最新华师大八年级数学上第12章整式的乘除单元测试题含答案
- 格式:doc
- 大小:345.50 KB
- 文档页数:5
八年级数学上册第12章整式的乘除单元测试卷(华师版2024年秋)一、选择题(每题3分,共24分)题序12345678答案1.下列运算正确的是()A.2a-a=2B.(a2)3=a6C.a3·a3=a9D.(ab)2=ab2 2.下列多项式能用完全平方公式分解因式的是()A.x2-2x-1B.a2-b2C.x2-2xy D.a2-6a+9 3.长方形的长为6x2y,宽为3xy,则它的面积为()A.9x3y2B.18x3y2C.18x2y D.6xy24.小明在做作业的时候,不小心把墨水滴到了作业本上,■×3ab=9ab-18ab3,阴影部分即为被墨水弄污的部分,那么被墨水弄污的部分为()A.(3-6b2)B.(6b-3)C.(3ab-6b2)D.(6b2-3) 5.若(x+9y)2=ax2+bxy+81y2,则a+b的值为()A.19B.18C.17D.166.计算(-5)2026×0.22025的结果为()A.0.2B.1C.5D.-57.若a+2b=7,ab=6,则(a-2b)2的值是()A.3B.2C.1D.08.化简[(324+1)(312+1)(36+1)(36-1)+1]÷330的结果的个位上的数字为() A.1B.3C.7D.9二、填空题(每题3分,共18分)9.计算ab(a2b2-ab)的结果为________.10.计算10.12-9.92的结果为________.11.若a x=3,a y=5,则a3x-y的值为________.12.小明计算(x-2)(x+■)时,已正确得出结果中的一次项系数为-1,但不小心将第二个括号中的常数染黑了,则被染黑的常数为________.13.如图,正方形ABCD的边长为a,正方形EFGC的边长为b,若a+b=10,ab =20,则阴影部分的面积为________.(第13题)14.信息时代确保信息的安全很重要,于是在传输信息的时候需要加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则如图所示,若发送方发出a =2,b =4,则mn =________.(第14题)三、解答题(15,16题每题8分,20题12分,其余每题10分,共58分)15.计算:-12a 2·(-4ab 2)2;(2)902-88×92.16.先化简,再求值:(x -y )2-(x +2y )(x -2y )+(x +y )2,且(x -3)2+(1+y )2=0.17.把下列各式因式分解:(1)18a 2b -8b;(2)(x -1)(x -3)+1.18.计算(x-a)(4x+3)-2x时,小奇将“-a”抄成了“+a”,得到的结果为4x2+13x +9.(1)求a的值;(2)请计算出这道题的正确结果.19.数形结合是解决数学问题的一种重要思想方法,借助此方法可将抽象的数学知识变得直观且具有可操作性,从而帮助我们解决问题.初中数学中有一些代数恒等式可以用一些纸片拼成的图形面积来解释.某同学在学习的过程中动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号纸片拼出一个新的图形(如图②),根据这个图形的面积写出一个你所熟悉的乘法公式;(2)若要拼成一个长为a+2b,宽为a+b的大长方形(如图③),则需要2号纸片和3号纸片各多少张?(3)当他拼成如图③所示的大长方形,根据6张小纸片的面积和等于大长方形的面积把多项式a2+3ab+2b2分解因式;(4)请你仿照该同学的方法,画出拼图并利用拼图分解因式:a2+5ab+6b2.(第19题)20.【阅读理解】若x满足(7-x)(x-3)=3,求(7-x)2+(x-3)2的值.解:设7-x=a,x-3=b,则(7-x)(x-3)=ab=3,a+b=(7-x)+(x-3)=4,所以(7-x)2+(x-3)2=a2+b2=(a+b)2-2ab=42-2×3=10.【解决问题】(1)若x满足(4-x)(x-3)=-2,则(4-x)2+(x-3)2的值为________;(2)若x满足(2x+3)(2x-1)=92+(2x-1)2的值为________;2,则(2x+3)(3)如图,C是线段AB上的一点,以AC,BC为边向两边作正方形,若AB=5,两正方形的面积和(即S1+S2)为13,求图中阴影部分的面积.(第20题)答案一、1.B 2.D 3.B 4.A 5.A 6.C 7.C8.D 点拨:[(324+1)(312+1)(36+1)(36-1)+1]÷330=[(324+1)(312+1)(312-1)+1]÷330=[(324+1)(324-1)+1]÷330=[(348-1)+1]÷330=348÷330=318.因为31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,所以每4个数的个位上的数字为一组循环.因为18÷4=4……2,所以318的个位上的数字与32的个位上的数字相同,所以为9.故选D.二、9.a 3b 3-a 2b 210.411.27512.113.2014.120点拨:n =(4a 2b -2a 3)÷(-2a )2=(4a 2b -2a 3)÷4a 2=b -12a .因为a =2,b =4,所以m =a 2+ab 2+14b 2=22+2×42+14×42=4+32+4=40,n =b -12a =4-12×2=3,所以mn =40×3=120.三、15.解:(1)原式=-18a 6b 3·16a 2b 4=-2a 8b 7.(2)原式=902-(90-2)×(90+2)=902-902+22=4.16.解:(x -y )2-(x +2y )(x -2y )+(x +y )2=x 2-2xy +y 2-(x 2-4y 2)+x 2+2xy +y 2=x 2-2xy +y 2-x 2+4y 2+x 2+2xy +y 2=x 2+6y 2.因为(x -3)2+(1+y )2=0,所以x -3=0,1+y =0,所以x =3,y =-1.所以原式=32+6×(-1)2=9+6=15.17.解:(1)原式=2b (9a 2-4)=2b (3a +2)(3a -2).(2)原式=x 2-4x +3+1=x 2-4x +4=(x -2)2.18.解:(1)根据题意,得(x +a )(4x +3)-2x =4x 2+(1+4a )x +3a =4x 2+13x +9,所以1+4a =13,所以a =3.(2)(x -3)(4x +3)-2x =4x 2-9x -9-2x=4x 2-11x -9.19.解:(1)(a +b )2=a 2+2ab +b 2.(2)需要2号纸片2张,3号纸片3张.(3)a 2+3ab +2b 2=(a +2b )(a +b ).(4)如图所示.(第19题)a 2+5ab +6b 2=(a +2b )(a +3b ).20.解:(1)5(2)25(3)设AC =m ,BC =n ,则m +n =5,m 2+n 2=13,所以mn =(m +n )2-(m 2+n 2)2=52-132=6,所以图中阴影部分的面积为mn 2=62=3.。
华师大新版八年级上学期《第12章整式的乘除》单元测试卷一.填空题(共6小题)1.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.2.多项式ax2﹣a与多项式x2﹣2x+1的公因式是.3.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.4.若a=49,b=109,则ab﹣9a的值为.5.分解因式:4+12(x﹣y)+9(x﹣y)2=.6.分解因式:x3﹣6x2+9x=.二.解答题(共34小题)7.已知a x=5,a x+y=30,求a x+a y的值.8.已知x m=5,x n=7,求x2m+n的值.9.已知a x=3,a y=2,求a x+2y的值.10.已知3×9m×27m=321,求m的值.11.已知:5a=4,5b=6,5c=9,(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.12.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.13.计算(1)(﹣2a2b)2•(ab)3(2)已知a m=2,a n=3,求a2m+3n的值.14.计算:x2y•(﹣0.5xy)2﹣(﹣2x)3•xy3.15.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.16.(x2y﹣xy2﹣y3)(﹣4xy2).17.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.18.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.19.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.20.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.21.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.22.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n);(5)若x+y=﹣6,xy=2.75,求x﹣y的值.23.如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k=.24.已知,求值:(1)(2).25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?26.化简:(a+b)(a﹣b)+2b2.27.计算:(x+2y+z)(x+2y﹣z)29.(﹣2x2y+6x3y4﹣8xy)÷(﹣2xy)30.计算:(3a2b3c4)2÷(﹣a2b4).31.计算:(1)3(2x2﹣y2)﹣2(3y2﹣2x2);(2)(x+1)(x﹣1)﹣(x﹣2)2.32.设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.33.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.34.实数x满足x2﹣2x﹣1=0,求代数式(2x﹣1)2﹣x(x+4)+(x﹣2)(x+2)的值.35.因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.36.分解因式(1)x2y2﹣x2﹣4y2+4xy(2)(a2+1)(a2+2)+.37.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.38.把下列各式分解因式:(1)2x2﹣4x+2;(2)x2﹣3x﹣28;(3)a3+a2﹣a﹣1.39.在实数范围内分解因式:.40.已知代数式M=x2+2y2+z2﹣2xy﹣8y+2z+17.(1)若代数式M的值为零,求此时x,y,z的值;(2)若x,y,z满足不等式M+x2≤7,其中x,y,z都为非负整数,且x为偶数,直接写出x,y,z的值.华师大新版八年级上学期《第12章整式的乘除》单元测试卷参考答案与试题解析一.填空题(共6小题)1.多项式x2+mx+5因式分解得(x+5)(x+n),则m=6,n=1.【分析】将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.【解答】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴,∴,故答案为:6,1.【点评】本题考查了因式分解的意义,使得系数对应相等即可.2.多项式ax2﹣a与多项式x2﹣2x+1的公因式是x﹣1.【分析】第一个多项式提取a后,利用平方差公式分解,第二个多项式利用完全平方公式分解,找出公因式即可.【解答】解:多项式ax2﹣a=a(x+1)(x﹣1),多项式x2﹣2x+1=(x﹣1)2,则两多项式的公因式为x﹣1.故答案为:x﹣1.【点评】此题考查了公因式,将两多项式分解因式是找公因式的关键.3.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=﹣31.【分析】首先提取公因式3x﹣7,再合并同类项即可得到a、b的值,进而可算出a+3b的值.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),=(3x﹣7)(2x﹣21﹣x+13),=(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.4.若a=49,b=109,则ab﹣9a的值为4900.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.【解答】解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.5.分解因式:4+12(x﹣y)+9(x﹣y)2=(3x﹣3y+2)2.【分析】原式利用完全平方公式分解即可.【解答】解:原式=[2+3(x﹣y)]2=(3x﹣3y+2)2.故答案为:(3x﹣3y+2)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.分解因式:x3﹣6x2+9x=x(x﹣3)2.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.二.解答题(共34小题)7.已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.8.已知x m=5,x n=7,求x2m+n的值.【分析】根据同底数幂的乘法,即可解答.【解答】解:∵x m=5,x n=7,∴x2m+n=x m•x m•x n=5×5×7=175.【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法法则.9.已知a x=3,a y=2,求a x+2y的值.【分析】直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【解答】解:∵a x=3,a y=2,∴a x+2y=a x×a2y=3×22=12.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用同底数幂的乘法运算法则是解题关键.10.已知3×9m×27m=321,求m的值.【分析】先把9m×27m分解成32m×33m,再根据同底数幂的乘法法则进行计算即可求出m的值.【解答】解:∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,∴m=4.【点评】此题考查了同底数幂的乘法,幂的乘方与积的乘方,理清指数的变化是解题的关键.11.已知:5a=4,5b=6,5c=9,(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.【分析】(1)根据同底数幂的乘法,可得底数相同的幂的乘法,根据根据幂的乘方,可得答案;(2)根据同底数幂的除法,可得底数相同幂的除法,根据幂的乘方,可得答案;(3)根据同底数幂的乘法、幂的乘方,可得答案.【解答】解:(1)5 2a+b=52a×5b=(5a)2×5b=42×6=96(2)5b﹣2c=5b÷(5c)2=6÷92=6÷81=2/27(3)5a+c=5a×5c=4×9=3652b=62=36,因此5a+c=52b所以a+c=2b.【点评】本题考查了同底数幂的除法,根据法则计算是解题关键.12.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.【分析】(1)利用积的乘方和同底数幂的除法,即可解答;(2)利用完全平方公式,即可解答.【解答】解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.【点评】本题考查了同底数幂的除法,积的乘方,以及完全平分公式,解决本题的关键是熟记相关公式.13.计算(1)(﹣2a2b)2•(ab)3(2)已知a m=2,a n=3,求a2m+3n的值.【分析】(1)根据积的乘方的运算法则计算各自的乘方,再进行单项式的乘法即可;(2)先把所求的式子根据幂的乘方的逆运算法则进行变形,再把已知条件代入计算即可.【解答】解:(1)原式=4a4b2•a3b3=a7b5;(2)a2m+3n=(a m)2•(a n)3=4×27=108.【点评】本题考查的是单项式乘单项式、幂的乘方和积的乘方的知识,掌握各自的运算法则是解题的关键.14.计算:x2y•(﹣0.5xy)2﹣(﹣2x)3•xy3.【分析】根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:x2y•(﹣0.5xy)2﹣(﹣2x)3•xy3=0.1x4y3+8x4y3=8.1x4y3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.15.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.16.(x2y﹣xy2﹣y3)(﹣4xy2).【分析】根据单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加可得x2y•(﹣4xy2)﹣xy2•(﹣4xy2)﹣y3•(﹣4xy2),再计算单项式乘以单项式即可.【解答】解:原式=x2y•(﹣4xy2)﹣xy2•(﹣4xy2)﹣y3•(﹣4xy2),=﹣3x3y3+2x2y4+xy5.【点评】此题主要单项式乘以多项式,关键是掌握单项式与多项式相乘的运算法则.17.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.【分析】(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.【解答】解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.【点评】本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值18.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.【分析】先把代数式按照多项式乘以多项式展开,因为化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.【解答】解:(mx2+2mx﹣1)(x m+3nx+2)=mx m+2+3mnx3+2mx2+2mx m+1+6mnx2+4mx ﹣x m﹣3nx﹣2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(8﹣3n)x﹣2∵多项式不含二次项∴3+12n=0,解得:n=,所以一次项系数8﹣3n=8.75.【点评】本题考查了多项式乘以多项式,解决本题的关键是明确化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.19.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.20.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.【分析】(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2﹣4x+2和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3)通过配方后,求得a,b,c的值,再代入代数式求值.【解答】解:(1)x2﹣4x+2的三种配方分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c2﹣ab﹣3b﹣2c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,从而有a﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=4.【点评】本题考查了根据完全平方公式:a2±2ab+b2=(a±b)2进行配方的能力.21.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【分析】(1)观察可得阴影部分的正方形边长是m﹣n;(2)方法1:边长为m+n的大正方形的面积减去4个长为m,宽为n的小长方形面积;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积;(3)由(2)可得结论(m+n)2=(m﹣n)2+4mn;(4)由(a﹣b)2=(a+b)2﹣4ab求解.【解答】解:(1)阴影部分的正方形边长是m﹣n.(2)阴影部分的面积就等于边长为m﹣n的小正方形的面积,方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣4mn;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣2m•2n=(m+n)2﹣4mn;(3)(m+n)2=(m﹣n)2+4mn.(4)(a﹣b)2=(a+b)2﹣4ab=49﹣4×5=29.【点评】本题考查了完全平方公式的几何意义,认真观察图形以及掌握正方形、长方形的面积公式计算是关键.22.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是(m+n)2﹣(m﹣n)2=4mn;(3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n);(5)若x+y=﹣6,xy=2.75,求x﹣y的值.【分析】(1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)可利用各部分面积和=长方形面积列出恒等式.(4)此题可参照第(3)题.(5)掌握完全平方公式,并掌握和与差的区别.【解答】解:(1)阴影部分的边长为(m﹣n),所以阴影部分的面积为(m﹣n)2;故答案为:(m﹣n)2;(2)(m+n)2﹣(m﹣n)2=4mn;故答案为:(m+n)2﹣(m﹣n)2=4mn;(3)(m+n)(2m+n)=2m2+3mn+n2;(4)答案不唯一:(5)(x﹣y)2=(x+y)2﹣4xy=(﹣6)2﹣2.75×4=25,∴x﹣y=±5.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.23.如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k=4或﹣2.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵a2﹣2(k﹣1)ab+9b2=a2﹣2(k﹣1)ab+(3b)2,∴﹣2(k﹣1)ab=±2×a×3b,∴k﹣1=3或k﹣1=﹣3,解得k=4或k=﹣2.即k=4或﹣2.故答案为:4或﹣2.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.24.已知,求值:(1)(2).【分析】(1)利用完全平方和公式(a+b)2=a2+2ab+b2解答;(2)利用(2)的结果和完全平方差公式(a﹣b)2=a2﹣2ab+b2解答.【解答】解:(1)∵x+﹣3=0,∴x+=3,∴=(x+)2﹣2=9﹣2=7,即=7;(2)由(1)知,=7,∴(x﹣)2=﹣2=7﹣2=5,∴x﹣=±.【点评】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?【分析】(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;(2)化简两个连续偶数为2k+2和2k的差,再判断;(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)设28和2012都是“神秘数”,设28是x和x﹣2两数的平方差得到,则x2﹣(x﹣2)2=28,解得:x=8,∴x﹣2=6,即28=82﹣62,设2012是y和y﹣2两数的平方差得到,则y2﹣(y﹣2)2=2012,解得:y=504,y﹣2=502,即2012=5042﹣5022,所以28,2012都是神秘数.(2)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.【点评】此题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用.26.化简:(a+b)(a﹣b)+2b2.【分析】先根据平方差公式算乘法,再合并同类项即可.【解答】解:原式=a2﹣b2+2b2=a2+b2.【点评】本题考查了平方差公式和整式的混合运算的应用,主要考查学生的化简能力.27.计算:(x+2y+z)(x+2y﹣z)【分析】将原式进一步转化为[(x+2y)+z][(x+2y)﹣z]后利用平方差公式计算后再利用完全平方公式计算即可.【解答】解:原式=[(x+2y)+z][(x+2y)﹣z]=(x+2y)2﹣z2=x2+4xy+4y2﹣z2【点评】本题考查了平方差公式和完全平方公式,解题的关键是牢记公式的形式.29.(﹣2x2y+6x3y4﹣8xy)÷(﹣2xy)【分析】用多项式的每一项除以单项式,再把商相加即可得到相应结果.【解答】解:原式=(﹣2x2y+6x3y4﹣8xy)÷(﹣2xy)=﹣2x2y÷(﹣2xy)+6x3y4÷(﹣2xy)+(﹣8xy)÷(﹣2xy)=x﹣3x2y3+4.【点评】本题考查两了多项式除以单项式运算.多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.30.计算:(3a2b3c4)2÷(﹣a2b4).【分析】运用积的乘方及同底数幂的除法法则先算乘方再算除法进行运算.【解答】解:(3a2b3c4)2÷(﹣a2b4)=9a4b6c8÷(﹣a2b4)=﹣27a2b2c8.【点评】本题主要考查了积的乘方及同底数幂的除法,熟记法则是解题的关键.31.计算:(1)3(2x2﹣y2)﹣2(3y2﹣2x2);(2)(x+1)(x﹣1)﹣(x﹣2)2.【分析】(1)原式去括号合并即可得到结果;(2)原式利用平方差公式及完全平方公式展开,计算即可得到结果.【解答】解:(1)原式=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2;(2)原式=x2﹣1﹣x2+4x﹣4=4x﹣5.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.32.设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.【分析】先利用因式分解得到原式(x+y)(x﹣2y)+3y(x+y)=(x+y)2,再把当y=ax代入得到原式=(a+1)2x2,所以当(a+1)2=1满足条件,然后解关于a的方程即可.【解答】解:原式=(x+y)(x﹣2y)+3y(x+y)=(x+y)2,当y=ax,代入原式得(1+a)2x2=x2,即(1+a)2=1,解得:a=﹣2或0.【点评】本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.33.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab 的值代入计算即可求出值.【解答】解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.34.实数x满足x2﹣2x﹣1=0,求代数式(2x﹣1)2﹣x(x+4)+(x﹣2)(x+2)的值.【分析】由x2﹣2x﹣1=0,得出x2﹣2x=1,进一步把代数式化简,整体代入求得答案即可.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴原式=4x2﹣4x+1﹣x2﹣4x+x2﹣4=4x2﹣8x﹣3=4(x2﹣2x)﹣3=4﹣3=1.【点评】此题考查整式的化简求值,注意先化简,再整体代入求得数值.35.因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.【分析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可;(2)首先利用平方差公式进行分解,再利用完全平方公式进行分解.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2,(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.36.分解因式(1)x2y2﹣x2﹣4y2+4xy(2)(a2+1)(a2+2)+.【分析】(1)首先将后三项分为一组,进而利用完全平方公式分解因式,进而利用平方差公式分解得出即可.(2)先去括号,再利用完全平方公式进行因式分解.【解答】解:(1)x2y2﹣x2﹣4y2+4xy=(xy)2﹣(x﹣2y)2=(xy+x﹣2y)(xy﹣x+2y)(2)(a2+1)(a2+2)+.=a4+3a2+=(a2+)2【点评】本题主要考查了因式分解,正确分组得出是解题关键.37.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.【分析】仿照题中的方法,得到十字相乘法的技巧,分别将各项分解即可.【解答】解:(1)原式=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)原式=(x﹣7)(x+1);(3)原式=(a﹣b)(a+5b).【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘法是解本题的关键.38.把下列各式分解因式:(1)2x2﹣4x+2;(2)x2﹣3x﹣28;(3)a3+a2﹣a﹣1.【分析】(1)通过提取公因式2,和完全平方差公式进行因式分解;(2)通过“十字相乘”法进行分解因式;(3)利用分组分解法分解因式.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2;(2)原式=(x﹣7)(x+4);(3)原式=a(a2﹣1)+(a2﹣1)=(a+1)(a2﹣1)=(a+1)(a﹣1)(a+1)=(a+1)2(a﹣1).【点评】本题考查了因式分解法:十字相乘法、提取公因式法与公式法的综合运用以及分组分解法.运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.39.在实数范围内分解因式:.【分析】将原式化为(x2﹣2)+(x+)进行分解即可,前半部分可用平方差公式.【解答】解:原式=(x2﹣2)+(x+)=(x+)(x﹣)+(x+)=(x+)(x﹣+1).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.40.已知代数式M=x2+2y2+z2﹣2xy﹣8y+2z+17.(1)若代数式M的值为零,求此时x,y,z的值;(2)若x,y,z满足不等式M+x2≤7,其中x,y,z都为非负整数,且x为偶数,直接写出x,y,z的值.【分析】(1)先把多项式进行因式分解,利用因式的平方都不小于0求出x,y,z的值.(2)把多项式进行因式分解,都是平方的形式,利用x,y,z都为非负整数,取值求解.【解答】解:(1)∵x2+2y2+z2﹣2xy﹣8y+2z+17=0,∴(x﹣y)2+(y﹣4)2+(z+1)2=0,∵(x﹣y)2≥0,(y﹣4)2≥0,(z+1)2≥0,∴(x﹣y)2=0,(y﹣4)2=0,(z+1)2=0,∴x﹣y=0,y﹣4=0,z+1=0,∴x=y=4,z=﹣1,(2)x=2,y=3,z=0.【点评】本题主要考查了因式分解的应用,解题的关键是正确的把多项式进行因式分解.。
第12 章 整式的乘除考点一 幂的运算1.已知 3ᵃ=1,3ᵇ=2,则 3ᵃ⁺ᵇ 的值为 ( )A.1B.2C.3D.272.已知 2m +3n =5,则 4ᵐ⋅8ⁿ= ( )A.16B.25C.32D.643.计算 (−x³y )² 的结果是 ( )A.−x⁵yB.x⁶yC.−x³y²D.x⁶y²4.计算: (13)2021×(−3)2021= .5.若 5x −3y −2=0,则 10⁵ˣ÷10³ʸ= .6.计算: (x⁴)²+(x²)⁴−x (x²)²⋅x³−(−x )³⋅(−x²)²⋅(−x ).7.若 aᵐ=aⁿ(a ⟩0且 a ≠1,m 、n 是正整数),则m=n.你能利用上面的结论 m =n.解决下面的问题吗? 试试看,相信你一定行!(1)如果 2×8ˣ×16ˣ=2²²,求x 的值;(2)如果 (27ˣ )²=3⁸,求x 的值.考点二整式的乘法1.计算(x−2)(x−3)的结果是 ( )A.x²−5x+6B.x²−5x−6C.x²+5x−6D.x²+5x+62.当x=1时,ax+b+1的值为−3,则(a+b−1)(3−2a−2b))的值为( )A.55B.−55C.25D.−253.若计算(1+x)(2x²+ax+1)的结果中x²项的系数为−2,,则a的值为( )A.−2B.1C.−4D. -14.若(x+2)(x−6)=x²+px+q,则p+q= .5.已知x(x−2)=3,则代数式2x²−4x−7的值为 .6.计算:(1)(−3x²)(4x−3);(2)(x+y)(x²−xy+y²).7.已知(x+a)(x²−x+c)的积中不含x²项与x项,求(x−a)(x²+x+c)的值是多少?考点三两数和乘以这两数的差(平方差公式)1.为了运用平方差公式计算((x+2y−1)(x−2y+1),,下列变形正确的是( )A.[x−(2y+1)]²B.[x+(2y−1)][x−(2y−1)]C.[(x−2y)+1][(x−2y)−1]D.[x+(2y−1)]²2.若(−5a²+4b²)()=25a⁴−16b⁴,则括号内应填 ( )A.5a²+4b²B.5a²−4b²C.−5a²−4b²D.−5a²+4b²3.下列各式中,计算结果正确的是 ( )A.(x+y)(−x−y)=x²−y²B.(x²−y³)(x²+y³)=x⁴−y⁶C.(−x−3y)(−x+3y)=−x²−9y²D.(2x²−y)(2x²+y)=2x⁴−y²4.已知a+b=12,且a²−b²=48,则式子a-b的值是 .5.计算:(5m+2)(5m-2)-(3m+1)(2m-1).6.先化简,再求值:(a(a+4b)−(a+2b)(a−2b),其中a=1,b=−1.考点四 两数和(差)的平方(完全平方公式)1.下列各式是完全平方式的是 ( )A.x 2−x +14B.1+x²C. x+ xy+1D.x²+2x −12.若 x²−2(k −1)x +9是完全平方式,则k 的值为 ( )A.11B. ±3C. -1 或3D.4或-23.等式 (a −b )²+M =(a +b )²成立,则M 是 ( )A.2abB.4abC. -4abD. -2ab4.如果 x²+mx +1=(x +n )²,且m>0,则n 的值是 .5.定义 |a b c d |为二阶行列式,规定它的运算法则为 |a b c d |=ad −bc.那么当x=1时,二阶行列式 |x −110x −1|的值为 . 6.已知a+b=3, ab=-1,求下列代数式的值.(1)a²+b²;(2)2a²−3ab +2b².考点五 整式的除法1.计算 6m³÷(−3m²) 的结果是 ( )A.−3mB.−2mC.2mD.3m2. 与单项式 −3a²b 的积是 6a³b²−2a²b²+9a²b 的多项式是 ( )A.−2ab −3B.−2ab +23b −3C.23b −3D.2ab −23b +33.下列计算正确的是 ( )A.a²ⁿ÷aⁿ=a²B.a²ⁿ÷a²=aⁿC.(xy )⁵÷xy³=(xy )²D.x¹⁰÷(x⁴÷x²)=x⁸4.计算:(1)(−3x³y²)³÷(3x²y³)²;(2)xᵐ⁺ⁿ⋅(3xᵐyⁿ)÷(−2xᵐyⁿ).5.先化简,再求值:[(x−y)²+(x+y)(x−y)]÷2x,其中x=3,y=−1.5.考点六提公因式法分解因式1.下列多项式的分解因式,正确的是 ( )A.8abx−12a²x²=4abx(2−3ax)B.−6x³+6x²−12x=−6x(x²−x+2)C.4x²−6xy+2x=2x(2x−3y)D.−3a²y+9ay−6y=−3y(a²+3a−2)2.把多项式m²(a−2)+m(2−a)分解因式等于 ( )A.(a−2)(m²+m)B.(a−2)(m²−m)C.m(a−2)(m−1)D.m(a−2)(m+1)3.若多项式−6ab+18abc+24ab²的一个因式是−6ab,,则其余的因式是( )A.1−3c−4bB.−1−3c+4bC.1+3c−4bD.−1−3c−4b4.下列多项式中,不能用提公因式法分解因式的是 ( )A.6x²−3yB.x²y−xy²C.x²+2xy+y²D.16x³y²z+8x²y³5.分解因式:−x³+4x²y= .6.分解因式:x²+3x= .7.分解因式:(a+b)²+(a+b)(a−3b).考点七公式法分解因式1.因式分解(x−1)²−9的结果是 ( )A.(x+8)(x+1)B.(x+2)(x−4)C.(x−2)(x+4)D.(x−10)(x+8)2.下列各式能用完全平方公式进行分解因式的是 ( )A.x²+1B.x²+2x−1C.x²+x+1D.x²+4x+43.如果100x²+kxy+y²可以分解为(10x−y)²,那么k的值是 ( )A.20B.−20C.10D.−102=0,将mx²−ny²分解因式为 .4.若|m−4|+(√n−5)5.因式分解:x²−4= .6.因式分解:(1)x²−4(x−1);(2)x⁴−y⁴.第12 章整式的乘除考点一幂的运算1. B2. C3. D4. -15.1006.解:(x⁴)²+(x²)⁴−x(x²)²⋅x³−(−x)³⋅(−x²)²⋅(−x)=x⁸+x⁸−x⁸−x⁸=0.7.解:(1)∵2×8ˣ×16ˣ=2¹+3x+4x=2²²,∴1+3x+4x=22,解得x=3.(2)∵(27ˣ)²=3⁶ˣ=3⁸,∴6x=8,解得x=43.考点二整式的乘法1. A2. B3. C4.-165. -16.解:(1)(−3x²)(4x−3)=−12x³+9x².(2)(x+y)(x²−xy+y²)=x³−x²y+xy²+x²y−xy²+y³=x³+y³7.解:(x+a)(x²-x+c)=x³-x²+ cx+ax²- ax+ ac=x³+(a-1)x²+(c-a)x+ ac.∵积中不含x²项与x项,∴a-1=0,c-a=0, 解得a=1,c=1.∴(x −a)(x²+x+c)=(x−1)(x²+x+1)=x³+x²+x−x²−x−1=x³−x .考点三两数和乘以这两数的差(平方差公式)1. B2. C3. B4.45.解:原式=(25m²-4)-(6m²-3m+2m-1) =25m²-4-6m²+m+1=19m²+m-3.6.解:原式=a²+4ab−a²+4b²=4ab+4b².当a=1,b=-1时,原式=4×1×(−1)+4×(−1)²=−4+4=0.考点四两数和(差)的平方(完全平方公式)1. A2. D3. B4.15.06.解:((1)∵a+b=3,∴(a+b)²=9,∴a²+2ab+b²=9,将ab=-1代入得(a²−2+b²=9,∴a²+b²=11.(2)由(1)知a²+b²=11,又∵ab=−1,∴2a²−3ab+2b²=(a²+b²)+(a²+b²)−3ab=11+11-3×(-1)=25.考点五整式的除法1. B2. B3. D4.解:((1)(−3x³y²)³÷(3x²y³)²=−27x⁹ y⁶÷9x⁴ y⁶=−3x⁵.(2)x m+n⋅(3x m y n)÷(−2x m y n)=3x2m+n y n÷(−2x m y n)=−32x m+n5.解:[(x−y)²+(x+y)(x−y)]÷2x=[(x²−2xy+y²)+(x²−y²))]÷2x=(2x² -2xy)÷2x=x-y.当x=3,y=-1.5时,原式=3-(-1.5)=4.5.考点六提公因式法分解因式1. B2. C3. A4. C5. -x²(x-4y)6. x(x+3)7.解:(a+b)²+(a+b)(a-3b)=(a+b)(a+b+a-3b)=(a+b)(2a-2b)=2(a+b)(a-b).考点七公式法分解因式1. B2. D3. B4.(2x+5y)(2x-5y)5.(x+2)(x-2)6.角K:(1)x2−4(x−1)=x2−4x+4=(x−2)2.((2)x⁴−y⁴=(x²+y²)(x²−y²)=(x²+y²)(x+y)(x−y)。
《第12章整式的乘除》一、选择题1.计算(﹣a)3•(a2)3•(﹣a)2的结果正确的是()A.a11B.﹣a11 C.﹣a10 D.a132.下列计算正确的是()A.x2(m+1)÷x m+1=x2B.(xy)8÷(xy)4=(xy)2C.x10÷(x7÷x2)=x5 D.x4n÷x2n•x2n=13.已知(x+a)(x+b)=x2﹣13x+36,则ab的值是()A.36 B.13 C.﹣13 D.﹣364.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为()A.﹣2 B.0 C.1 D.25.已知x+y=1,xy=﹣2,则(2﹣x)(2﹣y)的值为()A.﹣2 B.0 C.2 D.46.若(x+a)(x+b)=x2+px+q,且p>0,q<0,那么a、b必须满足的条件是()A.a、b都是正数B.a、b异号,且正数的绝对值较大C.a、b都是负数D.a、b异号,且负数的绝对值较大7.一个长方体的长、宽、高分别是3x﹣4、2x﹣1和x,则它的体积是()A.6x3﹣5x2+4x B.6x3﹣11x2+4x C.6x3﹣4x2D.6x3﹣4x2+x+48.观察下列多项式的乘法计算:(1)(x+3)(x+4)=x2+7x+12;(2)(x+3)(x﹣4)=x2﹣x﹣12;(3)(x﹣3)(x+4)=x2+x﹣12;(4)(x﹣3)(x﹣4)=x2﹣7x+12根据你发现的规律,若(x+p)(x+q)=x2﹣8x+15,则p+q的值为()A.﹣8 B.﹣2 C.2 D.89.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④二、填空题10.计算:(1)(﹣3ab2c3)2= ;(2)a3b2•(﹣ab3)3= ;(3)(﹣x3y2)(7xy2﹣9x2y)= .11.若3m=81,3n=9,则m+n= .12.若a5•(a m)3=a4m,则m= .13.若x2+kx﹣15=(x+3)(x+b),则k= .三、解答题14.计算:(1)(a2)3•a3﹣(3a3)3+(5a7)•a2;(2)(﹣4x2y)•(﹣x2y2)•(y)3(3)(﹣3ab)(2a2b+ab﹣1);(4)(m﹣)(m+);(5)(﹣xy)2•[xy(x﹣y)+x(xy﹣y2)].15.若多项式x2+ax+8和多项式x2﹣3x+b相乘的积中不含x3项且含x项的系数是﹣3,求a和b的值.16.如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.17.化简求值:(3x+2y)(4x﹣5y)﹣11(x+y)(x﹣y)+5xy,其中.18.解方程:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=28.19.已知x2﹣8x﹣3=0,求(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值.《第12章整式的乘除》参考答案与试题解析一、选择题1.计算(﹣a)3•(a2)3•(﹣a)2的结果正确的是()A.a11B.﹣a11 C.﹣a10 D.a13【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据幂的乘方的性质,单项式的乘法法则,计算后直接选取答案即可.【解答】解:(﹣a)3•(a2)3•(﹣a)2=﹣a3•a6•a2=﹣a11.故选B.【点评】本题考查了单项式的乘法的法则,幂的乘方的性质,熟练掌握运算法则和性质是解题的关键.2.下列计算正确的是()A.x2(m+1)÷x m+1=x2B.(xy)8÷(xy)4=(xy)2C.x10÷(x7÷x2)=x5 D.x4n÷x2n•x2n=1【考点】整式的除法.【分析】此题需对各项进行单项式的乘、除运算后再作判断.【解答】解:A、错误,应为x2(m+1)÷x m+1=x m+1;B、错误,应为(xy)8÷(xy)4=(xy)4;C、x10÷(x7÷x2)=x5,正确;D、错误,应为x4n÷x2n•x2n=x4n.故选C.【点评】本题考查了单项式的乘、除运算,比较简单,容易掌握.3.已知(x+a)(x+b)=x2﹣13x+36,则ab的值是()A.36 B.13 C.﹣13 D.﹣36【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b的值,即可确定出ab的值.【解答】解:(x+a)(x+b)=x2+(a+b)x+ab=x2﹣13x+36,则a+b=﹣13,ab=36,故选A【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.4.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为()A.﹣2 B.0 C.1 D.2【考点】多项式乘多项式.【专题】计算题;方程思想.【分析】将(ax+2y)(x﹣y)展开,然后合并同类项,得到含xy的项系数,根据题意列出关于a 的方程,求解即可.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故选D.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.5.已知x+y=1,xy=﹣2,则(2﹣x)(2﹣y)的值为()A.﹣2 B.0 C.2 D.4【考点】多项式乘多项式.【专题】计算题.【分析】所求式子利用多项式乘多项式法则计算,变形后,将已知等式代入计算即可求出值.【解答】解:∵x+y=1,xy=﹣2,∴(2﹣x)(2﹣y)=4﹣2(x+y)+xy=4﹣2﹣2=0.故选B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.若(x+a)(x+b)=x2+px+q,且p>0,q<0,那么a、b必须满足的条件是()A.a、b都是正数B.a、b异号,且正数的绝对值较大C.a、b都是负数D.a、b异号,且负数的绝对值较大【考点】多项式乘多项式.【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件表示出a+b与ab,根据p与q的正负即可做出判断.【解答】解:已知等式变形得:(x+a)(x+b)=x2+(a+b)x+ab=x2+px+q,可得a+b=p>0,ab=q<0,则a、b异号,且正数的绝对值较大,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.一个长方体的长、宽、高分别是3x﹣4、2x﹣1和x,则它的体积是()A.6x3﹣5x2+4x B.6x3﹣11x2+4x C.6x3﹣4x2D.6x3﹣4x2+x+4【考点】多项式乘多项式;单项式乘多项式.【专题】计算题.【分析】根据长方体的体积等于长×宽×高,计算即可得到结果.【解答】解:根据题意得:x(3x﹣4)(2x﹣1)=x(6x2﹣11x+4)=6x3﹣11x2+4x.故选B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.观察下列多项式的乘法计算:(1)(x+3)(x+4)=x2+7x+12;(2)(x+3)(x﹣4)=x2﹣x﹣12;(3)(x﹣3)(x+4)=x2+x﹣12;(4)(x﹣3)(x﹣4)=x2﹣7x+12根据你发现的规律,若(x+p)(x+q)=x2﹣8x+15,则p+q的值为()A.﹣8 B.﹣2 C.2 D.8【考点】多项式乘多项式.【分析】根据观察等式中的规律,可得答案.【解答】解:(x+p)(x+q)=x2﹣8x+15,p+q=﹣8,故选:A.【点评】本题考查了多项式成多项式,观察等式发现规律是解题关键.9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④【考点】多项式乘多项式.【专题】计算题.【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.二、填空题10.计算:(1)(﹣3ab2c3)2= 9a2b4c6;(2)a3b2•(﹣ab3)3= ﹣a6b11;(3)(﹣x3y2)(7xy2﹣9x2y)= ﹣7x4y4+9x5y3.【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果;(3)原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=9a2b4c6;(2)原式=a3b2•(﹣a3b9)=﹣a6b11;(3)原式=﹣7x4y4+9x5y3.故答案为:(1)9a2b4c6;(2)﹣a6b11;(3)﹣7x4y4+9x5y3【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.11.若3m=81,3n=9,则m+n= 6 .【考点】幂的乘方与积的乘方.【分析】先把81,9化为34,32的形式,求出mn的值即可.【解答】解:∵3m=81,3n=9,∴3m=34,3n=32,∴m=4,n=2,∴m+n=4+2=6.故答案为:6.【点评】本题考查的是幂的乘方与积的乘方法则,先根据题意把81,9化为34,32的形式是解答此题的关键.12.若a5•(a m)3=a4m,则m= 5 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:∵原式可化为a5•a3m=a4m,∴a3m+5=a4m,∴3m+5=4m,解得m=5.故答案为:5.【点评】本题考查的是幂的乘方与积的乘方,熟知幂的乘方法则是底数不变,指数相乘是解答磁体的关键.13.若x2+kx﹣15=(x+3)(x+b),则k= ﹣2 .【考点】多项式乘多项式.【专题】计算题.【分析】已知等式右边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出k的值.【解答】解:x2+kx﹣15=(x+3)(x+b)=x2+(b+3)x+3b,∴k=b+3,3b=﹣15,解得:b=﹣5,k=﹣2.故答案为:﹣2.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.三、解答题14.计算:(1)(a2)3•a3﹣(3a3)3+(5a7)•a2;(2)(﹣4x2y)•(﹣x2y2)•(y)3(3)(﹣3ab)(2a2b+ab﹣1);(4)(m﹣)(m+);(5)(﹣xy)2•[xy(x﹣y)+x(xy﹣y2)].【考点】整式的混合运算.【分析】(1)根据幂的乘方和同底数幂的乘法进行计算即可;(2)根据积的乘方以及单项式乘以单项式的法则进行计算即可;(3)根据单项式乘以多项式的法则进行计算即可;(4)根据多项式乘以多项式的法则进行计算即可;(5)根据积的乘方以及单项式乘以多项式的法则进行计算即可.【解答】解:(1)原式=﹣21a9;(2)原式=(﹣4x2y)•(﹣x2y2)(y3)=x4y6;(3)原式=(﹣4x2y)•(﹣x2y2)(y3)=x4y6;(3)原式=﹣6a3b2﹣3a2b2+3ab;(4)原式=m2+(﹣m+m)+(﹣)×=m2﹣m﹣;(5)原式=x2y2(2x2y﹣2xy2)=x4y3﹣x3y4.【点评】本题考查了整式的混合运算,掌握幂的乘方和同底数幂的乘法以及单项式乘以多项式的法则是解题的关键.15.若多项式x2+ax+8和多项式x2﹣3x+b相乘的积中不含x3项且含x项的系数是﹣3,求a和b的值.【考点】多项式乘多项式.【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.根据结果中不含x3项且含x项的系数是﹣3,建立关于a,b等式,即可求出.【解答】解:∵(x2+ax+8)(x2﹣3x+b)=x4+(﹣3+a)x3+(b﹣3a+8)x2﹣(﹣ab+24)x+8b,又∵不含x3项且含x项的系数是﹣3,∴,解得.【点评】本题考查了多项式乘以多项式,根据不含x3项且含x项的系数是﹣3列式求解a、b的值是解题的关键.16.(2009春•江阴市校级期中)如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.【考点】多项式乘多项式.【专题】应用题.【分析】根据长方体的体积=长×宽×高,列式利用单项式乘多项式,多项式乘多项式的法则计算.长方体的长是10﹣2x,宽是6﹣2x,高是x.【解答】解:盒子的体积v=x(10﹣2x)(6﹣2x),=x(4x2﹣32x+60),=4x3﹣32x2+60x.【点评】此题考查了长方体的体积的公式,单项式乘以多项式、多项式乘多项式的法则,熟记公式和法则是解题的关键.17.化简求值:(3x+2y)(4x﹣5y)﹣11(x+y)(x﹣y)+5xy,其中.【考点】整式的混合运算—化简求值.【分析】首先利用多项式的乘法法则以及平方差公式计算,然后去括号、合并同类项即可化简,然后代入数值计算即可.【解答】解:原式=(12x2﹣15xy+8xy﹣10y2)﹣11(x2﹣y2)+5xy=12x2﹣15xy+8xy﹣10y2﹣11x2+11y2+5xy=x2﹣2xy+y2=(x﹣y)2.当时.原式=36.【点评】本题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.18.解方程:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=28.【考点】多项式乘多项式;解一元一次方程.【分析】首先利用多项式乘法去括号,进而合并同类项,解方程即可.【解答】解:(2x+5)(3x﹣1)+(2x+3)(1﹣3x)=286x2+13x﹣5﹣6x2﹣9x+2x+3=28,整理得:6x=30,解得:x=5.【点评】此题主要考查了多项式乘以多项式以及解一元一次方程,正确合并同类项是解题关键.19.已知x2﹣8x﹣3=0,求(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值.【考点】整式的混合运算—化简求值.【分析】根据x2﹣8x﹣3=0,可以得到x2﹣8x=3,对所求的式子进行化简,第一个式子与最后一个相乘,中间的两个相乘,然后把x2﹣8x=3代入求解即可.【解答】解:∵x2﹣8x﹣3=0,∴x2﹣8x=3(x﹣1)(x﹣3)(x﹣5)(x﹣7)=(x2﹣8x+7)(x2﹣8x+15),把x2﹣8x=3代入得:原式=(3+7)(3+15)=180.【点评】本题考查了整式的混合运算,正确理解乘法公式,对所求的式子进行变形是关键.。
第12章整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、若,则m+n的结果是()A.1B.2C.3D.-32、下列运算正确的是()A. B. C. D.3、下列运算正确的是()A.a 3•a 2=a 6B.a 3÷a 2=C.a 3﹣a 2=aD.(a+1)2=a 2+2a+14、如果,,那么等于()A. B. C. D.5、下列计算正确的是()A.(a﹣b)2=a 2﹣b 2B.a 6÷a 2=a 3C. =3D.﹣(﹣2)0=16、观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值可能分别是()A. ,B. ,4C.3,D.3,47、计算(﹣2x2y)2的结果是()A.﹣2x 4y 2B.4x 4y 2C.﹣4x 2yD.4x 4y8、计算a4·a2÷a2等于()A.a 3B.a 2C.a 4D.a 59、选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式10、如图,在边长为a的正方形的右下角,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个平行四边形,这一过程可以验证一个关于a,b的等式为()A.(a﹣b)2=a 2﹣2ab+b 2B.a 2+ab=a(a+b)C.(a+b)2=a2+2ab+b 2 D.a 2﹣b 2=(a+b)(a﹣b)11、下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷=(xy)3C.(x 2y 3)2=x 4y5 D.2xy﹣3yx=xy12、下列多项式中,能用完全平方公式分解因式的是()A.a 2+4B.a 2+ab+b 2C.a 2+4ab+b 2D.x 2+2x+113、计算的结果是()A. B. C. D.14、下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a)B.(﹣n2﹣m2)(m2+ n2)C.D.(2 x﹣3 y)(2 x+3 y)15、下列运算正确的是( )A.x 3·x 3=2x 6B.(-2x 2) 2=-4x 4C.(x 3) 2=x 6D.x 5÷x=x 5二、填空题(共10题,共计30分)16、若,则代数式的值为________.17、若是完全平方式,则k的值为________。
第12章(整式的乘除)单元测试(二)一.选择题(每小题3分,共30分)1.下列计算正确的是( ).A.2()x y +=22x y +B.2()x y -=22x y -C.222()xy x y =D.33()xy xy =2.计算322(1421)a b ab -27ab ÷的结果是( ). A. 223a - B.2ab-3 C. 223a b - D. 223a b -3.已知一种计算机每秒可做8410⨯次运算,则它工作3310⨯秒可运算的次数为( ).A.241210⨯B.121.210⨯C.121210⨯D.111.210⨯4.计算201220130.42.5⨯的结果是( ). A.52 B.25C.1D. 2012110⨯ 5.若21x ax --可分解为(x-2)(x+b),则a+b 的值为( ).A.-1B.1C.-2D.26.如图,从边长为a+4的正方形纸片中剪去一个边长为a+1的正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠且无缝隙),则矩形面积为( ).A.225a a +B.3a+15C.6a+9D.6a+157.计算(1-a)(1+a)2(1)a -的结果是( ).A.41a -B.41a +C.2412a a -+D.2412a a ++8.若2()x y -3()y x --=2()y x -E ,则E 是( ).A.1-x+yB.1-y+xC.1-y-xD.y-x9.若a 、b 、c 为一个三角形的三边长,则代数式22()a c b --的值( ).A.一定为正数B.一定为负数C.可能为正数,也可能为负数D.可能为零10.已知22x y +-2x-6y+10=0,则20132x y 的值为( ).A. 19B.9C.1D.99 备用题:1.王大爷承包一长方形鱼塘,原来长为2x 米,宽为x 米,现在要把长和宽都增加y 米,那么这个鱼塘的面积增加( ).A.(2232x xy y ++)平方米B.(2223x xy y ++)平方米C.2(3)xy y +平方米D.2(64)xy y +平方米2.若a 为正整数,且2a x =5,则324(2)4a a x x ÷的值为( ). A.5 B. 52C.25D.10 二.填空题(每小题3分,共30分). 11.计算:3232(2)x y xy -= .12.分解因式:39a a -= .13.写出一个以2ax 为各项公因式的多项式: .14.已知4168m m ⨯÷=92,则m = .15.若(1+x)(22x +ax+1)的结果中,2x 的系数是-2,则a 等于 .16.如图是由四张全等的矩形纸片拼成的图形,请利用图中的阴影部分面积的不同表示方法,写出一个关于a 、b 的恒等式是 .b a17.若非零实数a 、b 满足224a b +=4ab ,则b a = . 18.计算12012322201320133⨯-= . 19.若x 、y 互为相反数,且2(2)x +-2(1)y +=4,则xy 的值为 .20.若2n +n-1=0,则322n n ++= .备用题:1.已知2x-3y=-4,则代数式224249x y y +-的值为 .2.一个矩形的面积是3(22x y -),如果它的一边长为x+y ,则它的周长为_____.三.解答题(共40分).21.(6分)化简求值:[2(3)m n --2(2)m n ++5()m m n -]5m ÷,其中m =2,n =-2.22.(6分)因式分解:(1)2x (y-4)+(4-y);(2)2()x y +-4(x+y-1). 23.(6分)已知实数x 、y 满足2()x y +=4,2()x y -=36,求22x y +-xy 的值.24.(6分)在一块长为7m+5n ,宽为5m+3n 的长方形铁片的四个角都剪去一个边长为m+n 的小正方形,然后折成一个无盖的盒子,求这个盒子的表面积.25.(7分)观察下列各式: 2(1)x -÷(x-1)=x+1; 3(1)x -÷(x-1)=2x +x+1;4(1)x -÷(x-1)=3x +2x +x+1; 5(1)x -÷(x-1)=4x +3x +2x +x+1;(1)你能得到一般情况下的结果吗?(2)根据这一结果计算:1+2+22+32+……+622+632.26.(9分)有些大数值的问题可以通过用字母代替数而转化成整式问题来解决,先阅读下面的解题过程,再解答后面的问题若x =123456789×123456786,y =123456788×123456787,试比较x 、y 的大小. 解:设123456788=a ,那么x =(a+1)(a-2)=2a -a-2,y=a(a-1)=2a -a ,∵x-y=(2a -a-2)-(2a -a)=-2<0, ∴x<y.看完后,你学会了这种方法了吗?亲自试一试吧!你准行!若x =×-×,y =×-×,试比较x 、y 的大小.备用题:1.利用我们学过的知识,可以推出下面这个形式优美的等式: 2a +2b +2c -ab-bc-ac =12[2()a b -+2()b c -+2()c a -] 该等式从左到右的变形,不仅保持了结构的对称与和谐美,而且用起来也十分方便.(1)请你写出上述等式从左到右的具体变形过程;(2)若a =,b =,c =,你能很快求出2a +2b +2c -ab-bc-ac 的值吗?2.已知多项式3cx -22x +ax-1除以bx-1,商式为2x -x+2,余式为1,求a 、b 、c 的值.单元测试(二)参考答案一.选择题:1—5.CABAD ; 6—10.DCBBB. 备用题:1—2.CA.二.填空题:11.584x y ; 12.a(a+3)(a-3); 13.答案不唯一,如:222ax ax +等; 14.7; 15.-4; 16. 22()()a b a b +--=4ab ; 17.2; 18. 49-; 19. 136-; 20.. 备用题:1.16;2.8x-4y.三.解答题:21. 原式=2m-3n , 10; 22. ①(y-4)(x+1)(x-1),②2(2)x y +-;23.2224x xy y ++=①,22236x xy y -+=②,①+②得:2220x y +=,①-②得:xy =-8,所以22x y +-xy =28.24.(7m+5n)(5m+3n)-42()m n +=22313821m mn n ++.25. ①12n n x x --++1x ++;②原式=64(21)(21)-÷-6421=-.26.解:a =,则:x =a(a+4)-(a+1)(a+3)=-3,y =(a+1)(a+5)-(a+2)(a+4)=-3,∴x =y.备用题:1.①222a b c ++-ab-bc-ac =12(222222a b c ++-2ab-2bc-2ac ) =12[(222a ab b -+)+(222b bc c -+)+(222a ac c -+)] =12[22()()a b b c -+-+2()c a -] ②∵a-b=1,b-c =-1,c-a =2,∴222a b c ++-ab-bc-ac =12[22()()a b b c -+-+2()c a -]=3. 2.a=3,b =1,c =1.。
第12章整式的乘除单元综合测验(时间:90分钟满分:100分)一、选择题(每小题2分,共30分)1.下列运算正确的是()A.a6·a3=a18B.(-a)6·(-a)3=-a9C.a6÷a3=a2D.(-a)6·(-a)3=a92.化简a(a+1)-a(1-a)的结果是()A.2a B.2a2C.0 D.2a2-2a3.如果(x+a)(x+b)的积中不含x的一次项,那么a,b一定是()A.互为倒数B.互为相反数C.a=0或b=0 D.ab=04.利用因式分解简便计算57×99+44×99-99•正确的是()A.99×(57+44)=99×101=9999;B.99×(57+44-1)=99×100=9900C.99×(57+44+1)=99×102=10098;D.99×(57+44-99)=99×2=1985.如果(x-2)(x+3)=x2+px+q,那么p,q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-66.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,•余下的部分是()A.m+1 B.2m C.2 D.m+27.如果x2+kx+64是一个整式的平方,那么k的值是()A.8 B.-8 C.8或-8 D.16或-168.下面的计算结果为3x2+13x-10的是()A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)9.已知m2+n2-6m+10n+34=0,则m+n的值是()A.-2 B.2 C.8 D.-810.因式分解x2+2xy+y2-4的结果是()A .(x +y +2)(x +y -2)B .(x +y +4)(x +y -1)C .(x +y -4)(x +y +1)D .不能分解11.下列各式计算正确的是( )A .(a -b )2=a 2-b 2B .(12x +3)2=14x 2+3x +9 C .-a (3a 2-1)=-3a 2-a D .(2x -y )(-y -2x )=4x 2-y 212.若规定一种运算:a ※b =ab +a -b ,其中a 、b 为常数,则a ※b +(b -a )※b 等于( )A .a 2-bB .b 2-bC .b 2D .b 2-a13.一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成( )A .17段B .32段C .33段D .34段14.下列各因式分解正确的是( )A .12xyz -9x 2y 2=3xyz (4-3xy )B .3a 2y -3ay +6y =3y (a 2-a +2)C .a 4-b 4=(a -b )4D .a 2b +5ab -b 2=b (a 2+5a )15.若a +1a =2,则a 2+21a的值是( ) A .2 B .4 C .0 D .-4二、填空题(每小题3分,共24分)16.(2xy 2)2·12x 2y =________.17.若5x -3y -2=0,则105x ÷103y =_______.18.若x +y =4,xy =3,则x 2+y 2=_________;(x -4)(y -4)=________.19.因式分解:(1)x 3-4x =_________________; (2)ax 2y +axy 2=________.20.计算:20052-1994×2006=________.21.化简:(x +y )(x -y )-2(4-y 2+12x 2)=_______.22.如图1在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分拼成一个矩形,如图2,通过计算两个图形(阴影部分)的面积,•可以验证一个等式,则这个等式是________.(1)(2)23.写一个二项式,使它可以先提公因式,•再运用公式来分解,•你写的二项式是_________,因式分解的结果是________.三、解答题(共46分)24.(6分)计算:(1)(-13xy+32y2-x2)(-6xy2);(2)(x-3)(x+3)-(x+1)(x+3);(3)[-2xy(3x2y3)2-14(x3y2)3+12x2y2(x2y)4]÷[(-32x)·(x2y2)2].25.(6分)把下列各式进行因式分解.(1)mn(m-n)-m(n-m)2.(2)2m3-32m;(3)a2(x-y)+b2(y-x).26.(10分)化简求值.(1)y(x+y)+(x+y(x-y)-x2,其中x=-2,y=12;(2)(x+y)2-2x(x+y),其中x=3,y=2.27.(8分)学校有一边长为a的正方形草坪,现将其各边增加b,扩大草坪面积,•有的同学说:“扩建后比扩建前面积增大b2”,你认为正确吗?如正确,请说明理由;若不正确,请你计算出扩建后比扩建前草坪面积增大多少?(写出过程)28.(8分)公式(a+b)(a-b)=a2-b2,则a2-b2=(a+b)(a-b),你能利用后面的式子来解决实际问题吗?计算:1002-992+982-972+…+22-1.29.(8分)观察下面各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…(1)根据上面各式的规律,得:(x-1)(x n-1+x n-2+x n-3+…+x+1)=_______(其中n为正整数)•;(2)根据这一规律,计算1+2+22+23+24+…+262+263的值.参考答案1.B2.B 点拨:原式=a 2+a -a +a 2=2a 2.3.B 点拨:计算(x +a )(x +b )=x 2+(a +b )x +ab ,不含x 的一次项,则a +b =0,所以a =-b .4.B 点拨:提取公因式时要注意每一项都提且不要把提取公式后为1的项丢失.5.B 点拨:计算(x -2)(x +3)=x 2+x -6=x 2+px +q ,则p =1,q =-6.6.D 点拨:(m +1)(m -1)+(m -1)=(m -1)(m +2).7.D 点拨:x 2+kx +64=(x ±8)2.8.C 点拨:(3x -2)(x +5)=3x 2+13x -10.9.A 点拨:根据完全平方公式,把等式左边各项组合为(m 2-6m +9)+(n 2+10n +25)•=0,所以(m -3)2+(n +5)2=0,∴m =3,n =-5.10.A 点拨:x 2+2xy +y 2-4=(x +y )2-4=(x +y +2)(x +y -2).11.B 点拨:(a -b )2=a 2-2ab +b 2,-a (3a 2-1)=-3a 3+a ,(2x -y )(-y -2x )=y 2-4x 2.12.B 点拨:a ※b +(b -a )※b =ab +a -b +(b -a )b +(b -a )-b =ab +a -b +b 2-ab +b -a -b =b 2-b ,•把(b -a )※b 中的(b -a )作为整体.13.C 点拨:25+1=33.14.B 点拨:12xyz -9x 2y 2=3xy (4z -3xy ),a 4-b 4=(a 2+b 2)(a +b )(a -b ),a 2b +5ab -b 2=•b (a 2+5a -b ).15.A 点拨:a 2+21a =(a +1a)2-2=22-2=2. 16.2x 4y 5 点拨:(2xy 2)2·12x 2y =4x 2y 4·12x 2y =2x 4y 5. 17.100 点拨:105x ÷103y =105x -3y =102=100.18.10 3 点拨:x2+y2=(x+y)2-2xy=42-6=10,(x-4)(y-4)=xy-4(x+y)+16=3-16+16=3.19.(1)x(x+2)(x-2);(2)axy(x+y).点拨:注意因式要分解到不能分解为止.20.20061 点拨:20052-1994×2006=(2000+5)2-(2000-6)(2000+6)=20002+10×2000+25-20002+36=20061.21.y2-8 点拨:原式=x2-y2-8+2y2-x2=y2-8.22.a2-b2=(a+b)(a-b)点拨:注意结合图形,写出图形的边长,再求出其面积.23.ma2-mb2m(a+b)(a-b)24.(1)原式=-13xy·(-6xy2)+32y2·(-6xy2)-x2·(-6xy2)=2x2y3-9xy4+6x3y2.(2)解法一:原式=x2-9-x2-4x-3=-4x-12;解法二:原式=(x+3)(x-3-x-1)=(x+3)·(-4)=-4x-12.(3)原式=(-2xy·9x4y6-14x9y6+12x2y2·x8y4)÷[-32x·x4y4]=(-18x5y7-14x9y6+12x10y6)÷(-32x5y4)=12y3+16x4y2-13x5y2.点拨:在计算时,为了避免错误,一般要先确定符号;运用平方差公式,•要先找准公式中的a,b.对于从形式上看比较复杂的题,选择恰当的运算顺序或运算方法,往往能化繁为简.25.(1)原式=mn(m-n)-m(m-n)2=m(m-n)(n-m+n)=m(m-n)(2n-m).点拨:当公因式为互为相反数的多项式时,先化为相同的多项式可避免搞错符号.(2)原式=2m(m2-16)=2m(m+4)(m-4).点拨:因式分解时要分解到不能再分解为止.(3)原式=a2(x-y)-b2(x-y)=(x-y)(a2-b2)=(x-y)(a+b)(a-b).点拨:注意提取公因式(x-y)后的符号.26.(1)y(x+y)+(x+y)(x-y)-x2=xy+y2+x2-y2-x2=xy,把x=-2,y=12代入得xy=(-2)×12=-1.(2)(x+y)2-2x(x+y)=(x+y)(x+y-2x)=(x+y)(y-x)=y2-x2,把x=3,y=2代入得y2-x2=•4-9=-5.点拨:化简整式时,要仔细观察代数式的特点,灵活选择运算顺序.27.不正确,扩建后的边长为a+b,增加面积(a+b)2-a2=a2+2ab+b2-a2=2ab+b2,所以扩建后比扩建前草坪的面积增加2ab+b2.点拨:可画出图形以帮助分析题意,注意扩建后正方形的边长为(a+b).28.原式=(1002-992)+(982-972)+…+(22-1)=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)=100+99+98+97+…+2+1=(100+1)+(99+2)+…+(51+50)=101×50=5050.29.(1)x n-1;(2)264-1.。
第12章整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列运算中,计算结果不等于x6的是()A.x 2•x 4B.x 3+x 3C.x 4÷x ﹣2D.(﹣x 3)22、在等式a3·a²( )=a11中,括号里填入的代数式应当是( )A.a 2B.a 8C.a 6D.a 33、下列运算中,计算结果正确的是()A. B. C. D.4、小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x﹣y,a﹣b,2,x2﹣y2, a,x+y,分别对应下列六个字:华、我、爱、美、游、中,现将2a(x2﹣y2)﹣2b(x2﹣y2)因式分解,结果呈现的密码信息可能是()A.爱我中华B.我游中华C.中华美D.我爱美5、下列各式从左到右的变形中,是因式分解的是()A. B. C.D.6、方程x(x+1)=5(x+1)的根是()A.﹣1B.5C.1或5D.﹣1或57、下列计算正确的是()A.a 2+a 3=a 5B.a 2•a 3=a 6C.(a 2)3=a 6D.(ab)2=ab 28、下列等式正确的是A. B. C. D.9、下列计算正确的是()A.a 3·(-a 2)= a 5B.(-ax 2) 3=-ax 6C.3x 3-x(3x 2-x+1)=x 2-xD.(x+1)(x-3)=x 2+x-310、太阳到地球的距离约为,光的速度约为,则太阳光到达地球的时间约为()A. B. C. D.11、下列运算正确的是()A.2a+3b=5abB.(﹣a 2)3=a 6C.(a﹣b)2=a 2﹣b 2D.2a×3b 2=6ab 212、下列计算正确的是()A. B. C. D.13、对下列各整式因式分解正确的是()A.2x 2﹣x+1=x(2x﹣1)+1B.x 2﹣2x﹣1=(x 2﹣1)2C.2x 2﹣xy ﹣x=2x(x﹣y﹣1)D.x 2﹣x﹣6=(x+2)(x﹣3)14、下列计算正确的是()A.2a•3b=5abB.a 3•a 4=a 12C.(﹣3a 2b)2=6a 4b 2D.a 5÷a 3+a 2=2a 215、将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a 2﹣2ab+b 2B.(a+b)2=a 2+2ab+b 2C.(a+b)(a ﹣b)=a 2﹣b 2D.a(a﹣b)=a 2﹣ab二、填空题(共10题,共计30分)16、计算x•2x2的结果是________.17、﹣5a(3a﹣2b)=________.18、在实数范围内分解因式:2x2﹣6=________19、把多项式2x2﹣8分解因式得:________.20、因式分解________.21、分解因式:x2﹣25=________.22、计算:a6÷a2=________;(x2y3)4=________.23、若关于x的代数式(x+m)与(x﹣4)的乘积中一次项是5x,则常数项为________24、若(x+a)(x+b)=x2-6x+8,则ab=________25、已知a+b=8,ab=15,则a2+b2=________.三、解答题(共5题,共计25分)26、分解因式:.27、已知(2﹣a)(3﹣a)=5,试求(a﹣2)2+(3﹣a)2的值.28、如图,在Rt△ABC中,∠C=90°,a+b=14,C=10,求Rt△ABC的面积.29、当a为何值时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.30、把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?参考答案一、单选题(共15题,共计45分)1、B2、C3、D5、C6、D7、C8、B9、C10、B11、D12、B13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
第12章 整式的乘除单元检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分) 1、若2139273m m =••,则m 的值为( )A 、3B 、4C 、5D 、62、要使多项式2(2)()x px x q ++-不含关于x 的二次项,则p 与q 的关系是( ) A 、相等 B 、互为相反数 C 、互为倒数 D 、乘积为13、若1x y ++与()22x y --互为相反数,则3(3)x y -值为( ) A 、1 B 、9 C 、–9 D 、27 4、若229x kxy y -+是一个两数和(差)的平方公式,则k 的值为( ) A 、3 B 、6 C 、±6 D 、±815、已知多项式22(1734)()x x ax bx c -+-++能被5x 整除,且商式为21x +,则a b c -+=( )A 、12B 、13C 、14D 、19 6、下列运算正确的是( )A 、a b ab +=B 、235•a a a =C 、2222()a ab b a b +-=-D 、321a a -= 7、若44225a b a b ++=,2ab =,则22a b +的值是( ) A 、-2 B 、3 C 、±3 D 、2 8、下列因式分解中,正确的是( )A 、2222()()x y z x y z y z -=+-B 、2245()45x y xy y y x x -+-=-++C 、2()(5()9)21x x x +-=+-D 、22()912432a a a -+=-- 9、设一个正方形的边长为a ,若边长增加3,则新正方形的面积增加了( ) A 、 B 、 C 、 D 、无法确定10、在边长为a 的正方形中挖去一个边长为b 的小正方形()a b >(如图①),把余下的部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证( )第10题图②①aa bbb baaA 、222()2a b a ab b +=++B 、222()2a b a ab b -=-+C 、22()()a b a b a b -=+- D 、22(2)()2a b a b a ab b +-=+- 二、填空题(每小题3分,共24分)11、若把代数式223x x --化为2()x m k -+的形式,其中m , k 为常数,则m k += 、 12、现在有一种运算:a b n =※,可以使:()a c b n c +=+※,()2a b c n c +=-※,如果 112=※,那么2 012 2 012※___________、13、如果4x y +=-,8x y -=,那么代数式22x y -的值是________. 14、若22x m x x a -=++,则m . 15、若3968x a b =-,则x 、16、计算:3)(3)m n p m n p -++-(= 、 17、阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++、 (2)22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--、 试用上述方法分解因式222a ab ac bc b ++++= 、 18、观察,分析,猜想:2123415⨯⨯⨯+=; 22345111⨯⨯⨯+=; 23456119⨯⨯⨯+=; 24567129⨯⨯⨯+=;(1)(2)(3)1n n n n ++++=______.(n 为整数)三、解答题(共46分)19、(15分)通过对代数式的适当变形,求出代数式的值、 (1)若4x y +=,3xy =,求2()x y -,22x y xy +的值、(2)若57x =+,75y =-,求22x xy y -+的值、(3)若253x x -=,求()()()212111x x x ---++的值、(4)若210m m +-=,求322 2 014m m ++的值、20、(5分)已知2a =5,2b ,求32a b ++的值、21、(5分)利用因式分解计算:2222222212345699100101 -+-+-++-+22、(6分)先化简,再求值:(2)(1)(1)x x x x --+-,其中10x =.23、(6分)利用分解因式说明:22(5)(1)n n +--能被12整除、24、(9分)观察下列算式:111122⨯=-,222233⨯=-,333344⨯=-,…、 (1)猜想并写出第n 个等式; (2)证明你写出的等式的正确性.参考答案1、B 解析:∵ 2312321392733333m m m m m m ++===••••,∴ 12321m m ++=,解得4m =.故选B .2、A 解析:要使多项式2(2)()x px x q ++-不含关于x 的二次项,即22qx px -+=2(x p - )0q =,也就是使二次项系数等于0,即0p q -=,所以p q =、3、D 解析:由1x y ++与()22x y --互为相反数,知10x y ++=,20x y --=,所以12x =,32y =-,所以()333133332722x y ⎛⎫-=⨯+== ⎪⎝⎭4、C 解析:222229(3)(3)x kxy y x kxy y x y -+=-+=±,所以6k =±、5、D 解析:依题意,得22(1734)()5(21)x x ax bx c x x -+-++=+, 所以22(17(3)(4)15)0a x b x c x x -+--+-=+、所以1710a -=,35b --=,40c -=、解得7a =,8b =-,4c =、 所以78419a b c -+=++=、故选D .6、B 解析:A 、a 与b 不是同类项,不能合并,故本选项错误; B 、由同底数幂的乘法法则可知,235•a a a =,故本选项正确; C 、222a ab b +-不符合完全平方公式,故本选项错误;D 、由合并同类项的法则可知,32a a a -=,故本选项错误.故选B .7、B 解析:由题意得22222()5a b a b +=+、因为2ab =,所以22a b +=2523+=、 8、C 解析:A 、用平方差公式法,应为222()()x y z xy z xy z -=+-,故本选项错误; B 、用提公因式法,应为2245(45)x y xy y y x x -+-=--+,故本选项错误; C 、用平方差公式法,2(2)9(23)(23)(5)(1)x x x x x +-=+++-=+-,正确; D 、用完全平方公式法,应为229124(32)a a a -+=-,故本选项错误.故选C . 9、C 解析:2222(3)6969a a a a a a +-=++-=+即新正方形的面积增加了2(69)cm a + 10、C 解析:图①中阴影部分的面积为22a b -,图②中阴影部分的面积为()()a b a b +-,所以22()()a b a b a b -=+-,故选C 、11、-3 解析:∵ 22223214(1)4x x x x x --=-+-=--,∴ 1m =,4k =-,∴3m k +=-.12、-2 009 解析:因为a b n =※,且()a c b n c +=+※,()2a b c n c +=-※, 又因为,所以, 所以.13、-32 解析:22()()4832x y x y x y -=+-=-⨯=-、14、1 2- 14 解析:因为2222()2x m x mx m x x a -=-+=++,所以 21m -=,2a m =,所以12m =-,14a =.15、 解析:由3968x a b =-得3323()2x a b =-所以322x a b =-、 16、22292m n np p -+-17、()()a b a b c +++ 解析:原式=222(2()()())(a ab b ac bc a b c a b a ++++=+++=+)()b a b c ++.18、2[(3)1]n n ++ 解析:∵ 1×2×3×4+1=[(1×4)+1]2=52,2×3×4×5+1=[(2×5)+1]2=112,3×4×5×6+1=[(3×6)+1]2=192,4×5×6×7+1=[(4×7)+1]2=292, ∴ (1)(2)(3)n n n n +++21[(3)1]n n +=++.19、解:(1)222222()224()4x y x xy y x xy y xy x y xy -=-+=++-=+-24434=-⨯=,22()3412x y xy xy x y +=+=⨯=、(2)2222()3(5775)3(57)(75)x xy y x y xy -+=+=++--+-- 2(27)3228622=-⨯=-=、(3)2222(1)(21)11231(21)151314()x x x x x x x x x ---++=-+-+++=-+=+=、 (4)由210m m +-=,得21m m =-、把322 2 014m m ++变形,得2(2) 2 014m m ++= (1)(2) 2 01412 2 014 2 015m m m m -++=--++=、20、解:332222538120a b a b ++=⨯⨯==••、21、解:2222222212345699100101-+-+-++-+22222213254101100=+-+-++-()()()()()()132325454101100101100=++-++-+++- ()()()132********=+++++++ 12345100101=+++++++()11011015 1512+⨯==、22、解:原式222121x x x x =--+=-+、 当10x =时,原式210119-⨯+=-、23、解:因为2222(5)(1)1025(21)12(2)n n n n n n n +--=++--+=+, 所以22(5)(1)n n +--能被12整除、 24、(1)解:猜想:11n nn n n n ⨯=-++、 (2)证明:右边=21n n n n +-+=21n n +=左边,即11n nn n n n ⨯=-++.。
第12章整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列因式分解正确的是( )A.2a 2-3ab+a=a(2a-3b)B.2πR-2πr=π(2R-2r)C.-x 2-2x=-x(x-2) D.5x 4+25x 2=5x 2(x 2+5)2、下列从左到右的变形是因式分解的是()A.(x+1)(x-1)=x 2-1B.(a-b)(m-n)=(b-a)(n-m) C.ab-a-b+1=(a-1)(b-1) D.m 2-2m-3=m(m-2- )3、下列四个多项式中,能因式分解的是()A.a 2+1B.a 2-6a+9C.x 2+5yD.x 2-5y4、下列等式一定成立的是()A. B. C. D.5、下列计算正确的是()A.a 2+2a 2=3a 4B.(-2x 2) 3=-8x 6C.(m-n) 2=m 2-n 2D.b 10÷b 2=b 56、下列计算正确的是()A.(x+y)2=x 2+y 2B.(x﹣y)2=x 2﹣2xy﹣y 2C.(x+1)(x﹣1)=x 2﹣1D.(x﹣1)2=x 2﹣17、下列计算正确的是()A.2x 2+x 3=3x 5B.(x 2)3=x 5C.(m+n)2=m 2+n 2D.﹣m 2n+2nm 2=m 2n8、下列多项式乘法中可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(a+b)(b-a) D.(a 2-b)(b 2+a)9、若a m·a3=a5,则m的值为()A.1B.2C.3D.410、计算的结果是()A. B. C. D. .11、下列计算正确的是()A.(2ab 3)•(﹣4ab)=2a 2b 4B. ,C.(xy)3•(﹣x 2y)=﹣x 3y 3D.(﹣3ab)•(﹣3a 2b)=9a 3b 212、已知,则的值为()A.32B.25C.10D.6413、已知:(a﹣b)2=9;(a+b)2=25,则a2+b2=()A.34B.16C.﹣16D.1714、下列是某同学在一次作业中的计算摘录:①3a+2b=5ab,②4m3n-5mn3=-m3n,③4x3•(-2x2)=-6x5,④4a3b÷(-2a2b)=-2a,⑤(a3)2=a5,⑥(-a)3÷(-a)=-a2,其中正确的个数有()A.1个B.2个C.3个D.4个15、如图①,现有边长为和a+b的正方形纸片各一张,长和宽分别为,的长方形纸片一张,其中.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知图②中阴影部分的面积满足,则,满足的关系式为()A. B. C. D.二、填空题(共10题,共计30分)16、已知a+b=4,ab=2,则a2+b2=________.17、已知a+ = ,则a2+ =________.18、(﹣)2015×122014=________.19、分解因式:2a2﹣4a=________.20、分解因式:________.21、计算的结果等于________.22、定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x-1)※x的结果为________。
第12章 《整式的乘除》单元测试题
一、选择题(每题3分,共30分)
1.计算2
2(3)x x ⋅-的结果是 ( )
A .26x -
B .35x
C .36x
D .36x -
2.下列运算中,正确的是 ( )
A .2054a a a =
B .4312a a a =÷
C .532a a a =+
D .a a a 45=- 3.计算)34()3(42y x y x -
⋅的结果是 ( ) A.26y x B.y x 64- C. 264y x - D. y x 83
5 4.÷c b a 468( )=224b a ,则括号内应填的代数式是 ( )
A 、c b a 232
B 、232b a
C 、c b a 242
D 、c b a 2421 5.下列从左边到右边的变形,属于因式分解的是 ( )
A. 1)1)(1(2-=-+x x x
B.
1)2(122+-=+-x x x x C. )4)(4(422y x y x y x -+=- D. )3)(2(62-+=--x x x x
6.下列多项式,能用公式法分解因式的有 ( )
① 22y x + ② 22y x +- ③ 22y x -- ④ 2
2y xy x ++ ⑤ 222y xy x -+ ⑥ 2244y xy x -+-
A. 2个
B. 3个
C. 4个
D. 5个
7.如果()()q px x x x ++=+-232恒成立,那么q p ,的值为 ( )
A.=p 5,=q 6
B.=p 1, =q -6
C.=p 1,=q 6
D.=p 5,=q -6 8.如果()1593
82b a b a n m m =⋅+,那么 ( )
A.2,3==n m
B.3,3==n m
C.2,6==n m
D.5,2==n m
9.若()(8)x m x +-中不含x 的一次项,则m 的值为 ( )
A.8 8.-8 C.0 D.8或-8
10.若等式()()22b a M b a +=+-成立,则M 是 ( ) A.ab 2 B.ab 4
C.-ab 4
D.-ab 2 二、填空题(每题3分,共24分)
11.计算:._______53=⋅a a ._______2142=÷-a b a ._____)2(23=-a
12.计算:.___________________)3)(2(=+-x x
13.计算:._________________)12(2=-x
14.因式分解:.__________42=-x
15.若35,185==y
x , 则y x 25-=
16.若122=+a a ,则1422++a a =
17.若代数式2439x mx ++是完全平方式,则m =___________. 18.已知03410622=++-+n m n m ,则n m += .
三、解答题(共46)
19.计算题(12分)
(1)2342
()()n n ⋅ (2)4333510a b c a b -÷ (3)(32)(32)a b a b -+
(4)22332)6()4()3(ab b a ÷⋅ (5))32)(32()2(2
y x y x y x -+-+
(6)2222325(3)(3)(5)xy x xy x y xy ⎡⎤-+÷⎣⎦
20.因式分解(12分)
(1)239a ab - (2)2294m n -
(3)32221218a a b ab -+ (4)2222a ab b m ++-
21.化简求值(6分)
已知x xy y y x 2]24)2[(2
2÷+--,其中 2,1==y x
22.(6分)已知2()4x y -=,2()64x y +=;求下列代数式的值:
(1)22x y +; (2)xy
23.如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.
如:22420=-
22
1242=-
222064=-
因此,4,12,20这三个数都是神秘数.
(1)28和2012这两个数是不是神秘数?为什么?(3分)
(2)设两个连续偶数为2k 和22k +(其中k 为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由.(4分)
(3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.(3分)
参 考 答 案
一、选择题
1.D
2.D
3.C
4.C
5.D
6.A
7.B
8.A
9.A 10.B
二、填空题
11. 8a -7ab 64a
12. 26x x +-
13. 2446x x -+ 14.(2+x)(2-x)
15. 2
16. 3
17. 4±
18. -2
三、解答题
19.(1)解:原式=6814n n n =
(2)解:原式= 12ac - (3)解:原式= 2294a b -
(4)解:原式= 66224427163612a b a b a b ÷=
(5)解:原式= 22222222244(49)4449410x xy y x y x xy y x y xy y ++--=++-+=+
(6)解:原式= 32236622441327(51527)255525x y x y x y x y x y x y -+÷=
-+ 20.(1)解:原式=3a(a-3b)
(2) 解:原式=(3m+2n)(3m-2n)
(3) 解:原式= 2222(69)2(3)a a ab b a a b -+=-
(4) 解:原式= 22()()()a b m a b m a b m +-=+++-
21. 解:原式22221(4442)2(2)22x xy y y xy x x xy x x y =-+-+÷=-÷=
- 当x=2,y=1时,
原式=0
22. 解:222()(2)64x y x xy y +=++= (1)
222()(2)4x y x xy y -=-+= (2)
(1)+(2)得22
34x y +=
(1)-(2)得 xy=15
23. 解:(1)28和2012是神秘数
222886=- 222012504502=-
(2)2222(22)(2)484484k k k k k k +-=++-=+ 因为84421k k +÷=+ 所以84k +是4的倍数
(3)2222(21)(21)441(441)8k k k k k k k +--=++--+= 由(2)知神秘数满足84k +,8k 不能整除8k+4。