1.73)解:(1)过点F作FH⊥CE于H.∵FH∥DE,DF∥HE,∠FHE=90°,∴四边形FHED是矩形,则FH=DE,在Rt△CDE中,DE=CE•tan∠DCE =9×tan30°=33(米),∴FH=DE=33(米).答:点F到CE的距离为33米(2)∵CF的坡度为1∶3,∴在Rt△FCH中,CH=3FH=9(米),∴EH=DF=18(米),在Rt△BCE中,BE=CE•tan∠BCE=9×tan67°≈21.24(米),∴AB=AD+DE-BE=18+33-21.24≈1.95(米).答:宣传牌AB的高度约为1.95米。
华师大版九年级数学上册期末专题:第24章解直角三角形单元检测试卷一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A. B. C. D.2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A. 15B. 16C. 18D. 193.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E.如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A. 120mB. 67.5mC. 40mD. 30m4.等腰三角形的周长为20cm,腰长为x cm,底边长为y cm,则底边长与腰长之间的函数关系式为()A. y=20﹣x(0<x<10)B. y=20﹣x(10<x<20)C. y=20﹣2x(10<x<20)D. y=20﹣2x(5<x<10)5.一段拦水坝横断面如图所示,迎水坡AB的坡度为i=1:,坝高BC=6m,则坡面AB的长度()A. 12mB. 18mC. 6D. 126.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3007.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A. 4.5米B. 6米C. 7.2米D. 8米8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A. 10B. 12C. 14D. 169.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A. 5米B. 6米C. 8米D. (3+ )米10.如图,在□ABCD中,AB∶AD=3∶2,∠ADB=60°,那么cosA的值等于()A. B. C. D.二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________.13.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的正切值是 ,则x=________,cosα=________.15.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=________16.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= +1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.20.已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B 两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= , cos53 °= , tan53 °= ,≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD 的高度(=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈ ,tan37°≈ ,sin21°≈ ,tan21°≈ )27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= =5.∴sinA= ,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。
九年级数学上学期:第24章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在平面直角坐标系内有一点P(3,4),若OP 与x 轴正半轴的夹角为α,下列结论正确的是( A )A .tan α=43B .tan α=45C .sin α=35D .cos α=542.(三明中考)如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( A )A .m sin35°B .m cos35° C.m sin35° D.mcos35° ,第2题图) ,第5题图),第7题图)3.计算6tan 45°-2cos 60°的结果是( D )A .4 3B .4C .5 3D .54.在Rt △ABC 中,∠C =90°,sin A =513,则tan B 的值为( D ) A.1213 B.512 C.1312 D.1255.如图,网格中的小正方形的边长均为1,点A ,B ,O 都在格点上,则∠A 的正弦值是( D )A.3510B.12C.255D.556.如果∠A,∠B 均为锐角,且2sin A -1+(3tan B -3)2=0,那么△ABC 是( B )A .锐角三角形B .直角三角形C .等边三角形D .钝角三角形 7.如图,河堤横断面迎水坡AB 的坡比是1∶3,堤高BC =10 m ,则坡面AB 的长度是( C )A .15 mB .20 3 mC .20 mD .10 3 m8.如图,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α,AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D ,且AC =3,BD =6,CD =11,则tan α的值为( D )A.113B.311C.911D.119,第8题图) ,第9题图),第10题图)9.江津四面山是国家5A 级风景区,里面有一个景点被誉为亚洲第一岩——土地神岩,土地神岩壁画高度从石岩F 处开始一直竖直到山顶E 处,为了测量土地神岩上壁画的高度,小明从山脚A 处,沿坡度i =0.75的斜坡上行65米到达C 处,在C 处测得山顶E 处仰角为26.5°,再往正前方水平走15米到达D 处,在D 处测得壁画底端F 处的俯角为42°,壁画底端F 处距离山脚B 处的距离是12米,A ,B ,C ,D ,E ,F 在同一平面内,A ,B 在同一水平线上,EB ⊥AB ,根据小明的测量数据,则壁画的高度EF 为(精确到0.1米,参考数据:sin 26.5°≈0.45,cos 26.5°≈0.9,tan 26.5°≈0.5,sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.9)(A)A .49.5米B .68.7米C .69.7米D .70.2米10.如图,从点A 处观测一山坡上的电线杆PQ ,测得电线杆顶端P 的仰角是45°,向前走6 m 到达B 点,测得电线杆顶端P 和底端Q 的仰角分别是60°和30°,则该电线杆PQ 的高度(A) A .6+2 3 B .6+ 3 C .10- 3 D .8+ 3二、填空题(每小题3分,共24分)11.计算:tan 45°-13(3-1)0=__23__. 12.如图,某山坡的坡面AB =200米,坡角∠BAC=30°,则该山坡的高BC 的长为__100__米.13.如图,∠B =∠C,DE ⊥BC 于E ,EF ⊥AB 于F ,∠ADE 等于140°,∠FED =__50°__.,第12题图) ,第13题图),第14题图)14.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE =6 cm ,sin A =35,则菱形ABCD 的面积是__60__cm 2.15.将一副三角尺按如图所示叠放在一起,则BE EC 的值是__33__. 16.如图,△ABC 的顶点A ,C 的坐标分别是(0,4),(3,0),且∠ACB=90°,∠B =30°,则顶点B 的坐标是__(3+43,33)__.,第15题图) ,第16题图),第18题图)17.在△ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为__23+5或23-5__.18.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5 米,宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出__17__个这样的停车位.(2≈1.4)三、解答题(共66分)19.(8分)计算:(1)(-12)0+(13)-1·23-|tan 45°-3|; (2)24sin 45°+cos 230°-12·tan 60°+2sin 60°.解:2+3 解:1+53620.(8分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:121321.(8分)(2018·岳阳)图1是某小区入口实景图,图2是该小区入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),∠AOM =60°.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3≈1.73,结果精确到0.01米)解:(1)如图,过M 作MN⊥AB 于N ,交BA 的延长线于N ,在Rt △OMN 中,∠NOM =60°,OM=1.2,∴∠M=30°,∴ON=12OM=0.6,∴NB=ON+OB=3.3+0.6=3.9,即点M到地面的距离是3.9米.(2)取CE=0.65,EH=2.55,∴HB=3.9-2.55-0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P.∵∠GOP=30°,∴tan30°=GPOP=33,∴GP=33OP=1.73×0.73≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.22.(10分)(2018·铁岭)如图,某地质公园中有两座相邻小山.游客需从左侧小山山脚E处乘坐竖直观光电梯上行100米到达山顶C处,然后既可以沿水平观光桥步行到景点P 处,也可以通过滑行索道到达景点Q处,在山顶C处观测坡底A的俯角为75°,观测Q处的俯角为30°,已知右侧小山的坡角为30°.(图中的点C,E,A,B,P,Q均在同一平面内,点A,Q,P在同一直线上)(1)求∠CAP的度数及CP的长度;(2)求P,Q两点之间的距离.(结果保留根号)解:(1)∵PC∥AB,∴∠APC=∠PAB=30°,∴∠CAP=180°-75°-30°=75°,∴∠CAP=∠PCA,∴PC=AP,过P作PF⊥AB于F,则PF=CE=100,∴PA=2PF=200米,∴PC=PA=200米.(2)∵∠PCQ=∠QPC=30°,∴CQ=PQ.过Q作QH⊥PC于H,∴PH=12PC=100,∴PQ=PHcos30°=20033米.答:P,Q两点之间的距离是20033米.23.(8分)(2018·镇江)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度.(精确到0.1米,参考值:2≈1.41,3≈1.73)解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6 m,HF=GE=8 m,MF=BE,HN=GD,MN=BD=24 m,设AM=x m,则CN=x m,在Rt△AFM中,MF=AMtan45°=x1=x,在Rt△CNH中,HN=CNtan30°=x33=3x,∴HF=MF+HN-MN=x+3x-24,即8=x+3x-24,解得x≈11.7,∴AB=11.7+1.6=13.3 m,答:教学楼AB的高度AB长13.3 m.24.(12分)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我两艘海监船刚好在我某岛东西海岸线上的A ,B 两处巡逻,同时发现一艘不明国籍的船只停在C 处海域.如图所示,AB =60(6+2)海里,在B 处测得C 在北偏东45°的方向上,A 处测得C 在北偏西30°的方向上,在海岸线AB 上有一灯塔D ,测得AD =120(6-2)海里.(1)分别求出A 与C 及B 与C 的距离AC ,BC ;(结果保留根号)(2)已知在灯塔D 周围100海里范围内有暗礁群,我在A 处海监船沿AC 前往C 处盘查,途中有无触礁的危险?(参考数据:2≈1.41,3≈1.73,6≈2.45)解:(1)过点C 作CE⊥AB 于点E ,可得∠CBD =45°,∠CAD =60°,设CE =x ,在Rt△CAE 中,AE =CE·tan30°=33x ,在Rt △BCE 中,BE =CE =x ,∵AB =60(6+2)海里,∴x +33x =60(6+2),解得x =606,则AC =233x =1202,BC =2x =1203,答:A 与C 的距离为1202海里,B 与C 的距离为1203海里.(2)过点D 作DF⊥AC 于点F ,在△AD F 中,∵AD =120(6-2),∠CAD =60°,∴DF =ADsin60°=1802-606≈106.8>100,故海监船沿AC 前往C 处盘查,无触礁的危险.25.(12分)如图,已知斜坡AB 长602米,坡角(即∠BAC)为45°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE.(1)若修建的斜坡BE 的坡比为3∶1,求休闲平台DE 的长是多少米?(2)一座建筑物GH 距离A 点33米远(即AG =33米),小亮在D 点测得建筑物顶部H 的仰角(即∠HDM)为30°,点B ,C ,A ,G ,H 在同一个平面内,点C ,A ,G 在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米?解:(1)∵FM∥CG ,∴∠BDF =∠BAC =45°.∵斜坡AB 长602,D 是AB 的中点,∴BD =30 2.在△BDF 中,DF =BD ·cos ∠BDF =30,BF =DF =30.∵斜坡BE 的坡比为3∶1,∴BF EF =31,∴EF =103,∴DE =DF -EF =30-103,即休闲平台DE 的长是(30-103)米. (2)设GH =x 米,则MH =GH -GM =x -30,DM =AG +AP =33+30=63.在Rt △DMH 中,tan30°=MH DM ,即x -3063=33,解得x =30+213,则建筑物GH 的高为(30+213)米.。
第24章 解直角三角形检测题知己知彼,百战不殆。
《孙子兵法·谋攻》 樱落学校 曾泽平(本检测题满分:120分,时间:120分钟) 一、选择题(每小题2分,共24分) 1.计算:错误!未找到引用源。
A.错误!未找到引用源。
B.232+ C.23D.231+ 2.在直角三角形ABC 中,已知90C ∠=︒,40A ∠=︒,3BC =,则AC =( ) A.3sin 40︒ B.3sin 50︒ C.3tan 40︒ D.3tan 50︒ 3.(2013·浙江温州中考)如图,在ABC △中,90,5,3,∠C AB BC =︒==则sin A 的值是( )A.34B.34 C.35 D.454.如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B =( ) A.2错误!未找到引用源。
B.2错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5.如图,Rt △ABC 中,9,6,AB BC B ==∠=9°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( ) A.53B.52C.4D.56.在△ABC 中,若三边BC ,CA ,AB 满足 BC ∶CA ∶AB =5∶12∶13,则cos B =错误!未找到引用源。
( )A.125 B.512 C.135 D.13127.已知AD BC ∥,AB AD ⊥,点E ,点F 分在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对,AC 与BD 相交于点G ,则( ) A.1tan 2ADB +∠= B.25BC CF = C.22AEB DEF ∠+︒=∠ D.4cos 6AGB ∠=第7题图8.河堤横断面如图所示,堤高BC =6 m ,迎水坡AB 的坡比为1∶错误!未找到引用源。
第24章知识升华一、知识脉络:二、典例分析:例1 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D ,求∠BCD 的四个三角函数值.【分析】求∠BCD 的四个三角函数值,关键要弄清其定义,由于∠BCD 是在Rt △BCD 中的一个内角,根据定义,仅一边BC 是已知的,此时有两条路可走,一是设法求出BD 和CD ,二是把∠BCD 转化成∠A ,显然走第二条路较方便,因为在Rt △ABC 中,三边均可得出,利用三角函数定义即可求出答案.【解】 在Rt △ABC 中,∵ ∠ACB =90°∴∠BCD +∠ACD =90°,∵CD ⊥AB ,∴∠ACD +∠A =90°,∴∠BCD =∠A .在Rt △ABC 中,由勾股定理得,AB =22AC BC =10,∴sin ∠BCD =sinA =BC AB =45 ,cos ∠BCD =cosA =AC AB =35 ,tan ∠BCD =tanA =BC AC =43 ,cot ∠BCD =cotA =AC BC =34.【说明】本题主要是要学生了解三角函数定义,把握其本质,应强调转化的思想,即本题中角的转换.例2 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪离AB为1.5米,求拉线CE的长.(结果保留根号)【分析】求CE的长,此时就要借助于另一个直角三角形,故过点A作AG⊥CD,垂足为G,在Rt△ACG中,可求出CG,从而求得CD,在Rt△CED中,即可求出CE的长.【解】过点A作AG⊥CD,垂足为点G,在Rt△ACG中,∵∠CAG=30°,BD=6,∴tan30°=CGAG,∴CG=6×33=2 3 ,∴CD=2 3 +1.5,在Rt△CED中,sin60°=CDEC,∴EC=CDsin60°=23+1.53=4+ 3 .答:拉线CE的长为4+ 3 米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键,在复习过程中应加以引导和总结.例3 如图,某县为了加固长90米,高5米,坝顶宽为4米的迎水坡和背水坡,它们是坡度均为1∶0.5,橫断面是梯形的防洪大坝,现要使大坝顺势加高1米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形ADNM的面积,在此问题中,主要抓住坡度不变,即MA与AB的坡度均为1∶0.5.【解】⑴∵i=tanB,即tanB=10.5=2,∴∠B=63.43°.⑵过点M、N分别作ME⊥AD,NF⊥AD,垂足分别为E、F.由题意可知:ME=NF=5,∴MEAE=10.5,∴AE=DF=2.5,∵AD=4,∴MN=EF=1.5,∴S梯形ADNM=12(1.5+4)×1=2.75.∴需要土方为2.75×90=247.5 (m3) .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度=垂直高度水平距离 =坡角的正切值.例4 某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 间距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离.(结果精确到1米,参考数据:sin 32°≈0.5299,cos 32°≈0.8480,tan s 32°≈0.6249,cot 32°≈1.600)【分析】本题涉及到方位角的问题,要解出AB 的长,只要去解Rt △ADC 和Rt △BDC 即可. 【解】过点C 作CD ⊥AB ,垂足为D .由题知:∠α=45°,∠β=32°.在Rt △BDC 中,sin 32°=BD BC ,∴BD =100sin 32°≈52.99.cos 32°=CDBC,∴CD =100 cos 32°≈84.80.在Rt △ADC 中,∵∠ACD =45°,∴AD =DC =84.80. ∴AB =AD +BD ≈138米.答:AB 间距离约为138米.【说明】本题中涉及到方位角的问题,画图是本题的难点,找到两个直角三角形的公共边是解题的关键,在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形.例5 在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/ 时的速度向西偏北25°的PQ 的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈,3 1.73≈).【分析】先要计算出OH 和PH 的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与OH 比较即可.【解】⑴100; (6010)t +.⑵作OH ⊥PQ 于点H ,可算得1002141OH =(千米),设经过t 小时时,台风中心从P 移动到H ,则201002PH t ==,算得52t =(小时),此时,受台风侵袭地区的圆的半径为:601052130.5+⨯≈(千米)<141(千米).∴城市O 不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.第24章测试题设计一、选择题:1、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B .83米C .833米 D .433米 2、如图,ABC △中BC 边上的高为1h ,DEF △中DE 边上的高为2h ,下列结论正确的是( ) A .12h h >B .12h h <C .12h h =D .无法确定3、已知在ABC △中,90C ∠=,设sinB n =,当B ∠是最小的内角时,n 的取值范围是 A .202n <<B .102n << C .303n << D .302n << 4、如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( )A .aB .a 54C .a 22D . a 23 5、已知α为锐角,则m =sinα+cosα的值( ) A .m >1B .m =1C .m <1D .m ≥16、如果方程2430x x -+=的两个根分别是Rt△ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为( ). A、34或13B 、24C 、13D 、13或247、已知α为锐角,且cos (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75° 8、如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠tan 的值为( ).A 、32 B 、34 C 、12D 、139、在△ABC 中,AB =8,∠ABC =30°,AC =5,那么BC 的长等于( )A 、43B 、43+3C 、43-3D 、43+3或43-3 10、如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(5332+)m B .(3532+)m C . 53m D .4m二、填空题:11、如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)12、长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .13、如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .14、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡度为_________.15、如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .16、如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.17、如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示).18、水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 .19、如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB = .20、若等腰梯形ABCD 的上、下底之和为4,并且两条对角线所夹锐角为60,则该等腰梯形的面积为 (结果保留根号的形式). 三、解答题:21、计算:(1)1sin 60cos302⋅-; (233602cos 458-+;22、一种千斤顶利用了四边形的不稳定性. 如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变ADC ∠的大小(菱形的边长不变),从而改变千斤顶的高度(即A 、C 之间的距离).若AB=40cm ,当ADC ∠从60︒变为120︒时,千斤顶升高了多少?2 1.414,3 1.732,结果保留整数)23、某大草原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙两个医疗站,如图,在A地北偏东45°、B地北偏西60°方向上有一牧民区C.一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I:从A地开车沿公路到离牧民区C最近的D 处,再开车穿越草地沿DC方向到牧民区C.方案II:从A地开车穿越草地沿AC方向到牧民区C.已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD.(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.1,参考数据:3取1.73,2取1.41)24、如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ 延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)25、某大学计划为新生配备如图(1)所示的折叠椅.图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm ,∠DOB =100°,那么椅腿的长AB 和篷布面的宽AD 各应设计为多少cm ?(结果精确到0.1cm )26、路边的路灯的灯柱BC 垂直于地面,灯杆BA 的长为2米,灯杆与灯柱BC 成120°角,锥形灯罩的轴线AD 与灯杆AB 垂直,且灯罩轴线AD 正好通过道路里面的中心线(D 在中心线上),已知C 点与D 点之间的距离为12米,求灯柱BC 的高(结果保留根号)27、如图,家住江北广场的小李经西湖桥到教育局上班,路线为A →B →C →D .因西湖桥维修封桥,他只能改道经临津门渡口乘船上班,路线为A →F →E →D .已知BC EF ∥,BF CE ∥,AB BF ⊥,CD DE ⊥,200AB =米,100BC =米,37AFB ∠=°,53DCE ∠=°.请你计算小李上班的路程因改道增加了多少?(结果保留整数)温馨提示:sin370.60cos370.80tan370.75︒°≈,≈,°≈.28、如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参考数据:(42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒).参考答案:一、选择题: 1、C 2、C 3、A 4、C 5、A 6、D 7、B 8、A 9、D 10、A二、填空题:11、3.512、2(32)- 13、33 14、1:215、tan tan m n αα-⋅ 16、1217、325018、π21 19、1∶2 20、43或433 三、解答题:21、(1)14;(2)2.5 22、解: 连结AC ,与BD 相交于点O ,四边形ABCD 是菱形,AC BD ,ADB =CDB ,AC =2AO , 当ADC =60时,△ADC 是等边三角形,AC =AD =AB =40 . 当ADC =120时,ADO =60,AO =AD sinADO =40×32=203,AC =403 ,因此增加的高度为40340=400.73229(cm )23、解:(1)设CD 为x 千米,由题意得,∠CBD=30°,∠CAD=45°,∴AD=CD=x.在Rt △BCD 中,tan30°=BDx ,所以BD=3x. ∵AD +DB=AB=40,∴x +3x=40.解得 x ≈14.7,所以,牧民区到公路的最短距离CD 为14.7千米.(2)设汽车在草地上行驶的速度为v ,则在公路上行驶的速度为3v ,在Rt △ADC 中,∠CAD=45°,∴AC=2CD ,方案I 用的时间t 1=v CD v CD AD v CD v AD 34333=+=+;方案II 用的时间t 2=v CD v AC 2=; 所以t 1-t 2=v CD v CD 342-=vCD 3)423(-.因为32-4>0,所以t 1-t 2>0.所以方案I 用的时间少,方案I 比较合理.24、解:(1) 在Rt△BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ =103,又在Rt△APQ 中,∠PAB =45°,则AQ =cot45°×PQ =10, 即:AB =(103+10)(米);(2) 过A 作AE ⊥BC 于E ,在Rt△ABE 中,∠B =30°,AB =103+10,∴ AE =sin30°×AB =12(103+10)=53+5,∵∠CAD =75°,∠B =30°,∴ ∠C =45°,在Rt△CAE 中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米)25、解:连接AC ,BD , ∵OA=OB=OC=OB ,∴四边形ACBD 为矩形∵∠DOB=100º, ∴∠ABC=50º,由已知得AC=32,在Rt △ABC 中,sin∠ABC=AB AC,∴AB=ABC AC ∠sin =︒50sin 32≈41.8(cm ),tan∠ABC=BC AC ,∴BC=ABC AC ∠tan =︒50tan 32≈26.9(cm ),∴AD=BC =26.9 (cm )答:椅腿AB 的长为41.8cm ,篷布面的宽AD 为26.9cm .26、解:设灯柱BC 的长为h 米,过点A 作AD ⊥CD 于点H ,过B 作BE ⊥AH 于点E ,∴四边形BCHE 为矩形,∵∠ABC =120°,∴∠ABE =30°,又∵∠BAD =∠BCD =90°,∴∠ADC =60°,在Rt △AEB 中,∴AE =AB sin30°=1,BE =AB cos303∴CH 3,又CD =12,∴DH =123,在Rt △AHD 中,tan ∠ADH =AH HD 3123=-h =3-4(米),∴灯柱BC 的高为(34)米.27、解:在Rt ABF △中, 37200333sin 37AB AFB AB AF ∠===°,,≈,°267tan 37AB BF =≈°, BC EF BF CE ∴∥,∥,四边形BCEF 为平行四边形.267CE BF ∴==,100BC EF ==.在Rt CDE △中,53DCE ∠=°,CD DE ⊥,37CED ∴∠=°,cos37214DE CE =≈·°,sin37160CD CE =︒≈·,∴ 增加的路程∴ =()()AF EF DE AB BC DC ++-++(333100214)++≈-(200100160)187++=(米).28、解:由题意可知,AD =(40+10)×30=1500(米)过点D 作DH ⊥BA ,交BA 延长线于点H. 在Rt △DAH 中,DH =AD ·sin60°=1500×23=7503(米).AH =AD ·cos60°=1500×21=750(米).在Rt △DBH 中, BH =DH ·cos15°=7503×(2+3)=(15003+2250)(米),∴BA =BH -AH =15003+2250-750=1500(3+1)(米).答:热气球升空点A 与着火点B 的距离为1500(3+1)(米)。
第24章检测题(时间:100分钟 满分:120分)一.选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( )A .sin A =32 B .tan A =12 C .cos B =32D .tan B =32.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b 3.计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5 3D .5 4.(2014·巴中)在Rt △ABC 中,∠C =90°,sin A =513,则tan B 的值为( )A.1213B.512C.1312D.1255.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠A 的正弦值是( )A.3510B.12C.255D.556.如果∠A ,∠B 均为锐角,且2sin A -1+(3tan B -3)2,那么△ABC 是( )A .锐角三角形B .直角三角形C .等边三角形D .钝角三角形7.(2014·凉山州)如图,河堤横断面迎水坡AB 的坡比是1∶3,堤高BC =10 m ,则坡面AB 的长度是( )A .15 mB .20 3 mC .20 mD .10 3 m第7题图 第8题图 第9题图8.如图,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α,AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D ,且AC =3,BD =6,CD =11,则tan α的值为( )A.113B.311C.911D.1199.(2014·绵阳)如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( )A .40 2 海里B .40 3 海里C .80海里D .40 6 海里10.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( )A .20米B .10 3 米C .15 3 米D .5 6 米 二.填空题(每小题3分,共24分)11.(2014·锦州)计算:tan 45°-13(3-1)0=____.12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinA 的值是____.13.如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为____米.第12题图 第13题图 第14题图14.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE =6 cm ,sinA =35,则菱形ABCD 的面积是____cm 2.15.将一副三角尺如图所示叠放在一起,则BEEC的值是____.16.如图,△ABC 的顶点A ,C 的坐标分别是(0,4),(3,0),且∠ACB =90°,∠B =30°,则顶点B 的坐标是_____________.第15题图 第16题图 第18题图17.△ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为. 18.(2014·宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5 米,宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(2≈1.4)三.解答题(共66分) 19.(8分)计算:(1)(-2)2+|-3|+2sin 60°-12; (2)6tan 230°-3cos 30°-2sin 45°.20.(8分)(2014·重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sinC 的值.21.(8分)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A,B,C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.22.(10分)(2014·乐山)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E,若AD=1,AB=23,求CE的长.23. (10分)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米;参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)24.(10分)(2014·泰州)图①,②分别是某型号跑步机的实物图与示意图,已知踏板CD 长为1.6 m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8 m,∠ACD为80°,求跑步机手柄的一端A的高度h.(精确到0.1 m;参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)25.(12分)如图,已知斜坡AB长602米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡比为3∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°,点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?参考答案一.选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( D )A .sin A =32 B .tan A =12 C .cos B =32D .tan B =32.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( A )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b 3.计算6tan45°-2cos60°的结果是( D )A .4 3B .4C .5 3D .5 4.(2014·巴中)在Rt △ABC 中,∠C =90°,sin A =513,则tan B 的值为( D )A.1213B.512C.1312D.1255.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠A 的正弦值是( D )A.3510B.12C.255D.556.如果∠A ,∠B 均为锐角,且2sin A -1+(3tan B -3)2,那么△ABC 是( B )A .锐角三角形B .直角三角形C .等边三角形D .钝角三角形7.(2014·凉山州)如图,河堤横断面迎水坡AB 的坡比是1∶3,堤高BC =10 m ,则坡面AB 的长度是( C )A .15 mB .20 3 mC .20 mD .10 3 m第7题图 第8题图 第9题图8.如图,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α,AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D ,且AC =3,BD =6,CD =11,则tan α的值为( D )A.113B.311C.911D.1199.(2014·绵阳)如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( A )A .40 2 海里B .40 3 海里C .80海里D .40 6 海里10.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .10 3 米C .15 3 米D .5 6 米 二.填空题(每小题3分,共24分)11.(2014·锦州)计算:tan 45°-13(3-1)0=__23__.12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinA 的值是4. 13.如图,某山坡的坡面AB =200米,坡角∠BAC =30°,则该山坡的高BC 的长为__100__米.第12题图 第13题图 第14题图14.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE =6 cm ,sinA =35,则菱形ABCD 的面积是__60__cm 2.15.将一副三角尺如图所示叠放在一起,则BE EC 的值是3.16.如图,△ABC 的顶点A ,C 的坐标分别是(0,4),(3,0),且∠ACB =90°,∠B =30°,则顶点B 的坐标是.第15题图 第16题图 第18题图17.△ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为. 18.(2014·宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5 米,宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出__17__个这样的停车位.(2≈1.4)点拨:如图,BC =2.2×sin 45°≈1.54,CE =5×sin 45°≈3.5,BE =BC +CE ≈5.04,EF =2.2÷sin 45°≈3.14,(56-5.04)÷3.14+1≈16+1=17(个),故这个路段最多可以划出17个这样的停车位 三.解答题(共66分) 19.(8分)计算:(1)(-2)2+|-3|+2sin 60°-12; 解:4(2)6tan 230°-3cos 30°-2sin 45°. 解:12-220.(8分)(2014·重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sinC 的值.解:121321.(8分)如图,湖中的小岛上有一标志性建筑物,其底部为A ,某人在岸边的B 处测得A 在B 的北偏东30°的方向上,然后沿岸边直行4公里到达C 处,再次测得A 在C 的北偏西45°的方向上(其中A ,B ,C 在同一平面上).求这个标志性建筑物底部A 到岸边BC 的最短距离.解:过A 作AD ⊥BC 于点D ,则AD 的长度就是A 到岸边BC 的最短距离.在Rt △ACD 中,∠ACD =45°,设AD =x ,则CD =AD =x ,在Rt △ABD 中,∠ABD =60°,BD =xtan60°=33x ,又BC =4,即BD +CD =4,所以33x +x =4,解得x =6-23,则这个标志性建筑物底部A 到岸边BC 的最短距离为(6-23)公里22.(10分)(2014·乐山)如图,在梯形ABCD 中,AD ∥BC ,∠ADC =90°,∠B =30°,CE ⊥AB ,垂足为点E ,若AD =1,AB =23,求CE 的长.解:过点A 作AH ⊥BC 于点H ,则AD =HC =1,在△ABH 中,BH =AB ·cos 30°=3,∴BC =BH +BC =4,∵CE ⊥AB ,∴CE =BC ·sin 30°=223.(10分)如图,一堤坝的坡角∠ABC =62°,坡面长度AB =25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB =50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米;参考数据:sin 62°≈0.88,cos 62°≈0.47,tan 50°≈1.20)解:过A 点作AE ⊥CD 于点E ,在Rt △ABE 中,AE =AB ·sin 62°≈22,BE =AB ·cos 62°≈11.75,在Rt △ADE 中,DE =AE tan50°≈18.33,∴DB =DC -BE ≈6.58,故此时应将坝底向外拓宽大约6.58米24.(10分)(2014·泰州)图①,②分别是某型号跑步机的实物图与示意图,已知踏板CD 长为1.6 m ,CD 与地面DE 的夹角∠CDE 为12°,支架AC 长为0.8 m ,∠ACD 为80°,求跑步机手柄的一端A 的高度h .(精确到0.1 m ;参考数据:sin 12°=cos 78°≈0.21,sin 68°=cos 22°≈0.93,tan 68°≈2.48)解:过C 点作FG ⊥AB 于点F ,交DE 于点G .∵CD 与地面DE 的夹角∠CDE 为12°,∠ACD 为80°,∴∠ACF =90°+12°-80°=22°,∴∠CAF =68°,在Rt △ACF 中,CF =AC ·sin ∠CAF ≈0.744,在Rt △CDG 中,CG =CD ·sin ∠CDE ≈0.336,∴FG =FC +CG ≈1.1,故跑步机手柄的一端A 的高度约为1.1 m25.(12分)如图,已知斜坡AB 长602米,坡角(即∠BAC )为45°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡比为3∶1,求休闲平台DE 的长是多少米?(2)一座建筑物GH 距离A 点33米远(即AG =33米),小亮在D 点测得建筑物顶部H 的仰角(即∠HDM )为30°,点B ,C ,A ,G ,H 在同一个平面内,点C ,A ,G 在同一条直线上,且HG ⊥CG ,问建筑物GH 高为多少米?解:(1)∵FM ∥CG ,∴∠BDF =∠BAC =45°,∵斜坡AB 长602,D 是AB 的中点,∴BD =302,∴DF =BD ·cos ∠BDF =30,BF =DF =30,∵斜坡BE 的坡比为3∶1,∴BF EF =31,∴EF =103,∴DE =DF -EF =30-103,即休闲平台DE 的长是(30-103)米 (2)设GH =x 米,则MH =GH -GM =x -30,DM =AG +AP =33+30=63,在Rt △DMH 中,tan 30°=MH DM ,即x -3063=33,解得x =30+213,则建筑物GH 的高为(30+213)米。