因式分解的方法与技巧
- 格式:doc
- 大小:59.00 KB
- 文档页数:3
因式分解的方法及原理因式分解是将一个多项式拆分成较为简单的乘积形式的过程。
它是代数中非常重要的一个概念,被广泛运用在数学、物理、工程等领域。
一、方法:1. 公因式提取法:当多项式的每一项都有相同的公因式时,可以将公因式提取出来形成一个因子。
例如:4x^2 + 8x = 4x(x + 2)。
2. 方程配方法:当多项式可以写成两个平方数之差时,可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行因式分解。
例如:x^2 - 4 = (x - 2)(x + 2)。
3.求根配方法:对于二次多项式,可以使用求根法找到多项式的根,然后将根代入(x - 根)形式的线性因子中。
例如:x^2 - 5x + 6 = (x - 2)(x - 3)。
4.完全平方法:当多项式是完全平方时,可以使用完全平方法进行因式分解,其中一种常见方法是利用平方根的性质将多项式分解。
例如:x^2 + 4x + 4 = (x + 2)^2。
5.特殊因式公式法:对于一些特殊形式的多项式,例如三次齐次多项式(ax +by)^n,可以利用特殊因式公式进行因式分解。
例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)。
二、原理:因式分解的原理在于寻找多项式的因子,将多项式拆解成较为简单的乘积形式。
在因式分解的过程中,我们可以运用一些数学知识和技巧,以及运用多项式的性质和公式,将复杂的多项式分解成简单的因子乘积。
我们可以利用多项式的因子关系和常见的数学公式来拆分多项式。
例如,公因式提取法就是通过找到多项式各项的公因式来进行因式分解。
在方程配方法中,我们利用平方差公式将多项式拆解成两个平方差的乘积形式。
在求根配方法中,我们利用多项式的根来将多项式拆分成线性因子的乘积形式。
而完全平方法则是利用完全平方公式将多项式拆解成完全平方的乘积形式。
特殊因式公式法则是通过利用一些特殊因式公式来进行因式分解。
因式分解可以帮助我们更好地理解多项式的性质和特点,可以简化多项式的运算过程,提高问题求解的效率。
因式分解的方法与技巧因式分解是代数中非常重要的一种运算方法,它在解方程、简化表达式等方面都有着广泛的应用。
因式分解是将一个多项式拆分成若干个乘积的形式,通过因式分解可以更好地理解多项式的性质,简化计算过程,解决实际问题等。
因此,掌握因式分解的方法与技巧对于学习代数和解决实际问题都是非常重要的。
在本文中,我们将介绍因式分解的一些常见方法与技巧,帮助读者更好地掌握这一重要的数学技能。
首先,我们来介绍一些常见的因式分解方法。
对于一元多项式的因式分解,常见的方法包括公因式提取法、分组分解法、配方法、换元法等。
其中,公因式提取法是最基本、最常用的一种方法。
通过观察多项式中的公因式,我们可以将其提取出来,从而进行因式分解。
例如,对于多项式$3x^2+6x$,我们可以提取公因式3x,得到$3x(x+2)$,从而完成因式分解。
分组分解法则是将多项式中的项进行合理的分组,通过变换形式来进行因式分解。
配方法是指通过巧妙地添加或减去一些项,使得多项式可以转化为一个完全平方的形式,从而进行因式分解。
换元法则是通过适当的变量代换来进行因式分解,通常适用于一些特殊的多项式。
除了这些方法外,还有一些特殊类型的多项式,可以通过特定的方法来进行因式分解,如完全平方公式、差几何公式等。
掌握这些方法,可以帮助我们更好地进行因式分解,解决各种数学问题。
除了掌握因式分解的方法外,我们还需要掌握一些因式分解的技巧。
首先,要善于观察多项式中的特殊结构,如完全平方、差几何等形式,这样可以帮助我们更快地进行因式分解。
其次,要善于利用因式分解来简化计算和解决问题,例如在求解方程、求极限、求导等过程中,因式分解可以帮助我们简化计算,提高效率。
此外,要善于结合实际问题进行因式分解,通过建立代数模型,将实际问题转化为代数问题,再利用因式分解来解决,这样可以更好地理解和应用因式分解的方法。
最后,要注重练习,通过大量的练习来巩固因式分解的方法与技巧,提高解决问题的能力。
初中因式分解的方法及技巧【就是那几个方法(十字相乘什么的)的说明及技巧】1.提取公因式这个是最基本的.就是有公因式就提出来,这个大家都会,就不多说了2.完全平方a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行.3.平方差公式a2-b2=(a+b)(a-b)这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的完全平方的话,就可以用平方差公式再进行分解.4.十字相乘x2+(a+b)x+ab=(x+a)(x+b)这个很实用,但用起来不容易.在无法用以上的方法进行分解时,可以用下十字相乘法.例子:x2+5x+6首先观察,有二次项,一次项和常数项,可以采用十字相乘法.一次项系数为1.所以可以写成1×1常数项为6.可以写成1×6,2×3,(-1)×(-6),-2×(-3)(小数不提倡)然后这样排列1 - 21 - 3(后面一列的位置可以调换,只要这两个数的乘积为常数项即可) 然后对角相乘,1×2=2,1×3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)我再写几个式子,自己琢磨下吧.x2-x-2=(x-2)(x+1)2x2+5x-12=(2x-3)(x+4)其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.【注意三原则】:1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-3x²+x=x(-3x+1))【基本方法】一、提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
初中因式分解的方法与技巧
因式分解是初中数学中一个重要的知识点,同时也是高中数学中不可或缺的一部分。
在初中阶段,因式分解主要用于解方程、求根以及求导等数学活动中。
以下是一些初中因式分解的方法和技巧:
1. 提公因式法:将等式中的某一个变量表示成全体因式,然后
再将其它部分表示成另一个因式,最后提公因式将两个因式相乘即可。
例如:
$$(x+2)(x+3) = x^2 + 5x + 6$$
2. 分组法:将等式中的某些项按照一定规律分组,然后再将其
它部分表示成另一个因式,最后分组相乘即可。
例如:
$$2x^2 + 3xy + 5y^2 = 2(x^2 + 2xy + y^2) + 3(y^2 + xy + x^2)$$ 3. 十字相乘法:将等式中的两个因式分别写成十字交叉的形式,然后再相乘并相加,最后得到另一个因式。
例如:
$$(x+2)(y+3) =xy + 3x + 2y + 6$$
4. 配方法:将等式中的某些项按照一定规律进行配方,然后再
将其它部分表示成另一个因式,最后配成平方的形式。
例如:
$$x^2 - 5x + 6 = (x-3)^2$$
5. 因式定理法:利用因式定理分解因式。
例如:
$$(a+b)^2 = a^2 + 2ab + b^2$$
以上是初中阶段一些常见的因式分解方法和技术。
掌握这些方法和技巧对于解方程、求根以及求导等数学活动都非常重要。
同时,也因式分解是高中数学中重要的基础之一,所以需要在初中阶段打好数
学基础,掌握这些技巧。
因式分解的方法与技巧一、巧拆项:在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。
例1、因式分解 32422+++-b a b a解析:根据多项式的特点,把3拆成4+(-1),则32422+++-b a b a =)12()44(14242222+--++=-+++-b b a a b a b a =)3)(1()1()2(22+-++=--+b a b a b a例2、因式分解 611623+++x x x解析:根据多项式的特点,把26x 拆成2242x x +;把x 11拆成x x 38+则611623+++x x x =)63()84()2(223+++++x x x x x=)3)(2)(1()34)(2()2(3)2(4)2(22+++=+++=+++++x x x x x x x x x x x 练习:x 3-9x+8 (-x-8x )(-1+9)(93-83)a 2+b 2+4a+2b+5a 2+b 2+4a+2b+3x 3-3x 2+4a 3+3a 2+3a+2二、巧添项:在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可谓方法独特,新颖别致。
例3、因式分解444y x +解析:根据多项式的特点,在444y x +中添上22224,4y x y x -两项,则444y x +=2222224224)2()2(4)44(xy y x y x y y x x -+=-++=)22)(22(2222y xy x y xy x +-++例4、因式分解 4323+-x x解析:根据多项式的特点,将23x -拆成224x x +-,再添上x x 4,4-两项,则4323+-x x =4444223+-++-x x x x x=)1)(44()44()44(222++-=+-++-x x x x x x x x=2)2)(1(-+x x练习:3x 3+7x 2-4 x 5+x+1x 3-9x+8(添加-x 2+x 2)(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ;(3)(x+1)4+(x 2-1)2+(x-1)4;(4)a 3b-ab 3+a 2+b 2+1.三、巧换元:在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单易于分解的多项式,会使问题化繁为简,迅捷获解。
因式分解技巧这里介绍了10种因式分解的技巧,若将这些技巧全部掌握,在解决因式分解问题上必然有质的提升。
首先提取公因式,然后考虑用公式。
十字添拆要合适,待定主元要试试。
几种方法反复试,最后必是连乘式。
一、提取公因式法多项式中所有的项都含有的因式称为它们的公因式。
例1:分解因式12a2bc2x2y3-9ab2cx3y2+3abcx2y2解:仔细观察,其中3abcx2y2 是它们的公因式所以原式=3abcx2y2(4acy-3bx+1)技巧:先提取每一项的系数的公因数,再逐个将每个字母的最低次提取出来。
注意其中符号的变化以及不能遗漏其中的“1”。
例2:分解因式3x2y(a+b)(b+c)+3xy2(a+b)(b+c)若在求解过程中将(a+b)(b+c)展开,则在后面的分解过程中会有很大的麻烦,应该观察到每一项都含有(a+b)(b+c),将其看成一个整体,不做变化。
解:含有公因式3xy(a+b)(b+c)所以原式=3xy(a+b)(b+c)(x+y)技巧:在分解过程中,利用好整体思想。
二、公式法利用常见的公式进行因式分解。
常用公式a2-b2=(a+b)(a-b)a2-2ab+b2=(a-b)2a2+2ab+b2=(a+b)2a3-b3=(a-b)(a2+ab+b2)a3+b3=(a+b)(a2-ab+b2)a3+3a2b+3ab2+b3=(a+b)3a3-3a2b+3ab2-b3=(a-b)3a2+b2+c2+2ab+2bc+2ca=(a+b+c)2补充公式当n为正奇数时有a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-……-ab n-2+b n-1)当n为正整数时,有a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+……+ab n-2+b n-1)例3:分解因式16(m+x)2-9(n+y)2解:16(m+x)2=(4m+4x)29(n+y)2=(3n+3y)2原式=(4m+4x)2-(3n+3y)2=(4m+3n+4x+3y)(4m-3n+4x-3y)技巧:应该先观察,若先进行展开,将会非常麻烦。
初一因式分解的方法与技巧
1、因式分解的意义:
因式分解是数学中一种基本的运算方法,可以将复杂的表达式分解成更容易管理的若干简单的表达式,裂解目的是为了进行下一步的计算和处理,可以将复杂的问题分解成解决起来更容易的子问题,从而帮助学生更好地了解和掌握数学知识。
2、因式分解的步骤:
(1) 先判断多项式是否是可因式分解的,如果不是,则无法分解。
(2) 利用因式分解定律将多项式分解为互为乘积的若干简单因式,并尽可能地把每个因式拆分成更加简单的子因式;
(3) 将拆分的每个因式的相应系数和指数进行排列,形成因式分解的最终结果。
3、因式分解的技巧:
(1) 对多项式中因式的相同项进行分离:可以利用多项式中因式相互重复的特点将原多项式中的乘积分解为两个乘积,这两个乘积包含了式子中所有的未知数和变量,更容易运算;
(2) 对多项式的因式进行降次处理:可以利用降次的方法将多项式中的因式改为更小的次数,然后拆分成更简单的因式,从而简化因式分解的运算;
(3) 将多项式拆分为几个简单的乘积:可以通过将多项式中的未知数
进行拆分,将复杂的多项式分解成若干简单的因式,这样可以有效缩小运算范围,避免运算量过大。
4、使用因式分解的注意事项:
(1) 首先要正确理解因式分解的内容,包括定律推导等内容,以便于正确推导;
(2) 也要注意简化步骤,不要乱复杂,以免出现忘记步骤影响求解的现象;
(3) 也要注意判断多项式是否可以分解,根据的判断指标是它的次数是否大于3,否则无法进行分解;
(4) 最后也要注意运算细节,多次运算后不要出现计算错误的情况。
因式分解常用的六种方法详解因式分解常用的六种方法详解因式分解是代数式变形的基本形式之一,它被广泛地应用于初等数学中,并成为解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
本文将介绍因式分解的方法、技巧和应用。
1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) $a^2-b^2=(a+b)(a-b)$;2) $a^2±2ab+b^2=(a±b)^2$;3) $a^3+b^3=(a+b)(a^2-ab+b^2)$;4) $a^3-b^3=(a-b)(a^2+ab+b^2)$。
下面再补充几个常用的公式:5) $a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2$;6) $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$;7) $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+…+ab^{n-2}+b^{n-1})$,其中$n$为正整数;8) $a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…+ab^{n-2}-b^{n-1})$,其中$n$为偶数;9) $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…-ab^{n-2}+b^{n-1})$,其中$n$为奇数。
在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。
例如,分解因式:1) $-2x^{5n-1}y^n+4x^{3n-1}y^n+2-2x^{n-1}y^n+4$原式=$-2x^{n-1}y^n(x^{4n-2}-2x^{2n}y^2+y^4)$2x^{n-1}y^n[(x^{2n})^2-2x^{2n}y^2+(y^2)^2]$2x^{n-1}y^n(x^{2n}-y^2)^2$2x^{n-1}y^n(x^n-y)^2(x^n+y)^2$。
因式分解的常用方法与技巧技巧一符号变换有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数。
【例】(m+n)(x-y)+(m-n)(y-x)技巧:y-x= -(x-y)原式=(m+n)(x-y)-(m-n)(x-y)=(x-y)(m+n-m+n)=2n(x-y)小结:符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。
练习:分解因式:-a2-2ab-b2技巧二系数变换有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。
【例】分解因式4x2-12xy+9y2原式=(2x)2-2(2x)(3y)+(3y)2=(2x-3y)2小结:系数变化常用于可用公式,但用公式的条件不太清晰的情况下。
练习:分解因式221439xy yx++技巧三指数变换有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。
【例】分解因式x4-y4技巧:把x2看成(x2)2,把y4看成(y2)2,然后用平方差公式。
原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y)小结:指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。
练习:分解因式a4-2a4b4+b4技巧四展开变换有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。
然后再分组。
【例1】a(a+2)+b(b+2)+2ab技巧:表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。
然后分组。
原式= a2+2a+b2+2b+2ab=(a+b)2+2(a+b)=(a+b)(a+b+2)小结:展开变化常用于已经分组,但此分组无法分解因式,相当于重新分组。
【例2】因式分解:。
技巧:将多项式展开后再重新组合,分组分解。
【例3】因式分解:。
解:。
练习:x(x-1)-y(y-1)技巧五拆项变换有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。
因式分解技巧十法因式分解是数学中常见的一个基本操作,它在代数学、高等数学、离散数学等领域都有广泛的应用。
因式分解的目的是将一个多项式表达式分解为两个或多个较简单的因式相乘的形式。
下面将介绍一些常用的因式分解技巧:1.提取公因式:多项式中的各项有公共因式时,可以将公因式提取出来。
例如,对于多项式3x²+6x,可以提取出公因式3x,得到3x(x+2)。
2.利用差平方公式:差平方公式可以将一个二次多项式分解为两个平方差的形式。
差平方公式的一般形式是a²-b²=(a+b)(a-b)。
例如,对于多项式x²-4,可以利用差平方公式得到(x+2)(x-2)。
3.利用平方差公式:平方差公式是差平方公式的特殊形式,即a²-b²=(a+b)(a-b)=(a-b)(a+b)。
例如,对于多项式9x²-4,可以利用平方差公式得到(3x-2)(3x+2)或(3x+2)(3x-2)。
4. 利用完全平方公式:完全平方公式可以将一个三项式分解为两个平方和的形式。
完全平方公式的一般形式是a²+2ab+b²=(a+b)²。
例如,对于多项式x²+6x+9,可以利用完全平方公式得到(x+3)²。
5. 利用完全立方公式:完全立方公式是三项式的一个特殊形式,即a³+b³=(a+b)(a²-ab+b²)。
例如,对于多项式x³+8,可以利用完全立方公式得到(x+2)(x²-2x+4)。
6.利用联立方程:如果一个多项式可以看作两个或多个方程联立的结果,可以将多项式分解为方程组的解。
例如,多项式x²-4x+4可以看作方程(x-2)(x-2)=0的结果,因此可以分解为(x-2)(x-2)。
7. 利用因式分解公式:因式分解公式是一些常见多项式的专门分解公式,例如(ax+b)²=a²x²+2abx+b²,(a+b)³=a³+3a²b+3ab²+b³等。
因式分解的方法与技巧
朱元生
因式分解是初中代数中一种重要的恒等变形,也是处理数学问题的重要手段和工具,学习因式分解,除了掌握提公因式法、公式法、分组分解法等基本方法外,还要熟悉一些特殊的方法和技巧。
一、巧拆项
在某些多项式的因式分解过程中,若将多项式的某一项(或某几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。
例1. 因式分解:3b 2a 4b a 22+++-。
解析:根据多项式的特点,把3拆成()14-+,则
14b 2a 4b a 3b 2a 4b a 2222-+++-=+++-
()()
()()
()()3b a 1b a 1b 2a 1
b 2b 4a 4a 2222+-++=--+=+--++=
例2. 因式分解:6x 11x 6x 23+++。
解析:根据多项式的特点,把2
x 6拆成22x 4x 2+,把11x 拆成x 3x 8+,则 ()()
()
()()()2x 32x x 42x x 6x 3x 8x 4x 2x 6x 11x 6x 222323+++++=+++++=+++
()()()()()3x 2x 1x 3x 4x 2x 2+++=+++=。
也可以这样分解因式:
()
()3x 29x 6x x 6x 2x 9x 6x 6x 11x 6x 22323++++=++++=+++ ()()()()()()()3x 2x 1x 2x 3x 3x 3x 23x x 22+++=+++=+++=。
二、巧添项
在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可使问题化难为易。
例3. 因式分解:44y 4x +。
解析:根据多项式的特点,在44y 4x +中添上22y x 4和22y x 4-两项,则 ()()()2
22
222422444xy 2y 2x y x 4y 4y x 4x y 4x -+=-++=+ ()()2222y 2xy 2x y 2xy 2x +-++=。
三、巧换元
在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单、易于分解的多项式,从而使问题化繁为简,迅速获解。
例4. 因式分解:()()246x x 4x 3x 22+---+。
解析:()()
()()()()243x 2x 4x 1x 246x x 4x 3x 22+-++-=+---+ ()()()()()()
2412x x 2x x 244x 3x 2x 1x 22+-+-+=++-+-=。
设2x x y 2-+=,则10y 12x x 2-=-+。
原式()()()()()
62x x 42x x 6y 4y 24y 10y 2410y y 222--+--+=--=+-=+-= ()()()()()
8x x 3x 2x 8x x 6x x 222-++-=-+-+=。
例5. 因式分解:()()()21xy 2y x xy 2y x -+-+-+。
解析:设m y x =+,n xy =,则
()()()()()()221n 2m n 2m 1xy 2y x xy 2y x -+--=-+-+-+
1n 2m 2n mn 2m 22++-+-=
()()()221n m 1n m 2n m --=+---=
()()()[]()()2
2221y 1x y 11x 1xy y x --=--=--+=。
四、展开巧组合
若一个多项式的某些项是积的形式,直接分解比较困难,则可展开重新组合,然后再用基本方法分解。
例6. 因式分解:()()2222n m xy y x mn +++。
解析:将多项式展开再重新组合,分组分解。
()()22222222xyn xym mny mnx n m xy y x mn +++=+++ ()()()()my nx ny my nx mx xyn mny xym mnx 2
222
+++=+++= ()()ny mx my nx ++=。
例7. 因式分解:()()22my nx ny mx -++
解析:()()222222222
2y m mnxy 2x n y n mnxy 2x m my nx ny mx +-+++=-++ ()()()()
22222222222222n m y n m x y n y m y n x m +++=+++=
()()2222y x n m ++=。
五、巧用主元
对于含有两个或两个以上字母的多项式,若无法直接分解,可以其中一个字母为主元进行变形整理。
例8. 因式分解:xy 2x 2y x x 3x 2
234-++-。
解析:将多项式以y 为主元进行整理。
()()()()()
()()
y
x x 2x x 1x 2x x y 2x x x 2x 3x y x 2x xy 2x 2y x x 3x 222
3422234+--=--+-=+-+-=-++- 例9. 因式分解:abc 2bc c b ac c a ab b a 222222++++++。
解析:这是一个轮换对称多项式(即以a 替换b ,b 替换c ,c 替换a 后,多项式不变),不妨以a 为主元进行整理。
abc 2bc c b ac c a ab b a 222222++++++
()()
()()()()()()[]()()bc ac ab a c b bc c b a a c b c b bc c b a c b a c b bc c bc 2b a c b a 2222222++++=++++=+++++=++++++= ()()()[]()()()c b c a b a b a c b a a c b +++=++++=。