2017届江苏省灌云高级中学高三第三次学情调研考试文科数学试卷及答案 精品
- 格式:doc
- 大小:732.32 KB
- 文档页数:11
江苏省连云港市灌云县2017届高三上学期期中调研一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 复数2i 1i+-(i 为虚数单位)的模为 .2. 已知向量a (12)=,,b (32)=-,,则()⋅-a a b = .3. 在标号为0,1,2的三张卡片中随机抽取两张卡片,则这两张卡片上的标号之和为奇数的概率是 .4. 下表是某同学五次数学附加题测试的得分,则该组数据的方差2s = .5. 命题:“若0a ≠,则20a >”的否命题是“ ”.6. 将函数sin y x =的图象向右至少平移 个单位可得到函数cos y x =的图象.7. 若函数2(e )()e 1x x x m f x +=-(e 为自然对数的底数)是奇函数,则实数m 的值为 .8. 设n S 是等差数列{a n }的前n 项的和.若27a =,77S =-,则a 7的值为 . 9. 给出下列等式: π2c o s 4,π2c o s 8=,π2c o s 16=, ……请从中归纳出第n ()n ∈*N 2n 个 .10.在锐角△ABC 中,若tan A ,tan B ,tan C 依次成等差数列,则tan tan A C 的值为 . 11.在平面直角坐标系xOy 中,若直线l :20x y +=与圆C :22()()5x a y b -+-=相切,且圆心C 在直线l 的上方,则ab 的最大值为 .12.已知tan()1αβ+=,tan()2αβ-=,则sin 2cos2αβ的值为 .13.已知实数x ,y 满足2002x y x y +⎧⎪⎨⎪+⎩≥,≥,≤,设{}max 342z x y x y =--,,则z 的取值范围是 . (max{}a b ,表示a ,b 两数中的较大数)14.若幂函数()a f x x =(a ∈R )及其导函数()f x '在区间(0,+∞)上的单调性一致(同为增函数或同为减函数),则实数a 的取值范围是 .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在平面直角坐标系中,设向量m )sin A A =,,n ()cos B B =-,,其中A ,B 为△ABC 的两个内角.(1)若⊥m n ,求证:C 为直角;(2)若//m n ,求证:B 为锐角.16.(本题满分14分)如图,在四棱锥P ABCD -中,PAB ∠为二面角P AD B --的平面角. (1)求证:平面PAB ⊥平面ABCD ;(2)若BC ⊥平面PAB ,求证://AD 平面PBC .17.(本题满分14分)如图,在平面直角坐标系xOy 中,A ,B 是圆O :221x y +=与x 轴的两个交点(点B 在点A右侧),点(20)Q -,, x 轴上方的动点P 使直线P A ,PQ ,PB 的斜率存在且依次成等差 数列.(1)求证:动点P 的横坐标为定值;(2)设直线P A ,PB 与圆O 的另一个交点分别为S ,T .求证:点Q ,S ,T 三点共线.18.(本题满分16分)如图,圆O A B ,为圆O 上的两个定点,且90AOB ∠= ,P 为优弧AB 的中点.设C D ,(C 在D 左侧)为优弧AB (不含端点)上的两个不同的动点,且CD //AB . 记POD α∠=,四边形ABCD 的面积为S . (1)求S 关于α的函数关系; (2)求S 的最大值及此时α的大小.19.(本题满分16分)设数列{}n a 的前n 项和为n S ,且22n n S a =-,*n ∈N .(1)求数列{}n a 的通项公式;(2)设数列{}2n a 的前n 项和为n T ,求2nnS T ; (3)判断数列{}3n n a -中是否存在三项成等差数列,并证明你的结论.20.(本题满分16分)设定义R 上在函数()32420()(4)(4) 04 log 1 4x x f x ax b a x b m x n x a x x -⎧<⎪=+--++⎨⎪->⎩≤≤ ,,,,,(a ,b ,m ,n 为常数,且0a ≠)的图象不间断. (1)求m ,n 的值;(2)设a ,b 互为相反数,且()f x 是R 上的单调函数,求a 的取值范围;(3)若a =1,b ∈R .试讨论函数()()g x f x b =+的零点的个数,并说明理由.21.设点A 为曲线C :2cos ρθ=在极轴Ox 上方的一点,且π04AOx ∠≤≤,以A 为直角顶点,AO 为一条直角边作等腰直角三角形OAB (B 在A 的右下方),求点B 的轨迹方程.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.假定某篮球运动员每次投篮命中率均为p (0< p <1).现有3次投篮机会,并规定连续两次投篮均不中即终止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完3次投篮机会的概率是2125.(1)求p 的值;(2)设该运动员投篮命中次数为ξ,求ξ的概率分布及数学期望E (ξ).23.设函数()sin cos n n n f θθθ=+,n ∈*N ,且1()f a θ=,其中常数a 为区间(0,1)内的有理数.(1)求()n f θ的表达式(用a 和n 表示); (2)求证:对任意的正整数n ,()n f θ为有理数.参考答案1-14、【答案】4【答案】23【答案】1465【答案】若0a =,则20a ≤ 【答案】3π2【答案】1 【答案】-13 【答案】12cos n +π2【答案】1 【答案】258【答案】3-【答案】[]108-,【答案】(1 )+∞,15.【解】(1)易得)cos cos sin sin )A B A B A B ⋅-+m n ,(3分)因为⊥m n ,所以⋅=m n 0,即πcos()cos 2A B +=.因为0πA B <+<,且函数cos y x =在(0π),内是单调减函数,所以π2A B +=,即C 为直角;(6分)(2)因为//m n ()sin cos 0A B A B ⋅-=, 即sin cos 3cos sin 0A B A B +=.(8分) 因为A ,B 是三角形内角,所以cos cos 0A B ≠,于是tan 3tan A B =-,因而A ,B 中恰有一个是钝角.(10分)从而22tan tan 3tan tan 2tan tan()01tan tan 13tan 13tan A B B B B A B A B B B +-+-+===<-++, 所以tan 0B >,即证B 为锐角.(14分) 16. 证明:(1)因为PAB ∠为二面角P AD B --的平面角,所以PA AD ⊥,BA AD ⊥,(2分) 又PA AB A = ,PA AB ⊂,平面PAB , 所以AD ⊥平面PAB ,(5分)又AD ⊂平面ABCD ,故平面PAB ⊥平面ABCD ;(7分) (2)由(1)得,AD ⊥平面PAB , 又BC ⊥平面PAB ,所以//AD BC ,(10分) 又AD ⊄平面PBC , BC ⊂平面PBC ,所以//AD 平面PBC .(14分) 17. 【证】(1)由题设知,(10)(10)A B -,,,. 设000()(0)P x y y ≠,,则002PQ y k x =+,00011PA PB y yk k x x ==+-,. 因为k P A ,k PQ ,k PB 成等差数列,所以2 k PQ = k P A + k PB ,即0000002211y y yx x x =+++-, 由于00y ≠,所以012x =-,即证;(7分)(2)由(1)知,()012P y -,,0002211311PA PB y y yk y k ===--+--=,.直线P A 的方程为(1)PA y k x =+,代入221x y +=得()()22(1)110PA PA x k x k ⎡⎤++--=⎣⎦, 于是点S 的横坐标20201414S y x y -=+,从而020414Sy y y =+. 同理可得200220049129494T Ty y x y y y -==++,.(11分) 因为00222000442(14)2(14)34S S y y y x y y y ==+-+++,0002222000012124(49)2(94)91234S TT S y y y y y y y y y ====-+=++, 所以直线QS 和直线QT 的斜率相等, 故点S ,T ,Q 共线.(14分)18.解:(1)设过圆心O 作AB 的垂线分别与AB ,CD 交于点E ,F , 易得2AB =,1OE =,① 当π0α<<时,如图1,易得2CD α=,OF α=,所以1()()2S AB CD OE OF =+⋅+()()121αα=+)sin cos αα=+2sin cos 1αα++;(3分)② 当π2α=时,11()(21122S AB CD EF =+⋅=⨯+⨯=+(5分)③ 当π3π24α<<时,如图2,易得()2πCD αα=-=,()πOF αα-=,所以1()()2S AB CD OE OF =+⋅-()()1212αα=⨯+⨯+)sin cos 2sin cos 1αααα+++;综上得,S =)sin cos 2sin cos 1αααα+++,30π4α<<;(9分)(2)令()πsin cos 4t ααα=++,因为30π4α<<,所以πππ44α<+<,从而()π0sin 14α<+≤,故(0t∈,(12分)此时(2221112S t t t=+-+==+-,(0t∈,所以当tmax4S=,此时π4α=.(16分)19. 解:(1)当n=1时,1122S a=-,解得12a=.(2分)当n≥2时,()()111222222n n n n n n na S S a a a a---=-=---=-,即12n na a-=.因为1a≠,所以12nnaa-=,从而数列{}n a是以2为首项,2为公比的等比数列,所以2nna=.(5分)(2)因为,所以,故数列是以4为首项,4为公比的等比数列,从而()()2221224112nnnS-==--,(7分)()()414441143nnnT-==--,所以232nnST=.(10分)(3)假设{}3nna-中存在三项成等差数列,不妨设第m,n,k(m<n<k)项成等差数列,则()2333n m kn m ka a a-=-+-,即()2323232n n m m k k-=-+-.(12分)因为m<n<k,且m,n,k N*∈,所以n+1≤k.因为()2323232n n m m k k-=-+-113232m m n n++-+-≥,所以332n m m--≥,故矛盾,所以数列{}3nna-中不存在三项成等差数列.(16分)20. 解:(1)依题意,(0)1f=,(4)0f=,()2224n nna==2124nnaa+={}2n a即1 6416(4)4(4)0 n a b a b m n =⎧⎨+--++=⎩,,解得1 1.4n m =⎧⎪⎨=⎪⎩, (3分)(2)因为()12xy =是减函数,且()f x 是R 上的单调函数,所以在()4log 1y a x =-中,应该有'0ln 4a y x =≤,故0 a <,(5分) 在321(4)(4)14y ax b a x b x =+--++中,其中0a b +=,21'31044y ax ax a =-+-,导函数的对称轴为53x =,故2110012(4)04a a a ∆=--≤,解得1014a -<≤;(8分) (3)易得函数()321()(4)414f x x b x b x =+--++,则()21()32(4)44f x x b x b '=+--+,其判别式2416670b b ∆=++>, 记()0f x '=的两根为1x ,2x (12x x <), 列表:当b >0时,()10xb +=无解,4log 1x b =-无解,又(0)10 (4)0 f b b f b b +=+>+=>,, ()11(2)84(4)241153042f b b b b b +=+--+++=--<,方程在(0,4)上有两解,方程一共有两个解;(10分) 当1b <-时,()102xb +=有一解0.5log()x b =-,4log 10x b -+=有一解14b x -=,又(0)10f b b +=+<,(4)0f b b +=<,()()111113(4)10 284244+=+--+++=->f b b b b b ,故方程在(0,4)上有两解,方程共有4个解;(12分)当-1<b <0时,()102xb +=无解,4log 10x b -+=有一解,又(0)10f b b +=+>,(4)0f b b +=<, 方程在(0,4)内只有一解,方程共两解;(14分)当b =0时,有x =4和x =12两解,b =-1时,有0x =,1x =,14b x -=三个解,综上得,当1b >-时,()g x 有2个零点;当1b =-时,()g x 有3个零点; 当1b <-时,()g x 有4个零点.(16分)21. 解:设()00 A ρθ,,且满足002cos ρθ=,() B ρθ,,依题意,00 π2π 4ρθθ⎧=⎪⎨-+=⎪⎩,,即00 7π ρθθ⎧⎪⎨⎪=-⎩,, 代入002cos ρθ=并整理得,()πρθ=+,7π2π4θ≤≤,所以点B的轨迹方程为()π4ρθ=+,7π2π4θ≤≤.(10分) 22. 解:(1)设事件A :“恰用完3次投篮机会”, 则其对立事件A :“前两次投篮均不中”,依题意,()()221()11125P A P A p =-=--=,解得3p =;(3分)(2)依题意,ξ的所有可能值为0,1,2,3,且()24(0)125P p ξ==-=,()()()224(1)111125P p p p p p ξ==-+--=,327(3)125P p ξ===,故54(2)1(0)(1)(3)125P P P P ξξξξ==-=-=-==,ξ的概率分布表为:(8分)E (ξ)24542721323125125125125=+⨯+⨯=(次).(10分)23. 解:(1)易得sin cos a θθ+=, 又22sin cos 1θθ+=,所以222sin 2sin 10a a θθ-+-=,解得sin θ=从而()nnn f θ=+;(4分)(2)证明:()nnn f θ=+()()()02424024C C C nn n nnna a a --=+++⋅⋅⋅()()()()22242024242C C C 2242nn n nnna aaa a----=+++⋅⋅⋅∈Q.(10分)。
江苏省苏北三市(连云港、徐州、宿迁)2017届高三数学第三次模拟考试试题(含解析) 参考公式:样本数据的方差,其中。
棱锥的体积,其中是棱锥的底面积,是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写.在答题卡相应位置上........1. 已知集合,,则集合中元素的个数为____.【答案】【解析】由于,所以集合中元素的个数为5.【点睛】根据集合的交、并、补定义:,,,求出,可得集合中元素的个数.2. 设,(为虚数单位),则的值为____.【答案】1【解析】由于,有,得。
3。
在平面直角坐标系中,双曲线的离心率是____.【答案】【解析】4. 现有三张识字卡片,分别写有“中"、“国"、“梦"这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是____.【答案】【解析】把这三张卡片排序有“中"“国”“梦”,“中”“梦"“国”,“国”“中”“梦";“国”“梦”“中”“梦"“中"“国";“梦”“国”“中";共计6种,能组成“中国梦” 的只有1种,概率为。
【点睛】本题为古典概型,三个字排列可采用列举法,把所有情况按顺序一、一列举出来,写出基本事件种数,再找出符合要求的基本事件种数,再利用概率公式,求出概率值。
5。
如图是一个算法的流程图,则输出的的值为____.【答案】【解析】试题分析:由得,再由题意知.考点:算法流程图的识读和理解.6。
已知一组数据,,,,,则该组数据的方差是____.【答案】(或)【解析】7. 已知实数,满足则的取值范围是____.【答案】(或)【解析】本题为线性规划,画出一元二次不等式组所表示的可行域,目标函数为斜率型目标函数,表示可行域内任一点与坐标原点连线的斜率,得出最优解为,则的取值范围是【点睛】线性规划问题为高考热点问题,线性规划考查方法有两种,一为直接考查,目标函数有截距型、斜率型、距离型(两点间距离和点到直线距离)等,二为线性规划的逆向思维型,给出最优解或最优解的个数反求参数的范围或参数的值。
江苏省南通市、扬州市、泰州市2017年高考三模数学试卷答 案1.12-2.2|}0{x x <<3.564.3 5.75006.110789.10.111.812.[46]-,13.214.3(,2)2- 15.解:(1)由条件,周期2πT =,即2π2πω=,所以1ω=,即πsin 3f x A x =+()().因为f x ()的图象经过点π()32,所以2πsin 32A =. ∴1A =, ∴πsin 3f x x =+()().(2)由12f παα+=()(-),得πππsin 1323αα++=()(-),即ππsin 133αα++=()(),可得:ππ2sin 133[]α=(+)-,即1sin 2α=. 因为0πα∈(,),解得:π6α=或5π6. 16.证明:(1)因为M 、N 分别为PD 、PC 的中点, 所以//MN DC ,又因为底面ABCD 是矩形,所以//AB DC .所以//MN AB ,又AB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为AP AD =,P 为PD 的中点,所以AM PD ⊥.因为平面PAD ⊥平面ABCD ,又平面PAD 平面ABCD =AD ,CD AD ⊥,CD ⊂平面ABCD ,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以CD AM ⊥.因为CD 、PD ⊂平面PCD ,CDPD D =,∴AM ⊥平面PCD .17.解:(1)由题意,10F (-,),由焦点210F (,),且经过31,2P (), 由22PF PF a +=,即24a =,则2a =,2223b a c ==-, ∴椭圆的标准方程22143x y +=; (2)设直线AB 的方程为1y k x =+().①若0k =时,24AB a ==,1FD FO +=, ∴4ABDF =.②若0k ≠时,11Ax y (,),22B x y (,),AB 的中点为00M x y (,), 22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,整理得:22224384120k x k x k +++=()-, ∴2122834k x x k +=-+,则202434k x k =-+,则0023134k y k x k =+=+(). 则AB 的垂直平分线方程为2223143434k k y x k k k =+++--(), 由DA DB =,则点D 为AB 的垂直平分线与x 轴的交点, ∴22034k D k +(-,),∴22223313434k k DF k k +=-+=++, 由椭圆的左准线的方程为4x =-,离心率为12,由1142AF x =+,得11(4)2AF x =+, 同理21(4)2BF x =+, ∴212211212()4234k AB AF BF x x k +=+=++=+, ∴4ABDF = 则综上,得ABDF 的值为4.18.解:(1)设DQ 与半圆相切于点Q ,则由四边形CDEF 是等腰梯形知,OQ DE ⊥,以CF 所在直线为x 轴,OQ 所在直线为y 轴,建立平面直角坐标系xOy .设EF 与圆切于G 点,连接OG ,过点E 作EH OF ⊥,垂足为H .∵EH OG =,OFG EFH ∠=∠,GOF HEF ∠=∠,∴Rt EHF Rt OGF △≌△,∴12HF FG EF t ==-. ∴222111()2EF HF EF t =+=+-, 解得1024t EF t t=+(<<). (2)设修建该参观线路的费用为y 万元. ①当103t <≤,由1325[2()]5()42t y t t t t =++=+.2325(02)y t '=-<,可得y 在1(0,]3上单调递减, ∴13t =时,y 取得最小值为32.5. ②当123t <<时,2111632(8)[2()]1242t y t t t t t t=-++=+--. 22331624(1)(331)'12t t t y t t t -+-=-+=. ∵123t <<,∴23310t t +->. ∴1(,1)3t ∈时,0y '<,函数y 此时单调递减;12t ∈(,)时,0y '>,函数y 此时单调递增. ∴1t =时,函数y 取得最小值24.5.由 ①②知,1t =时,函数y 取得最小值为24.5.答:(1)1024t EF t t =+(<<)(百米).(2)修建该参观线路的最低费用为24.5万元.19.解:(1)∵122331a b a b a b +=+=+,∴21111112a b q a d b q a d b +=++=++,化为:2210q q =--,1q ≠±. 解得12q =-. (2)m p p r r m a b a b a b +=+=+,即p m p r a a b b =--,∴p m r m m p m d b q q =--(-)(-),同理可得:1r m m r p d b q =-(-)(-).∵m ,p ,r 成等差数列,∴12p m r p r m ==--(-),记p m q t =-,则2210t t =--, ∵1q ≠±,1t ≠±,解得12t =.即12p m q =-,∴10q -<<, 记p m α=-,α为奇函数,由公差大于1,∴3α≥. ∴11311()()22a q =≥,即131()2q ≤-, 当3α=时,q 取得最大值为131()2-. (3)满足题意的数组为23E m m m =++(,,),此时通项公式为:1133()(1)288m n n a m -=---,*m N ∈. 例如134E =(,,),31188n a n =-. 20.(1)证明:12a =时,21cos 2f x x x =+(), 故sin f x x x '=()-,即sin g x x x =()-,1cos 0g x x '=≥()-, 故g x ()在R 递增;(2)解:∵2sin g x f x ax x ='=()()-,∴2cos g x a x '=()-, ①12a ≥时,1cos 0g x x '≥≥()-,函数f x '()在R 递增, 若0x >,则00f x f '=()>(), 若0x <,则00f x f ''=()<(),故函数f x ()在0+∞(,)递增,在0∞(-,)递减, 故f x ()在0x =处取极小值,符合题意; ②12a ≤-时,1cos 0g x x '≤≤()--,f x '()在R 递减, 若0x >,则00f x f ''=()<(), 若0x <,则00f x f '=()>(), 故f x ()在0+∞(,)递减,在0∞(-,)递增, 故f x ()在0x =处取极大值,不合题意; ③1122a -<<时,存在00x π∈(,),使得0cos 2x a =,即00g x '=(), 但当00x x ∈(,)时,cos 2x a >,即0g x '()<,f x '()在00x (,)递减, 故00f x f ''=()<(),即f x ()在00x (,)递减,不合题意, 综上,a 的范围是1[2+∞,); (3)解:记2cos ln 0h x ax x x x x =+-()(>),①0a >时,ln x x <,则1122ln x x <,即ln x <,当2x >时,112sin 1ln 2222022h x ax x x ax a a+'==()--->--﹣﹣)>,故存在21(2m a+=,函数h x ()在m +∞(,)递增; ②0a ≤时,1x >时,2sin 1ln sin 1ln 0h x ax x x x x '=()---<---<, 故存在1m =,函数h x ()在m +∞(,)递减;综上,函数ln y f x x x =()-在0+∞(,)上广义单调.21.解:连结PA 、PB 、CD 、BC ,因为PAB PCB ∠=∠,又点P 为弧AB 的中点,所以PAB PBA ∠=∠,所以PCB PBA ∠=∠,又DCB DPB ∠=∠,所以PFE PBA DPB PCB DCB PCD ∠=∠+∠=∠+∠=∠,所E 、F 、D 、C 四点共圆.所以PE PC PF PD =.22.解:由题意,111115a b -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即1115a b -=-⎧⎨--=-⎩,解得2a =,4b =,所以矩阵1214M ⎡⎤=⎢⎥-⎣⎦. 所以矩阵M 的特征多项式为2125614f λλλλλ--==+-()-,令0f λ=(),得矩阵M 的特征值为2和3. 23.解:因为圆心C 在极轴上且过极点,所以设圆C 的极坐标方程为:cos a ρθ=,又因为点)4π在圆C 上,所以cos 4a π=,解得6a =, 所以圆C 的极坐标方程为:6cos ρθ=.24.证明:∵a ,b ,c ,d 是正实数,且1abcd =,∴54a b c d a +++≥=,同理可得:54a b c d b +++≥=,54a b c d c +++≥=,54a b c d d +++≥=,将上面四式相加得:555533334444a b c d a b c d a b c d +++++++≥+++,∴5555a b c d a b c d +++≥+++.25.解:(1)以D 为原点建立如图所示的空间直角坐标系D xyz -,则000D (,,),220B (,,),010C (,,),002S (,,) ∴(2,2,2)SB =-,(0,1,2)SC =-,(0,0,2)DS =设面SBC 的法向量为(,,)m x y z =由222020m SB x y z m SC y z ⎧=+-=⎪⎨=-=⎪⎩可取(1,2,1)m =-∵SD ⊥面ABC ,∴取面ABC 的法向量为(0,0,1)n = 6cos ,m n =∵二面角S BC A --为锐角.二面角S BC A --(2)由(1)知101E (,,),则(2,1,0)CB =,(1,1,1)CE =-, 设CP CB λ=,01λ≤≤().则(2,,0)CP λλ=,(12,1,1)PE CE CP λλ=-=---易知CD ⊥面SAD ,∴面SAD 的法向量可取(0,1,0)CD =cos ,13PE CD ==, 解得13λ=或119λ=(舍去). 此时21(,,0)33CP =,∴5CP =∴线段CP26.解:(1)102()bc ad f x f x ax b -='=+()(), 2132[]2()()()bc ad ax b a bc ad f x f x ax b -+--='='=+()(); (2)猜想111(1)()!()n n n n a bc ad n f x ax b --+-++-++()=,*n N ∈, 证明:①当1n =时,由(1)知结论正确;②假设当n k =,*k N ∈时,结论正确, 即有111(1)()!()k k k k a bc ad k f x ax b --+-+-+=+() 11112(1)()1?1])[(k k k k k k a bc ad k a bc ad k ax b ax b -++-++-+=+++'=+---()(-)(-)()() 所以当10n k =+时结论成立,由①②得,对一切*n ∈N 结论正确.江苏省南通市、扬州市、泰州市2017年高考三模数学试卷解析1.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵a+bi=(4+3i)i=﹣3+4i.∴a=﹣3,b=4.∴ab=﹣12.故答案为:﹣12.2.【考点】1F:补集及其运算.【分析】根据补集的定义写出运算结果即可.【解答】解:集合U={x|x>0},A={x|x≥2},则∁U A={x|0<x<2}.故答案为:{x|0<x<2}.3.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.【解答】解:∵随机播放甲、乙、丙、丁4首歌曲中的2首,∴基本事件总数n==6,甲、乙2首歌曲至少有1首被播放的对立事件是甲、乙2首歌曲都没有被播放,∴甲、乙2首歌曲至少有1首被播放的概率:p=1﹣=.故答案为:.4.【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得S=1,k=1S=2,不满足条件S>10,k=2,S=6不满足条件S>10,k=3,S=15满足条件S>10,退出循环,输出k的值为3.故答案为:3.5.【考点】B3:分层抽样方法.【分析】由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.【解答】解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是=7500.故答案为:7500.6.【考点】85:等差数列的前n项和.【分析】利用等差数列通项公式求出首项a1=2,由此利用等差数列前n项和公式能求出S10.【解答】解:∵等差数列{a n}的前n项和为S n,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.7.【考点】HR:余弦定理;HP:正弦定理.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为3,且AB=3,AC=4,所以×3×4×sinA=3,所以sinA=,所以A=60°,所以cosA=,所以BC===.故答案为:.8.【考点】KC:双曲线的简单性质.【分析】根据题意,由抛物线的方程可得其焦点坐标,将其代入双曲线的方程可得a2的值,即可得双曲线的方程,计算可得c的值,由双曲线离心率公式计算可得答案.【解答】解:根据题意,抛物线的方程为y2=8x,其焦点为(2,0),若双曲线﹣y2=1(a>0)经过点(2,0),则有﹣0=1,解可得a2=4,即双曲线的方程为:﹣y2=1,则a=2,c==,则双曲线的离心率e==;故答案为:.9.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用扇形的弧长等于圆锥底面周长作为相等关系,列方程求解得到圆锥的底面半径,然后利用勾股定理确定圆锥的高即可.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=1;圆锥的高为: =2.故答案为:2.10.【考点】6H:利用导数研究曲线上某点切线方程.【分析】先设出切点坐标P(x0,e x0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b 是曲线y=e x+x的一条切线,求出实数b的值.【解答】解:∵y=e x+x,∴y′=e x+1,设切点为P(x0,e x0+x0),则过P的切线方程为y﹣e x0﹣x0=(e x0+1)(x﹣x0),整理,得y=(e x0+1)x﹣e x0•x0+e x0,∵直线是y=2x+b是曲线y=e x+x的一条切线,∴e x0+1=2,e x0=1,x0=0,∴b=1.故答案为1.11.【考点】7F:基本不等式.【分析】根据题意,将变形可得则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4,由基本不等式分析可得答案.【解答】解:根据题意,x,y满足x+y=1,则=+=+﹣1=(x+y)(+)﹣1=(1+4++)﹣1=(+)+4≥2+4=8,即的最小值是8;故答案为:8.12.【考点】9R:平面向量数量积的运算.【分析】依题意,设=λ(0≤λ≤),=μ(﹣1≤μ≤0),由=+, =+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,﹣1≤μ≤0,即可求得﹣4≤9λ+4μ≤6,从而可得答案.【解答】解:∵AB∥DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(﹣1≤μ≤0),又=+, =+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又﹣1≤μ≤0,∴﹣4≤4μ≤0②,①+②得:﹣4≤9λ+4μ≤6.即的取值范围是[﹣4,6],故答案为:[﹣4,6].13.【考点】J9:直线与圆的位置关系.【分析】设出=t,化简可得圆的方程,运用两圆相减得交线,考虑圆心到直线的距离不大于半径,即可得出结论.【解答】解:设P(x,y),=t,则(1﹣t2)x2+(1﹣t2)y2﹣2x+(2﹣4t2)y+2﹣4t2=0,圆x2+y2=2两边乘以(1﹣t2),两圆方程相减可得x﹣(1﹣2t2)y+2﹣3t2=0,(0,0)到直线的距离d=,∵t>0,∴0<t≤2,∴的最大值是2,故答案为2.14.【考点】54:根的存在性及根的个数判断.【分析】求出g(x)的解析式,计算g(x)的零点,讨论g(x)在区间[a,+∞)上的零点个数,得出g(x)在(﹣∞,a)上的零点个数,列出不等式解出a的范围.【解答】解:g(x)=,显然,当a=2时,g(x)有无穷多个零点,不符合题意;当x≥a时,令g(x)x=0得x=0,当x<a时,令g(x)=0得x=0或x2=,(1)若a>0且a≠2,则g(x)在[a,+∞)上无零点,在(﹣∞,a)上存在零点x=0和x=﹣,∴≥a,解得0<a<2,(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(﹣∞,0)上存在零点x=﹣,符合题意;(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,∴g(x)在(﹣∞,a)上只有1个零点,∵0∉(﹣∞,a),∴g(x)在(﹣∞,a)上的零点为x=﹣,∴﹣<a,解得﹣<a<0.综上,a的取值范围是(﹣,2).故答案为(﹣,2).15.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H2:正弦函数的图象.【分析】(1)由条件可求周期,利用周期公式可求ω=1,由f(x)的图象经过点(,),可求Asin =.解得A=1,即可得解函数解析式.(2)由已知利用三角函数恒等变换的应用化简可得sin.结合范围α∈(0,π),即可得解α的值.16.【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)推导出MN∥DC,AB∥DC.从而MN∥AB,由此能证明MN∥平面PAB.(2)推导出AM⊥PD,CD⊥AD,从而CD⊥平面PAD,进而CD⊥AM,由此能证明AM⊥平面PCD.17.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据椭圆的定义,即可求得2a=4,由c=1,b2=a2﹣c2=3,即可求得椭圆的标准方程;(2)分类讨论,当直线的斜率存在时,代入椭圆方程,由韦达定理及中点坐标公式求得M点坐标,求得直线AB垂直平分线方程,即可求得D点坐标,由椭圆的第二定义,求得丨AF丨=(x1+4),即丨BF丨=(x2+4),利用韦达定理即可求得丨AB丨,即可求得的值.18.【考点】6K:导数在最大值、最小值问题中的应用.【分析】(1)设DQ与半圆相切于点Q,则由四边形CDEF是等腰梯形知,OQ⊥DE,以CF所在直线为x 轴,OQ所在直线为y轴,建立平面直角坐标系xoy.设EF与圆切于G点,连接OG,过点E作EH⊥OF,垂足为H.可得Rt△EHF≌Rt△OGF,HF=FG=EF﹣t.利用EF2=1+HF2=1+,解得EF.(2)设修建该参观线路的费用为y万元.①当,由y=5=5.利用y′,可得y在上单调递减,即可得出y的最小值.②当时,y==12t+﹣﹣.利用导数研究函数的单调性极值最值即可得出.19.【考点】84:等差数列的通项公式.【分析】(1)由a1+b2=a2+b3=a3+b1,利用等差数列与等比数列的通项公式可得:a1+b1q==a1+2d+b1,化简解出即可得出.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,可得(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r ﹣m﹣1).由m,p,r成等差数列,可得p﹣m=r﹣p=(r﹣m),记q p﹣m=t,解得t=.即q p﹣m=,由﹣1<q<0,记p﹣m=α,α为奇函数,由公差大于1,α≥3.可得|q|=≥,即q,即可得出.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m∈N*.20.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据导函数的符号,求出函数的单调区间即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间,单调函数的极小值,从而确定a的具体范围即可;(3)记h(x)=ax2+cosx﹣xlnx(x>0),求出函数的导数,通过讨论a的范围结合函数的单调性证明即可.21.【考点】NC:与圆有关的比例线段.【分析】连结PA、PB、CD、BC,推导出∠PFE=∠PBA+∠DPB=∠PCB+∠DCB=∠PCD,从而E、F、D、C四点共圆.由此能证明PE•PC=PF•PD.22.【考点】OV:特征值与特征向量的计算.【分析】设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.[选修4-4:坐标系与参数方程]23.【考点】Q4:简单曲线的极坐标方程.【分析】因为圆心C在极轴上且过极点,所以设圆C的极坐标方程为:ρ=acosθ,又因为点(3,)在圆C上,代入解得ρ即可得出圆C的极坐标方程.[选修4-5:选修4-5:不等式选讲]24.【考点】R6:不等式的证明.【分析】由不等式的性质可得:a5+b+c+d≥4=4a,同理可得其他三个式子,将各式相加即可得出结论.解答题25.【考点】MI:直线与平面所成的角;MT:二面角的平面角及求法.【分析】以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2),利用空间向量求解.26.【考点】RG:数学归纳法;63:导数的运算.【分析】(1)利用条件,分别代入直接求解;(2)先说明当n=1时成立,再假设n=K(K∈N*)时,猜想成立,证明n=K+1时,猜想也成立.从而得证.。
2017年第三次全国大联考【江苏卷】数学·原卷版一、填空题:(本大题共14个小题,每小题5分,共70分,将答案填在答题纸上) 1.已知集合2{20}A x x x =+=,2{|20}B x x x =-≤,则AB =_____________.{0}{0,2},[0,2]A B =-=,{0}.A B =2.已知复数,其中i 为虚数单位,若12||||z z =,则z =_____________.23.已知样本7,8,9,,x y 的平均数为8,且60xy =,则此样本的方差为_____________.4.从甲、乙、丙、丁四个人中随机选取两人,则甲、乙两人有且仅有一人被选中的概率是_____________.5.若(mod )n N m ≡表示正整数错误!未找到引用源。
除以正整数错误!未找到引用源。
后的余数为错误!未找到引用源。
,则执行该程序框图输出的n =______.6.直线:210l y x =+过双曲线22221(0,0)x y a b a b-=>>一个焦点且与其一条渐近线平行,则双曲线方程为_____________. 7.将函数ππ()sin(2)()22f x x θθ=+-<<的图象向右平移(0π)ϕϕ<<个单位长度后得到函数()g x 的图象,若(),()f x g x 的图象都经过点P ,则ϕ的值为_____________.8.已知一个圆锥的底面半径为1,则由它的两条母线所确定的截面面积的最大值为_____________.9.四边形ABCD 中,O 为对角线,AC BD 的交点,若||4,12,,2AC BA BC AO OC BO OD =⋅===,则DA DC ⋅=_____________.10.平面四边形ABCD 中,,3,5,4,2====DA CD BC AB 则平面四边形ABCD 面积的最大值为_____________.11.已知()1980,()ln()xf x axg x a a=-=∈R ,若在*x ∈N 上恒有()()0f x g x ≥,则实数a 错误!未找到引用源。
(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)苏北三市高三年级第三次模拟考试 2017届高三年级第三次模拟考试(三)数学参考公式:样本数据1,2,…,n 的方差s 2=1n ∑n i =1 (i -)2,其中=1n∑n i =1i . 棱锥的体积V =13Sh ,其中S 是棱锥的底面积,h 是高.一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={-1,1,2},B ={0,1,2,7},则集合A∪B 中元素的个数为________.2. 设a ,b ∈R ,1+i 1-i=a +b i(i 为虚数单位),则b 的值为________.(第5题)3. 在平面直角坐标系Oy 中,双曲线x 24-y23=1的离心率是________.4. 现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是________.5. 如图是一个算法的流程图,则输出的的值为________.6. 已知一组数据3,6,9,8,4,则该组数据的方差是________.7. 已知实数,y 满足⎩⎪⎨⎪⎧y ≤x -1,x ≤3x +y≥2,则yx的取值范围是________.8. 若函数f ()=2sin (2+φ)⎝⎛⎭⎪⎫0<φ<π2的图象过点(0,3),则函数f ()在上的单调减区间是________.9. 在公比为q 且各项均为正数的等比数列{a n }中,S n 为{a n }的前n 项和.若a 1=1q 2,且S 5=S 2+2,则q 的值为________.10. 如图,在正三棱柱ABCA 1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥PABA 1的体积为________.(第10题)(第11题)11. 如图,已知正方形ABCD 的边长为2,BC 平行于轴,顶点A ,B 和C 分别在函数y 1=3log a ,y 2=2log a 和y 3=log a (a>1)的图象上,则实数a 的值为________.12. 已知对于任意的∈(-∞,1)∪(5,+∞),都有2-2(a -2)+a>0,则实数a 的取值范围是________.13. 在平面直角坐标系Oy 中,圆C :(+2)2+(y -m )2=3.若圆C 存在以G 为中点的弦AB ,且AB =2GO ,则实数m 的取值范围是________.14. 已知△ABC 三个内角A ,B ,C 的对应边分别为a ,b ,c ,且C =π3,c =2.当AC →·AB→取得最大值时,ba的值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或计算步骤.15. (本小题满分14分)如图,在△ABC 中,已知点D 在边AB 上,AD =3DB ,cos A =45,cos ∠ACB =513,BC =13.(1) 求cos B 的值; (2) 求CD 的长.16. (本小题满分14分)如图,在四棱锥PABCD 中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C),平面ABE 与棱PD 交于点F.(1) 求证:AB∥EF;(2) 若平面PAD⊥平面ABCD ,求证:AF⊥EF.如图,在平面直角坐标系Oy 中,已知椭圆C :x 24+y23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在轴上方).(1) 若QF =2FP ,求直线l 的方程;(2) 设直线AP ,BQ 的斜率分别为1,2.是否存在常数λ,使得1=λ2?若存在,求出λ的值;若不存在,请说明理由.某景区修建一栋复古建筑,其窗户设计如图所示.圆D 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,且AB AD ≥12.设∠E OF=θ,透光区域的面积为S.(1) 求S 关于θ的函数关系式,并求出定义域.(2) 根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n∈N *,都有3S n +1=2S n +S n +2+a n .(1) 求数列{a n }的通项公式;(2) 若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ; (3) 若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足a n +2T n b n +2S n=a (∈N *)的n 值.已知函数f ()=m x+ln(m >0),g ()=ln -2. (1) 当m =1时,求函数f ()的单调增区间;(2) 设函数h ()=f ()-g ()-2,>0.若函数y =h (h ())的最小值是322,求m 的值;(3) 若函数f (),g ()的定义域都是,对于函数f ()的图象上的任意一点A ,在函数g ()的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,0为坐标原点.求m 的取值范围.(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)2017届高三年级第三次模拟考试(三)数学附加题21. 本题包括A 、B 、C 、D 四小题,请选定其中两题.......,.并作答.....若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A . (本小题满分10分)如图,圆O 的弦AB ,MN 交于点C ,且A 为弧MN 的中点,点D 在弧BM 上.若∠ACN=3∠ADB ,求∠ADB 的度数.B . (本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤a 32d ,若A =⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤84,求矩阵A 的特征值.C. (本小题满分10分)在极坐标系中,已知点A ⎝⎛⎭⎪⎫2,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ≤2π)上.当线段AB最短时,求点B的极坐标.D. (本小题满分10分)已知a,b,c为正实数,且a3+b3+c3=a2b2c2.求证:a+b+c≥333.【必做题】第22题、第23题.每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)在平面直角坐标系Oy中,点F(1,0),直线=-1与动直线y=n的交点为M,线段MF 的中垂线与动直线y=n的交点为P.(1) 求动点P的轨迹E的方程;(2) 过动点M作曲线E的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.23. (本小题满分10分)已知集合U={1,2,…,n}{n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B =∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1) 写出f(2),f(3),f(4)的值;(2) 求f(n).(这是边文,请据需要手工删加)(这是边文,请据需要手工删加)2017届高三年级第三次模拟考试(三)(苏北三市)数学参考答案一、填空题1. 52. 13.72 4. 16 5. 6 6. 265(或 5.2) 7. ⎣⎢⎡⎦⎥⎤-13,23⎝⎛⎭⎪⎫或-13≤y x ≤23 8. (π12,7π12)⎝ ⎛⎭⎪⎫或⎣⎢⎡⎦⎥⎤π12,7π12 9. 5-12 10. 943 11. 2 12. (1,5](或1<a≤5) 13. (或-2≤m ≤2) 14. 2+ 3二、 解答题15. (1) 在△ABC 中,cos A =45,A ∈(0,π),所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫452=35.(2分) 同理可得,sin ∠ACB =1213. (4分)所以cos B =cos =-cos (A +∠ACB)=sin A sin ∠ACB -cos A cos ∠ACB (6分) =35×1213-45×513=1665.(8分) (2) 在△ABC 中,由正弦定理得,AB =BCsin Asin ∠ACB =1335×1213=20.(10分)又AD =3DB ,所以BD =14AB =5. (12分)在△BCD 中,由余弦定理得, CD =BD 2+BC 2-2BD·BC cos B =52+132-2×5×13×1665=9 2. (14分)16. (1) 因为ABCD 是矩形,所以AB∥CD.(2分) 又因为AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB∥平面PDC.(4分) 又因为AB ⊂平面ABEF , 平面ABEF∩平面PDC =EF , 所以AB∥EF.(6分)(2) 因为ABCD 是矩形,所以AB⊥AD. (8分)又因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD , AB ⊂平面ABCD ,所以AB⊥平面PAD. (10分) 又AF ⊂平面PAD ,所以AB⊥AF. (12分) 又由(1)知AB∥EF,所以AF⊥EF.(14分)17. (1) 因为a 2=4,b 2=3,所以c =a 2-b 2=1, 所以F 的坐标为(1,0),(1分)设P(1,y 1),Q(2,y 2),直线l 的方程为=my +1, 代入椭圆方程,得(4+3m 2)y 2+6my -9=0, 则y 1=-3m +61+m 24+3m 2, y 2=-3m -61+m 24+3m2. (4分) 若QF =2PF ,则-3m -61+m 24+3m 2+2×-3m +61+m24+3m 2=0, 解得m =255,故直线l 的方程为5-2y -5=0.(6分)(2) 由(1)知,y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,所以my 1y 2=-9m 4+3m 2=32(y 1+y 2),(8分)所以k 1k 2=y 1x 1+2·x 2-2y 2=y 1(my 2-1)y 2(my 1+3) (12分)=32(y 1+y 2)-y 132(y 1+y 2)+3y 2=13, 故存在常数λ=13,使得1=132.(14分)18. (1) 过点O 作OH⊥FG 于点H ,则∠OFH=∠EOF=θ, 所以OH =OF sin θ=sin θ, FH =OF cos θ=cos θ.(2分) 所以S =4S △OFH +4S 扇形OEF=2sin θcos θ+4×⎝ ⎛⎭⎪⎫12θ =sin 2θ+2θ,(6分) 因为AB AD ≥12,所以sin θ≥12,所以定义域为⎣⎢⎡⎭⎪⎫π6,π2.(8分)(2) 矩形窗面的面积为S 矩形=AD·AB=2×2sin θ=4sin θ. 则透光区域与矩形窗面的面积比值为 2sin θcos θ+2θ4sin θ=cos θ2+θ2sin θ.(10分)设f(θ)=cos θ2+θ2sin θ,π6≤θ<π2.则f′(θ)=-12sin θ+sin θ-θcos θ2sin 2θ=sin θ-θcos θ-sin 3θ2sin 2θ=sin θcos 2θ-θcos θ2sin 2θ=cos θ⎝ ⎛⎭⎪⎫12sin 2θ-θ2sin 2θ,(12分)因为π6≤θ<π2,所以12sin 2θ≤12,所以12sin 2θ-θ<0,故f′(θ)<0,所以函数f(θ)在⎣⎢⎡⎭⎪⎫π6,π2上单调减. 所以当θ=π6时,f (θ)有最大值π6+34,此时AB =2sin θ=1(m ).(14分)答:(1) S 关于θ的函数关系式为S =sin 2θ+2θ,定义域为⎣⎢⎡⎭⎪⎫π6,π2;(2) 透光区域与矩形窗面的面积比值最大时,AB 的长度为1m .(16分) 19. (1) 由3S n +1=2S n +S n +2+a n ,得2(S n +1-S n )=S n +2-S n +1+a n , 即2a n +1=a n +2+a n ,所以a n +2-a n +1=a n +1-a n . (2分) 由a 1=1,S 2=4,可知a 2=3.所以数列{a n }是以1为首项,2为公差的等差数列.故{a n }的通项公式为a n =2n -1.(4分)(2) 证法一:设数列{b n }的公差为d ,则T n =nb 1+n (n -1)2d ,由(1)知,S n =n 2.因为S n >T n ,所以n 2>nb 1+n (n -1)2d ,即(2-d)n +d -2b 1>0恒成立,所以⎩⎪⎨⎪⎧2-d≥0,d -2b 1>0, 即⎩⎪⎨⎪⎧d≤2,2b 1<d.(6分) 又由S 1>T 1,得b 1<1,所以a n -b n =2n -1-b 1-(n -1)d =(2-d)n +d -1-b 1 ≥(2-d)+d -1-b 1=1-b 1>0. 所以a n >b n ,得证. (8分)证法二:设{b n }的公差为d ,假设存在自然数n 0≥2,使得an 0≤bn 0, 则a 1+(n 0-1)×2≤b 1+(n 0-1)d ,即a 1-b 1≤(n 0-1)(d -2), 因为a 1>b 1,所以d>2.(6分)所以T n -S n =nb 1+n (n -1)2d -n 2=⎝ ⎛⎭⎪⎫d 2-1n 2+⎝ ⎛⎭⎪⎫b 1-d 2n ,因为d 2-1>0,所以存在N 0∈N *,当n >N 0时,T n -S n >0恒成立.这与“对任意的n ∈N *,都有S n >T n ”矛盾! 所以a n >b n ,得证. (8分)(3) 由(1)知,S n =n 2.因为{b n }为等比数列,且b 1=1,b 2=3, 所以{b n }是以1为首项,3为公比的等比数列. 所以b n =3n -1,T n =3n-12.(10分)则a n +2T n b n +2S n =2n -1+3n -13n -1+2n 2=3n +2n -23n -1+2n 2=3-6n 2-2n +23n -1+2n2, 因为n ∈N *,所以6n 2-2n +2>0,所以a n +2T nb n +2S n<3.(12分)而a =2-1,所以a n +2T nb n +2S n=1,即3n -1-n 2+n -1=0(*).当n =1,2时,(*)式成立;(14分) 当n ≥2时,设f (n )=3n -1-n 2+n -1,则f (n +1)-f (n )=3n -(n +1)2+n -(3n -1-n 2+n -1)=2(3n -1-n )>0,所以0=f (2)<f (3)<…<f (n )<…. 故满足条件的n 的值为1和2.(16分) 20. (1) 当m =1时,f()=1x +ln ,f ′()=-1x2+ln +1.(2分)因为f′()在(0,+∞)上单调增,且f′(1)=0, 所以当>1时,f ′()>0;当0<<1时,f ′()<0. 所以函数f()的单调增区间是(1,+∞).(4分)(2) h()=m x +2-2,则h′()=2-m x 2=2x 2-mx 2,令h′()=0得=m 2, 当0<<m2时,h ′()<0,函数h()在(0,m2)上单调减; 当>m2时,h ′()>0,函数h()在(m2,+∞)上单调增. 所以min =h(m2)=22m - 2.(6分) ①当2(2m -1)≥m 2,即m≥49时, 函数y =h(h())的最小值h(22m -2)= 2⎣⎢⎡⎦⎥⎤m 2(2m -1)+2(2m -1)-1=322,即17m -26m +9=0,解得m =1或m =917(舍),所以m =1;………8分)②当0<2(2m -1)<m 2,即14<m<49时, 函数y =h(h())的最小值h ⎝ ⎛⎭⎪⎫m 2=2(2m -1)=322, 解得m =54(舍).综上所述,m 的值为1.(10分)(3) 由题意知,OA =m x 2+ln ,OB =ln x -2x.考虑函数y =ln x -2x ,因为y′=3-ln xx 2>0在上恒成立, 所以函数y =ln x -2x在上单调增,故OB ∈⎣⎢⎡⎦⎥⎤-2,-1e .(12分)所以OA ∈⎣⎢⎡⎦⎥⎤12,e ,即12≤m x 2+ln ≤e 在上恒成立,即x 22-2ln ≤m ≤2(e -ln )在上恒成立. 设p()=x 22-2ln ,则p′()=-2ln ≤0在上恒成立,所以p()在上单调减,所以m≥p(1)=12. (14分)设q()=2(e -ln ),则q′()=(2e -1-2ln )≥(2e -1-2lne )>0在上恒成立, 所以q()在上单调增,所以m≤q(1)=e .综上所述,m 的取值范围为⎣⎢⎡⎦⎥⎤12,e . (16分) 附加题21. A. 连结AN ,DN . 因为A 为弧MN 的中点, 所以∠ANM =∠ADN . 而∠NAB =∠NDB ,所以∠ANM +∠NAB =∠ADN +∠NDB , 即∠BCN =∠ADB . (5分) 又因为∠ACN =3∠ADB ,所以∠ACN +∠BCN =3∠ADB +∠ADB =180°, 故∠ADB =45°.(10分)B. 因为A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a 32d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a +62+2d =⎣⎢⎡⎦⎥⎤84,所以⎩⎪⎨⎪⎧a +6=8,2+2d =4, 解得⎩⎪⎨⎪⎧a =2,d =1.所以A =⎣⎢⎡⎦⎥⎤2321.(5分) 所以矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4,令f (λ)=0,解得矩阵A 的特征值为λ1=-1,λ2=4.(10分) C. 以极点为原点,极轴为轴正半轴,建立平面直角坐标系,则点A (2,π2)的直角坐标为(0,2),直线l 的直角坐标方程为+y =0.(4分)AB 最短时,点B 为直线-y +2=0与直线l 的交点,解⎩⎪⎨⎪⎧x -y +2=0,x +y =0得⎩⎪⎨⎪⎧x =-1,y =1. 所以点B 的直角坐标为(-1,1).(8分) 所以点B 的极坐标为(2,34π).(10分)D. 因为a 3+b 3+c 3=a 2b 2c 2≥33a 3b 3c 3, 所以abc ≥3,(5分)所以a +b +c ≥33abc ≥333,当且仅当a =b =c =33时,取“=”.(10分)22. (1) 因为直线y =n 与=-1垂直,所以MP 为点P 到直线=-1的距离. 连结PF ,因为P 为线段MF 的中垂线与直线y =n 的交点,所以MP =PF. 所以点P 的轨迹是抛物线.(2分) 焦点为F(1,0),准线为=-1. 所以曲线E 的方程为y 2=4. (5分)(2) 由题意,过点M(-1,n)的切线斜率存在,设切线方程为y -n =(+1),联立⎩⎪⎨⎪⎧y =kx +k +n ,y 2=4x , 得y 2-4y +4+4n =0,所以Δ1=16-4(4+4n)=0,即2+n -1=0(*),(8分) 因为Δ2=n 2+4>0,所以方程(*)存在两个不等实根,设为12, 因为1·2=-1,所以∠AMB=90°,为定值. (10分)23. (1) f(2)=1,f(3)=6,(2分) f(4)=25. (4分)(2) 解法一:设集合A 中有个元素,=1,2,3,…,n -1. 则与集合A 互斥的非空子集有2n --1个.(6分)于是f(n)=12k =1n -1C k n (2n --1)=12[错误!C 错误!-C 错误!-C 错误!=2n-2,所以f(n)=12=12(3n -2n +1+1).(10分)解法二:任意一个元素只能在集合A ,B ,C =∁U (A∪B)之一中, 则这n 个元素在集合A ,B ,C 中,共有3n种;(6分) 其中A 为空集的种数为2n,B 为空集的种数为2n, 所以A ,B 均为非空子集的种数为3n-2×2n+1,(8分) 又(A ,B)与(B ,A)为同一组“互斥子集”, 所以f(n)=12(3n -2n +1+1).(10分)。
2017年第三次全国大联考【新课标Ⅲ卷】文科数学·参考答案13.4 14.415.590490 16.,⎛-∞ ⎝⎦17.【命题意图】本题考查正弦定理、余弦定理、三角形面积与三角恒等变换,意在考查运算求解能力、逻辑推理能力,以及方程思想、转化思想的应用.【解析】(Ⅰ)由2222cos 40a c b bc A c +-+-=,根据余弦定理,得2222222402b c a a c b bc c bc+-+-+⋅-=,整理,得2c =.………………2分由()cos 1cos c A b C =-,根据正弦定理,得()sin cos sin 1cos C A B C =-,即sin sin cos sin cos B C A B C =+=()sin sin cos cos sin A C A C A C +=+,……………4分 所以sin cos sin cos B C A C =,故cos 0C =或sin sin A B =.……………5分 当cos 0C =时,2C π=,故ABC △为直角三角形; 当sin sin A B =时,A B =,故ABC △为等腰三角形.………………7分 (Ⅱ)由(Ⅰ)知2c =,A B =,则a b =,………………8分因为6C π=,所以由余弦定理,得22242cos 6a a a π=+-,解得28a =+,………………10分所以ABC △的面积21sin 226S a π==………………12分 18.【命题意图】本题考查分层抽样、古典概型,意在考查学生的数据获取与处理能力、逻辑思维能力、运算求解能力.【解析】(Ⅰ)由题意,得参加跑步类的有778042013⨯=人,………………1分 所以420240180m =-=,78042018012060n =---=.………………3分 根据分层抽样法知,抽取的13人中参加200米的学生人数有180133780⨯=人.………………5分 (Ⅱ)选出的13人中参加200米的有3人,分别记为12,,A A X , 参加跳绳的有3人,分别记为12,,B B Y .………………7分 现从这6人中任选3人,有()()()()()()()()121211221211121112,,,,,,,,,,,,,,,,,,,,,,,A A X A A B A A B A A Y A X B A X B A X Y A B B ,()()()()()()()()1112212222122122,,,,,,,,,,,,,,,,,,,,,,,A B Y A B Y A X B A X B A X Y A B B A B Y A B Y ,()()()()121212,,,,,,,,,,,X B B X B Y X B Y B B Y ,共20种,………………10分其中这3人中正好有X Y ,两名同学的情况有4种, 由古典概型的概率计算公式可得所求概率为41205=.………………12分 19.【命题意图】本题考查空间直线与平面间平行和垂直的判断与证明、三棱锥的体积,意在考查空间想象能力、逻辑推证能力、运算求解能力.【解析】(Ⅰ)连接AC 交BD 于点M ,连接MH .∵AF BG DE ∥∥,BG DE =,∴四边形BDEG 为矩形,………………1分 又∵H 为EG 中点,∴MH BG AF ∥∥,MH BG =,………………2分又∵AF ⊥平面ABCD ,∴MH ⊥平面ABCD ,∴MH ⊥BD .………………3分 在正方形ABCD 中,BD AC ⊥,且ACMH M =,∴BD ⊥平面CMH ,………………4分又CH ⊂平面CMH ,∴BD CH ⊥.………………5分(Ⅱ)连接,BF AG 交于点N ,则∵AB AF BG DE ===,AF BG DE ∥∥,∴四边形ADEF 和四边形ABGF 均为平行四边形, ∴EF AD BC ,∴四边形BCEF 为平行四边形.………………7分 又AF ⊥平面ABCD ,∴AF AB ⊥,平面ABGF ⊥平面ABCD , ∴四边形ABGF 为正方形,∴AG BF ⊥.………………8分 又∵BC AB ⊥,∴BC ⊥平面ABGF .∵AG ⊂平面ABGF ,∴BC AG ⊥.………………9分 又∵BCBF B =,∴AG ⊥平面BCEF ,即GN ⊥平面BCEF .………………10分根据条件可得1222GN AG ==,1BC EF AB ===,………………11分 ∴1111211222366G BCE G BCEF BCEFV V GN S --==⨯⋅==.………………12分 20.【命题意图】本题主要考查椭圆的方程及几何性质、直线与椭圆的位置关系,意在考查学生的逻辑思维能力、分析能力与运算求解能力,以及方程思想、数形结合思想、分类讨论思想.【解析】(Ⅰ)由题意,得32b = ①,且12||2F F c =,21||b PF a =,则2121||||2b F F PF c a ⋅=⋅= ②.………………2分由①②联立,并结合222a b c =+,解得29a =,所以椭圆C 的方程为224199x y +=.………………4分 (Ⅱ)由(Ⅰ)知点()3,0A -是椭圆C 的左顶点,当直线n 与x 轴平行时,AMN △不存在,…………………6分, 所以设直线n 的方程为1x my =+,并设点11(,)M x y ,22(,)N x y ,联立2241991x y x my ⎧+=⎪⎨⎪=+⎩,得()224280m y my ++-=, 其判别式()2224324361280m m m ∆=++=+>,…………8分, 所以12224m y y m +=-+,12284y y m =-+, 所以121||||2AMNS AM y y ∆=-==,…………10分 假设存在直线n= 解得24m =或26017m =-(舍去),所以2m =±,……………………11分 故存在直线n :21x y =±+使得AMN S △n 的斜率为12±.…………12分 21.【命题意图】本题主要考查导数与单调性和最值的关系、不等式恒成立问题,意在考查运算求解能力、逻辑推理能力、等价转化能力, 以及分类讨论的思想、等价转化思想、构造法的应用.【解析】(Ⅰ)()()212120ax f x ax x x x-'=-=>.………………1分当0a ≤时,()0f x '<,()f x 在(0,)+∞内单调递减;………………2分当0a >时,令()0f x '=,有x =x ⎛∈ ⎝时,()0f x '<,()f x 单调递减;当x ⎫∈+∞⎪⎭时,()0f x '>,()f x 单调递增.………………4分综上所述,0a ≤时,函数()f x 在(0,)+∞内单调递减;当0a >时,函数()f x 在⎛ ⎝内单调递减,在⎫+∞⎪⎭内单调递增.………………5分 (Ⅱ)令1e()ex g x x =-()()1,x ∈+∞,即e e ()e x xx g x x -=()()1,x ∈+∞. ………………6分 令()e e xh x x =-,则()()e e 01xh x x '=->>,则()h x 在()1,+∞内单调递增,所以()()10h x h >=,故()0g x >.………………7分 当0a ≤,1x >时,()2ln 0f x ax x a =--<,故当()()f x g x >在区间(1,)+∞内恒成立时,必有0a >.………………8分 当12a <<时,1>,由(Ⅰ)知函数()f x 在上单调递减,即x ∈时,()(1)()f x f g x <<,不符合题意,舍去.………………9分当12a ≥时,令()()()u x f x g x =-,1x >,则 ()2211e 11e22e e x u x ax ax x x x x x'=-+->-+-=3222221210ax x x x x x -+-+>>,……10分 所以()u x 在1x >时单调递增,所以()()10u x u >=恒成立,即()()f x g x >恒成立,满足题意.………………11分综上,1[,)2a ∈+∞.………………12分22.【命题意图】本题考查直线的极坐标与圆的参数方程、直线与圆的位置关系,意在考查运算求解能力、等价转化能力.【解析】(Ⅰ)消去参数t ,得直线l 的普通方程为10x y -+=,斜率为1, 所以直线l '的斜率为1-.………………1分因为圆C 的极坐标方程可化为24cos 2sin 0m ρρθρθ--+=,所以将222,cos ,sin x y x y ρρθρθ=+==代入上述方程得圆C 的直角坐标方程为22420x y x y m +--+=,则配方,得()()22215x y m -+-=-,其圆心为()2,1C ,半径为)5m<.………………3分由题意,知直线l'经过圆心()2,1C,所以直线l'的方程为()12y x-=--,即30x y+-=,所以由cos,sinx yρθρθ==,得直线l'的极坐标方程为()cos sin3ρθθ+=.………………5分(Ⅱ)因为||AB=C到直线l)5m=<.)5m=<,解得1m=.………………7分(Ⅲ)当所求切线的斜率存在时,设切线方程为4(4)y k x-=-,即440kx y k--+=.2=,解得512k=,所以所求切线的方程为512280x y-+=;当所求切线的斜率不存在时,切线方程为4x=.………………9分综上,所求切线的方程为4x=或512280x y-+=.………………10分23.【命题意图】本题主要考查绝对值不等式的解法、不等式的证明,意在考查运算求解能力、逻辑推理能力、分类讨论与等价转化的思想.【解析】(Ⅰ)设()222f x x x=+--,则()4,13,124,2x xf x x xx x--<-⎧⎪=-≤<⎨⎪+≥⎩,………………1分当1x<-时,由42x-->,得6x<-,6x<-∴;………………2分当12x-≤<时,由32x>,得23x>,223x<<∴;………………3分当2x≥时,由42x+>,得2x>-,2x≥∴.………………4分综上所述,集合M为2|63x x x⎧⎫><-⎨⎬⎩⎭或.………………5分(Ⅱ)由(Ⅰ)知1t=,则()()()1111a b c t---==.因为1,1,1a b c>>>,所以10,10,10a b c->->->,………………6分则()110a a=-+≥>(当且仅当2a=时等号成立),……………7分()110b b=-+≥>(当且仅当2b=时等号成立),………………8分()110c c=-+≥>(当且仅当2c=时等号成立),………………9分则8abc ≥≥(当且仅当2a b c ===时等号成立), 即8abc ≥.………………10分。
全国大联考2017届高三第三次联考·文科数学试卷考生注意:1.本试卷共150分.考试时间120分钟.2.答题前,考生务必将密封线内的项目填写清楚.3.请将各题答案填在试卷后面的答题卷上.4.交卷时,可根据需要在加注“”标志的夹缝处进行裁剪.5.本试卷主要考试内容:前2次联考内容+数列+不等式.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N等于A.[1,2)B.[1,2]C.(2,3]D.[2,3]2.已知数列{a n}为等差数列,其前9项和为S9=54,则a5的值为A.4B.5C.6D.93.用12米的绳子围成一个矩形,则这个矩形的面积最大值为A.24B.16C.12D.94.若tan θ=1,则cos 2θ的值为A.22B.0 C.1 D.325.下面四个条件中,使a>b成立的充分不必要条件是A.a>b+1B.a>b-1C.a+1>b+1D.a2>b26.已知在等比数列{a n}中,a3+a6=4,a6+a9=1,则a10+a13等于A.14B.18C.116D.1327.已知平面向量a、b,|a|=3,|b|=23且a-b与a垂直,则a与b的夹角为A.πB.πC.2πD.5π8.设变量x,y满足约束条件x+y≥3x-y≥−12x-y≤3,则目标函数z=2x+3y的最小值与最大值的和为A.23B.30C.7D.169.若函数f(x)=a x-k-1(a>0,a≠1)过定点(2,0),且f(x)在定义域R上是减函数,则g(x)=loga(x+k)的图象是10.若对于任意的x>0,不等式x2≤a恒成立,则实数a的取值范围为A.(-∞,14]B.[14,+∞)C.(-∞,16]D.[16,+∞)11.已知在各项为正的等比数列{a n}中,a2与a8的等比中项为8,则4a3+a7取最小值时首项a1等于A.8B.4C.2D.112.在数列{a n}中,若存在一个确定的正整数T,对任意n∈N*满足a n+T=a n,则称{a n}是周期数列,T叫做它的周期.已知数列{x n}满足x1=1,x2=a(a≤1),x n+2=|x n+1-x n|,若数列{x n}的周期为3,则{x n}的前100项的和为A.66B.67C.68D.69第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.在等比数列{a n}中,a1=2,若a1,2a2,a3+6成等差数列,则a5=▲.14.已知a>0,b>0,ab=4,当a+4b取得最小值时,a=▲.15.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第16个图形中小正方形的个数是▲.的取值范围是▲.16.当x,y满足条件|x-1|+|y+1|<1时,变量u=x-1y-2三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=x2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.18.(本小题满分12分)已知等差数列{a n}满足a2=3,a4+a5=16.(1)求{a n}的通项公式;(2)设b n=2a n-1,求数列{b n}的前n项和T n.19.(本小题满分12分)已知向量m=(2cos x,3sin 2x),n=(cos x,1),函数f(x)=m·n.(1)求f(x)的解析式和函数图象的对称轴方程;(2)在△ABC中,a、b、c分别为角A、B、C的对边,且满足a+c>2b,求f(B)的取值范围.20.(本小题满分12分)已知正项等比数列{b n}(n∈N*)中,公比q>1,且b3+b5=40,b3·b5=256,a n=log2b n+2.(1)求证:数列{a n}是等差数列;(2)若c n=1,求数列{c n}的前n项和S n.a n·a n+121.(本小题满分12分)某公司新研发了甲、乙两种型号的机器,已知生产一台甲种型号的机器需资金30万元,劳动力5人,可获利润6万元,生产一台乙种型号的机器需资金20万元,劳动力10人,可获利润8万元.若该公司每周有300万元的资金和110个劳动力可供生产这两种机器,那么每周这两种机器各生产多少台,才能使周利润达到最大,最大利润是多少?22.(本小题满分12分)已知函数f (x )=(ax 2-1)·e x ,a ∈R .(1)若函数f (x )在x=1时取得极值,求a 的值; (2)当a ≤0时,求函数f (x )的单调区间.参 考 答 案1.A 由题知集合M={x|-3<x<2},所以M ∩N={x|1≤x<2},即[1,2).2.C 因为S 9=9(a 1+a 9)2=9a 5=54,所以a 5=6. 3.D 设矩形的一边长为x ,则矩形面积S=x (6-x )≤[x +(6−x )2]2=9,当且仅当x=6-x ,即x=3时取等号.4.B cos 2θ=cos 2θ-sin 2θsin 2θ+cos 2θ=1−tan 2θtan 2θ+1=0.5.A 根据题意可知,选项A 、C 都能推出a>b 成立,但是根据a>b 不能推出A 选项成立,故答案选A.6.Da 6+a 9a 3+a 6=q 3=18,q=12,a 10+a 13=(a 6+a 9)q 4=12×116=132.7.A 因为 a-b 与a 垂直,所以(a-b )·a=0,所以a ·a=b ·a ,所以cos a ,b =a ·b |a ||b |=a ·a |a ||b |=|a ||b |= 32,所以<a ,b >=π6. 8.B 作出可行域,如图所示:当目标函数z=2x+3y 经过x+y=3与2x-y=3的交点(2,1)时,有最小值2×2+3=7,经过x-y+1=0与2x-y=3的交点(4,5)时,有最大值2×4+3×5=23,其最值和为30.9.A 由题意可知f (2)=0,解得k=2,所以f (x )=a x-2-1,又因为是减函数,所以0<a<1.此时g (x )=log a (x+2)也是单调减的,且过点(-1,0).故选A 符合题意. 10.Dx x 2+2x+4=1x +2+4x ≤2+2 x ·4x=16,所以要使x x 2+3x+1≤a 恒成立,则a ≥16,即实数a 的取值范围为a ≥16.11.C 由题意知a 2a 8=82=a 52,即a 5=8,设公比为q (q>0),所以4a 3+a 7=4a 5q 2+a 5q 2=32q 2+8q 2≥2 32q 2×8q 2=32,当且仅当32q 2=8q 2,即q 2=2时取等号,此时a 1=a 54=2.12.B 由x n+2=|x n+1-x n |,得x 3=|x 2-x 1|=|a-1|=1-a ,x 4=|x 3-x 2|=|1-2a|,因为数列{x n }的周期为3,所以x 4=x 1,即|1-2a|=1,解得a=0或a=1.当a=0时,数列为1,0,1,1,0,1,…,所以S 100=2×33+1=67.当a=1时,数列为1,1,0,1,1,0,…,所以S 100=2×33+1=67.13.32 4a 2=a 1+a 3+6,∴8q-8-2q 2=0,q=2,a 5=a 1q 4=32.14.4 a+4b ≥2 =8,当且仅当a=4b 时取等号,结合a>0,b>0,ab=4,所以a=4,b=1,a b=4. 15.136 a 1=1,a 2=3,a 3=6,a 4=10,所以a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n-1=n ,等式两边同时累加得a n -a 1=2+3+…+n ,即a n =1+2+…+n=n (n +1)2,所以第16个图形中小正方形的个数是136.16.(-13,13) u=x -1y -2表示点M (1,2)与点P (x ,y )两点连线的斜率的倒数.画出可行域如图,当点P 为区域内的点(0,-1)时,u max =1,当点P 为区域内的点(2,-1)时,u min =-1.17.解:(1)当a=5时,f (x )=x 2+5x+6.由f (x )<0,得x 2+5x+6<0, 即(x+2)(x+3)<0, 所以-3<x<-2. ........................................................... 5分(2)若不等式f (x )>0的解集为R ,则有Δ=a 2-4×6<0,解得-2 6<a<2 6,即实数a 的取值范围是(-2 6,2 6). ...................... 10分 18.解:(1)设数列{a n }的公差为d ,由题意得a 1+d =32a 1+7d =16,解得a 1=1,d=2, 所以a n =a 1+(n-1)d=2n-1,即{a n }的通项公式为a n =2n-1. ......................... 5分 (2)由(1)知b n =22n-2,b 1=1,b n +1b n =22n 22n -2=4,所以数列{b n }是以1为首项,4为公比的等比数列,其前n 项和T n =1−4n 1−4=13(4n-1). ................................................. 12分19.解:(1)由已知可得:f (x )=2cos 2x+ 3sin 2x=1+cos 2x+ 3sin 2x=2sin (2x+π6)+1, ∴函数的解析式为f (x )=2sin (2x+π6)+1,∴函数图象的对称轴方程为x=k 2π+π6(k ∈Z ). ................................. 6分(2)由题意可得:cos B=a 2+c 2-b 2>a 2+c 2-(a +c 2)2=3a 2+3c 2-2ac ≥4ac =1,当且仅当 a=c 时等号都成立,∴B ∈(0,π3).∴由(1)知f (B )=2sin (2B+π6)+1,又∵B ∈(0,π3),∴2B+π6∈(π6,5π6). ∴f (B )∈(2, 3]. ........................................................ 12分20.解:(1)由b3+b5=40,b3·b5=256,知b3,b5是方程x2-40x+256=0的两根,注意到b n+1>b n,得b3=8,b5=32,因为q2=b5b3=4,所以q=2或q=-2(舍去),所以b1=b3q2=84=2,所以b n=b1q n-1=2n,a n=log2b n+2=log22n+2=n+2.因为a n+1-a n=[(n+1)+2]-[n+2]=1,所以数列{a n}是首项为3,公差为1的等差数列................................ 7分(2)因为a n=3+(n-1)×1=n+2,所以c n=1,所以S n=13×4+14×5+…+1(n+2)(n+3)=1-1+1-1+…+1-1=n3n+9................................................................ 12分21.解:设每周生产甲种机器x台,乙种机器y台,周利润z万元,则30x+20y≤300 5x+10y≤110 x≥0y≥0x,y∈Z,目标函数为z=6x+8y.作出不等式组表示的平面区域,且作直线l:6x+8y=0,即3x+4y=0,如图:...................................................................... 6分把直线l向右上方平移至l3的位置时,直线l3过可行域上的点M时直线的截距最大,即z取最大值,解方程组30x+20y=3005x+10y=110(x≥0,y≥0,x,y∈Z)得x=4y=9,所以点M坐标为(4,9),将x=4,y=9代入目标函数z=6x+8y得最大值z=6×4+8×9=96(万元).所以每周应生产甲种机器4台、乙种机器9台时,公司可获得最大周利润为96万元. 12分22.解:(1)f'(x)=(ax2+2ax-1)·e x,x∈R........................................ 2分依题意得f'(1)=(3a-1)·e =0,解得a=1.经检验符合题意........................ 4分 (2)f'(x )=(ax 2+2ax-1)·e x ,设g (x )=ax 2+2ax-1.①当a=0时,f (x )=-e x ,f (x )在(-∞,+∞)上为单调减函数. ......................... 5分 ②当a<0时,方程g (x )=ax 2+2ax-1=0的判别式为Δ=4a 2+4a , 令Δ=0, 解得a=0(舍去)或a=-1.1°当a=-1时,g (x )=-x 2-2x-1=-(x+1)2≤0,即f'(x )=(ax 2+2ax-1)·e x≤0,且f'(x )在x=-1两侧同号,仅在x=-1时等于0, 则f (x )在(-∞,+∞)上为单调减函数.2°当-1<a<0时,Δ<0,则g (x )=ax 2+2ax-1<0恒成立, 即f'(x )<0恒成立,则f (x )在(-∞,+∞)上为单调减函数.3°a<-1时,Δ=4a 2+4a>0,令g (x )=0,得x 1=-1+a 2+aa,x 2=-1- a 2+aa,且x 2>x 1.所以当x<-1+ a 2+aa时,g (x )<0,f'(x )<0,f (x )在(-∞,-1+a 2+aa )上为单调减函数; 当-1+2<x<-1-2时,g (x )>0,f'(x )>0,f (x )在(-1+2,-1- 2)上为单调增函数;当x>-1-2a时,g (x )<0,f'(x )<0,f (x )在(-1-2a,+∞)上为单调减函数.综上所述,当-1≤a ≤0时,函数f (x )的单调减区间为(-∞,+∞);当a<-1时,函数f (x )的单调减区间为(-∞,-1+ a 2+aa),(-1-a 2+aa,+∞),函数f (x )的单调增区间为(-1+a 2+aa,-1-a 2+aa). .................................................. 12分。
2017~2018学年度高三第三次联考数 学(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.已知集合{}{}202,9,A x x B x x x z =≤≤=<∈,则A B =.A. {0,1,2} B .[0,1] C 。
{0, 2} D. {0,1} 2.数字2.5和6.4的等比中项是A .16B .16± C. 4 D. 4± 3.不等式2(5)2log0(0)x x x --≥>的解集为A .(一2,3]B .(-∞,一2]C .[3,+∞)D .(-∞,一2] [3,+∞) 4.设sin 33,cos55,tan 35a b c ︒︒︒===,则A .a >b >c B. c 〉b >a C .a 〉c >b D .c >a 〉b 5.已知数列{}n a ,“{}n a 为等差数列”是“,32n n N a n *∀∈=+"的 A. 充分而不必要条件B .必要而不充分条件 C. 允要条件 D .既不充分也不必要条件 6.若a <b <0.则下列不等式中一定不成立的是 A .11a b < B>。
a b >- D .11a b b>- 7.曲线x y xe =在点(1,e) 处的切线方程为A .21y x =+B .21y x =-C .2y ex e =-D .22y ex =-8.若数列{}n a 满足221112,2()n n n n a a a a a n N *++=+=⋅∈,则数列{}n a 的前32项和为A .64B .32C .16D .1289.设x ,y 满足约束条件2602600x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则目标函数z x y =+取最小值时的最优解是A .(6,0)B .(3,0)C .(0,6)D .(2,2)10.已知{}n a 是等差数列41220,12a a ==-,记数列{}n a 的第n 项到第n +3项的和为n T ,则 n T 取得最小值时的n 的值为A .6B . 8C .6或7D .7或811.定义在R 上的偶函数,()f x 满足()(2)f x f x =+,当[3,5]x ∈时,4()(4)f x x =-,则A .1()sin 26f π=B .1()sin 23f π=C .1()sin 26f π>D .1()sin 23f π<12.数列{}n a 满足11,a =对任意的,m n N *∈都有m n m n a a a mn +=++,则12320171111a a a a ++++等于 A .20162017 B .20172018 C .40342018 D .40242017二、填空题:本大题共4小题。
2017年江苏省高考数学三模试卷一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上).1.已知集合A={﹣1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是.2.已知复数z满足(1+2i)z=i,其中i为虚数单位,则复数z的虚部为.3.已知点M(﹣3,﹣1),若函数y=tan x(x∈(﹣2,2))的图象与直线y=1交于点A,则|MA|=.4.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为.5.执行如图所示的算法流程图,则输出的结果S的值为.6.在区间[﹣1,2]内随机取一个实数a,则关于x的方程x2﹣4ax+5a2+a=0有解的概率是.7.如图,在平面四边形ABCD中,若AC=3,BD=2,则=.8.如图,在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1﹣MBC1的体积为.9.已知函数f(x)=x|x﹣2|,则不等式f(2﹣ln(x+1))>f(3)的解集为.10.曲线f(x)=xlnx在点P(1,0)处的切线l与两坐标轴围成的三角形的面积是.11.设向量=(4sin x,1),=(cos x,﹣1)(ω>0),若函数f(x)=•+1在区间[﹣,]上单调递增,则实数ω的取值范围为.12.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t﹣1)的实数t的取值范围是.13.已知双曲线C:﹣=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且=3,则双曲线C的离心率为.14.已知a,b,c,d∈R且满足==1,则(a﹣c)2+(b﹣d)2的最小值为.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且≥,设∠EOF=θ,透光区域的面积为S.(1)求S 关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB 的长度.19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n .(1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.20.已知函数f (x )=+xlnx (m >0),g (x )=lnx ﹣2.(1)当m=1时,求函数f (x )的单调区间;(2)设函数h (x )=f (x )﹣xg (x )﹣,x >0.若函数y=h (h (x ))的最小值是,求m 的值; (3)若函数f (x ),g (x )的定义域都是[1,e ],对于函数f (x )的图象上的任意一点A ,在函数g (x )的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,O 为坐标原点,求m 的取值范围.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O 的弦AB ,MN 交于点C ,且A 为弧MN 的中点,点D 在弧BM 上,若∠ACN=3∠ADB ,求∠ADB 的度数.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).2017年江苏省高考数学三模试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上).1.已知集合A={﹣1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是5.【考点】1D:并集及其运算.【分析】利用并集定义先求出A∪B,由此能求出集合A∪B中所有元素之和.【解答】解:∵集合A={﹣1,0,1,2},B={1,2,3},∴A∪B={﹣1,0,1,1,2,3},∴集合A∪B中所有元素之和是:﹣1+0+1+2+3=5.故答案为:5.2.已知复数z满足(1+2i)z=i,其中i为虚数单位,则复数z的虚部为.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的除法运算化为a+bi(a,b∈R)的形式,则答案可求【解答】解:∵(1+2i)z=i,∴z===+,∴复数z的虚部为.故答案为3.已知点M(﹣3,﹣1),若函数y=tan x(x∈(﹣2,2))的图象与直线y=1交于点A,则|MA|=2.【考点】HC:正切函数的图象.【分析】解方程求出函数y与直线y=1的交点A的横坐标,再求线段的长|MA|.【解答】解:令y=tan x=1,解得x=1+4k,k∈Z;又x∈(﹣2,2),∴x=1,∴函数y与直线y=1的交点为A(1,1);又M(﹣3,﹣1),∴|MA|==2.故答案为:2.4.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为.【考点】BC:极差、方差与标准差.【分析】利用定义求这组数据的平均数、方差和标准差即可.【解答】解:数据12,8,10,11,9的平均数为:=×(12+8+10+11+9)=10,方差为:s2=×[(12﹣10)2+(8﹣10)2+(10﹣10)2+(11﹣10)2+(9﹣10)2]=2;∴这组数据的标准差为s=.故答案为:.5.执行如图所示的算法流程图,则输出的结果S的值为﹣1.【考点】EF:程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,n的值,当S=﹣1,n=2016时不满足条件n<2016,退出循环,输出S的值为﹣1,即可得解.【解答】解:输入s=0,n=1<2016,s=0,n=2<2016,s=﹣1,n=3<2016,s=﹣1,n=4<2016,s=0,n=5<2016,…,由2016=503×4+3得,输出s=﹣1,故答案为:﹣1.6.在区间[﹣1,2]内随机取一个实数a,则关于x的方程x2﹣4ax+5a2+a=0有解的概率是.【考点】CF:几何概型.【分析】根据几何概型计算公式,用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.【解答】解:∵关于x的方程x2﹣4ax+5a2+a=0有解,∴16a2﹣20a2﹣4a≥0,∴﹣1≤a≤0时方程有实根,∵在区间[﹣1,2]上任取一实数a,∴所求的概率为P==.故答案为:7.如图,在平面四边形ABCD中,若AC=3,BD=2,则= 5.【考点】9V:向量在几何中的应用.【分析】先利用向量的加法把转化为,再代入原题整理后即可求得结论.【解答】解:因为=(+)+(+)=+()=.∴()•()=()•()=﹣=32﹣22=5.故答案为58.如图,在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1﹣MBC1的体积为4.【考点】LF:棱柱、棱锥、棱台的体积.【分析】推导出A1C1⊥平面A1MB,从而三棱锥A1﹣MBC1的体积=,由此能求出结果.【解答】解:∵在直三棱柱ABC﹣A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,∴A1C1⊥AA1,AC2+AB2=BC2,∴A1C1⊥A1B1,∵AA 1∩A 1B 1=A 1,∴A 1C 1⊥平面A 1MB ,∵M 是AA 1的中点,∴===3,∴三棱锥A 1﹣MBC 1的体积:====4.故答案为:4.9.已知函数f (x )=x |x ﹣2|,则不等式f (2﹣ln (x +1))>f (3)的解集为 {x |﹣1<x <﹣1} .【考点】7E :其他不等式的解法.【分析】由题意,f (x )=,在(2,+∞)单调递增,x <2,f(x )max =1<f (3)=3.f (2﹣ln (x +1))>f (3)化为2﹣ln (x +1)>3,即可解不等式.【解答】解:由题意,f (x )=,在(2,+∞)单调递增,x <2,f (x )max =1<f (3)=3.∵f (2﹣ln (x +1))>f (3),∴2﹣ln (x +1)>3,∴ln (x +1)<﹣1,∴0<x +1<,∴﹣1<x <﹣1,∴不等式f (2﹣ln (x +1))>f (3)的解集为{x |﹣1<x <﹣1},故答案为{x |﹣1<x <﹣1}.10.曲线f (x )=xlnx 在点P (1,0)处的切线l 与两坐标轴围成的三角形的面积是.【考点】6H :利用导数研究曲线上某点切线方程.【分析】求出函数的导数,利用导数的几何意义求出切线的斜率,由点斜式方程可得切线方程,计算切线与坐标轴的交点坐标,即可得出三角形面积.【解答】解:f′(x)=lnx+x•=lnx+1,∴在点P(1,0)处的切线斜率为k=1,∴在点P(1,0)处的切线l为y﹣0=x﹣1,即y=x﹣1,∵y=x﹣1与坐标轴交于(0,﹣1),(1,0).∴切线y=x﹣1与坐标轴围成的三角形面积为S=×1×1=.故答案为:.11.设向量=(4sin x,1),=(cos x,﹣1)(ω>0),若函数f(x)=•+1在区间[﹣,]上单调递增,则实数ω的取值范围为(0,2] .【考点】9R:平面向量数量积的运算;GL:三角函数中的恒等变换应用.【分析】化简f(x)=sinωx,根据正弦函数的单调性得出f(x)的单调增区间,从而列出不等式解出ω的范围.【解答】解:f(x)=+1=2sin xcos x=sinωx,令﹣+2kπ≤ωx≤+2kπ,解得﹣+≤x≤+,k∈Z,∵ω>0,∴f(x)的一个单调增区间为[﹣,],∴,解得0<ω≤2.故答案为(0,2].12.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t﹣1)的实数t的取值范围是<t<1.【考点】3N:奇偶性与单调性的综合.【分析】求导,求导函数的单调性,将不等式转化为具体不等式,即可得出结论.【解答】解:∵f(x)=x+cosx,x∈(0,1),∴f′(x)=1﹣sinx>0,函数单调递增,∵f(t2)>f(2t﹣1),∴1>t2>2t﹣1>0,∴<t<1,故答案为<t<1.13.已知双曲线C:﹣=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y 的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且=3,则双曲线C的离心率为.【考点】KC:双曲线的简单性质.【分析】由题意可知b=1,求出A点坐标,代入双曲线方程化简即可得出a,c 的关系,从而得出离心率的值.【解答】解:F(c,0),B(0,1),∴b=1.设A(m,n),则=(m,n﹣1),=(c﹣m,﹣n),∵=3,∴,解得,即A(,),∵A在双曲线﹣y2=1的右支上,∴﹣=1,∴=.∴e==.故答案为:.14.已知a,b,c,d∈R且满足==1,则(a﹣c)2+(b﹣d)2的最小值为ln.【考点】4H:对数的运算性质.【分析】根据题意可将(a,b),(c,d)分别看成函数=x+3lnx与y=2x+3上任意一点,然后利用两点的距离公式,结合几何意义进行求解.【解答】解:因为==1,所以可将P:(a,b),Q:(c,d)分别看成函数y=x+3lnx与y=2x+3上任意一点,问题转化为曲线上的动点P与直线上的动点Q之间的最小值的平方问题,设M(t,t+3lnt)是曲线y=x+3lnx的切点,因为y′=1+,故点M处的切斜的斜率k=1+,由题意可得1+=2,解得t=3,也即当切线与已知直线y=2x+3平行时,此时切点M(3,3+3ln3)到已知直线y=2x+3的距离最近,最近距离d==,也即(a﹣c)2+(b﹣d)2==ln,故答案为:ln二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=,cos∠ACB=,BC=13.(1)求cosB的值;(2)求CD的长.【考点】HT:三角形中的几何计算.【分析】(1)在△ABC中,求出sinA==.,sin∠ACB=.可得cosB=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcosB;(2)在△ABC中,由正弦定理得,AB=sin∠ACB.在△BCD中,由余弦定理得,CD=.【解答】解:(1)在△ABC中,cosA=,A∈(0,π),所以sinA==.同理可得,sin∠ACB=.所以cosB=cos[π﹣(A+∠ACB)]=﹣cos(A+∠ACB)=sinAsin∠ACB﹣cosAcos∠ACB=;(2)在△ABC中,由正弦定理得,AB=sin∠ACB=.又AD=3DB,所以DB=.在△BCD中,由余弦定理得,CD===9.16.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若平面PAD⊥平面ABCD,求证:AE⊥EF.【考点】LZ:平面与平面垂直的性质.【分析】(1)推导出AB∥CD,从而AB∥平面PDC,由此能证明AB∥EF.(2)推导出AB⊥AD,从而AB⊥平面PAD,进而AB⊥AF,由AB∥EF,能证明AF⊥EF.【解答】证明:(1)因为ABCD是矩形,所以AB∥CD.又因为AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.又因为AB⊂平面ABEF,平面ABEF∩平面PDC=EF,所以AB∥EF.(2)因为ABCD是矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面PAD.又AF⊂平面PAD,所以AB⊥AF.又由(1)知AB∥EF,所以AF⊥EF.17.如图,在平面直角坐标系xOy中,已知椭圆C: +=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).(1)若QF=2FP,求直线l的方程;(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.【考点】KL:直线与椭圆的位置关系.【分析】(1)由椭圆方程求出a,b,c,可得F的坐标,设P(x1,y1),Q(x2,y2),直线l的方程为x=my+1,代入椭圆方程,求得P,Q的纵坐标,再由向量共线的坐标表示,可得m的方程,解方程可得m,进而得到直线l的方程;(2)运用韦达定理可得y1+y2,y1y2,my1y2,由A(﹣2,0),B(2,0),P(x1,y1),Q(x2,y2),x1=my1+1,x2=my2+1,运用直线的斜率公式,化简整理计算可得常数λ的值,即可判断存在.【解答】解:(1)因为a2=4,b2=3,所以c==1,所以F的坐标为(1,0),设P(x1,y1),Q(x2,y2),直线l的方程为x=my+1,代入椭圆方程+=1,得(4+3m2)y2+6my﹣9=0,则y1=,y2=.若QF=2FP,即=2,则+2•=0,解得m=,故直线l的方程为x﹣2y﹣=0.(2)由(1)知,y1+y2=﹣,y1y2=﹣,所以my1y2=﹣=(y1+y2),由A(﹣2,0),B(2,0),P(x1,y1),Q(x2,y2),x1=my1+1,x2=my2+1,所以=•===,故存在常数λ=,使得k1=k2.18.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且≥,设∠EOF=θ,透光区域的面积为S.(1)求S关于θ的函数关系式,并求出定义域;(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB的长度.【考点】HN:在实际问题中建立三角函数模型.【分析】(1)过点O作OH⊥FG于H,写出透光面积S关于θ的解析式S,并求出θ的取值范围;(2)计算透光区域与矩形窗面的面积比值,构造函数,利用导数判断函数的单调性,求出比值最大时对应边AB的长度.【解答】解:(1)过点O作OH⊥FG于H,∴∠OFH=∠EOF=θ;又OH=OFsinθ=sinθ, FH=OFco sθ=cosθ,∴S=4S △OFH +4S 阴影OEF =2sinθcosθ+4×θ=sin2θ+2θ;∵≥,∴sinθ≥,∴θ∈[,);∴S 关于θ的函数关系式为S=sin2θ+2θ,θ∈[,);(2)由S 矩形=AD•AB=2×2sinθ=4sinθ,∴=+,设f (θ)=+,θ∈[,),则f′(θ)=﹣sinθ+===;∵≤θ<,∴sin2θ≤,∴sin2θ﹣θ<0, ∴f′(θ)<0,∴f (θ)在θ∈[,)上是单调减函数;∴当θ=时f (θ)取得最大值为+,此时AB=2sinθ=1(m );∴S 关于θ的函数为S=sin2θ+2θ,θ∈[,);所求AB 的长度为1m .19.已知两个无穷数列{a n }和{b n }的前n 项和分别为S n ,T n ,a 1=1,S 2=4,对任意的n ∈N *,都有3S n +1=2S n +S n +2+a n . (1)求数列{a n }的通项公式;(2)若{b n }为等差数列,对任意的n ∈N *,都有S n >T n .证明:a n >b n ;(3)若{b n }为等比数列,b 1=a 1,b 2=a 2,求满足=a k (k ∈N *)的n 值.【考点】8E :数列的求和;8H :数列递推式.【分析】(1)运用数列的递推式和等差数列的定义和通项公式,即可得到所求;(2)方法一、设数列{b n }的公差为d ,求出S n ,T n .由恒成立思想可得b 1<1,求出a n ﹣b n ,判断符号即可得证;方法二、运用反证法证明,设{b n }的公差为d ,假设存在自然数n 0≥2,使得a≤b,推理可得d >2,作差T n ﹣S n ,推出大于0,即可得证;(3)运用等差数列和等比数列的求和公式,求得S n ,T n ,化简,推出小于3,结合等差数列的通项公式和数列的单调性,即可得到所求值. 【解答】解:(1)由3S n +1=2S n +S n +2+a n ,得2(S n +1﹣S n )=S n +2﹣S n +1+a n , 即2a n +1=a n +2+a n ,所以a n +2﹣a n +1=a n +1﹣a n . 由a 1=1,S 2=4,可知a 2=3.所以数列{a n }是以1为首项,2为公差的等差数列. 故{a n }的通项公式为a n =1+2(n ﹣1)=2n ﹣1,n ∈N*. (2)证法一:设数列{b n }的公差为d ,则T n =nb 1+n (n ﹣1)d ,由(1)知,S n =n (1+2n ﹣1)=n 2.因为S n >T n ,所以n 2>nb 1+n (n ﹣1)d , 即(2﹣d )n +d ﹣2b 1>0恒成立,所以,即,又由S 1>T 1,得b 1<1,所以a n ﹣b n =2n ﹣1﹣b 1﹣(n ﹣1)d=(2﹣d )n +d ﹣1﹣b 1≥2﹣d +d ﹣1﹣b 1=1﹣b 1>0.所以a n >b n ,得证.证法二:设{b n }的公差为d ,假设存在自然数n 0≥2,使得a ≤b , 则a 1+2(n 0﹣1)≤b 1+(n 0﹣1)d ,即a 1﹣b 1≤(n 0﹣1)(d ﹣2),因为a 1>b 1,所以d >2.所以T n ﹣S n =nb 1+n (n ﹣1)d ﹣n 2=(d ﹣1)n 2+(b 1﹣d )n ,因为d ﹣1>0,所以存在N ∈N*,当n >N 时,T n ﹣S n >0恒成立. 这与“对任意的n ∈N *,都有S n >T n ”矛盾!所以a n >b n ,得证.(3)由(1)知,S n =n 2.因为{b n }为等比数列,且b 1=1,b 2=3,所以{b n }是以1为首项,3为公比的等比数列.所以b n =3n ﹣1,T n =(3n ﹣1).则===3﹣,因为n ∈N*,所以6n 2﹣2n +2>0,所以<3.而a k =2k ﹣1,所以=1,即3n ﹣1﹣n 2+n ﹣1=0(*).当n=1,2时,(*)式成立;当n ≥2时,设f (n )=3n ﹣1﹣n 2+n ﹣1,则f (n +1)﹣f (n )=3n ﹣(n +1)2+n ﹣(3n ﹣1﹣n 2+n ﹣1)=2(3n ﹣1﹣n )>0, 所以0=f (2)<f (3)<…<f (n )<…,故满足条件的n 的值为1和2.20.已知函数f(x)=+xlnx(m>0),g(x)=lnx﹣2.(1)当m=1时,求函数f(x)的单调区间;(2)设函数h(x)=f(x)﹣xg(x)﹣,x>0.若函数y=h(h(x))的最小值是,求m的值;(3)若函数f(x),g(x)的定义域都是[1,e],对于函数f(x)的图象上的任意一点A,在函数g(x)的图象上都存在一点B,使得OA⊥OB,其中e是自然对数的底数,O为坐标原点,求m的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出h(x)的导数,解关于导函数的不等式,求出函数的单调区间,求出h(x)的最小值,从而求出m的值即可;(3)根据OA和OB的关系,问题转化为﹣x2lnx≤m≤x2(e﹣lnx)在[1,e]上恒成立,设p(x)=﹣x2lnx,根据函数的单调性求出m≥p(1)=,设q (x)=x2(e﹣lnx),根据函数的单调性求出m≤q(1),从而求出m的范围即可.【解答】解:(1)当m=1时,f(x)=+xlnx,f′(x)=+lnx+1,因为f′(x)在(0,+∞)上单调增,且f′(1)=0,所以当x>1时,f′(x)>0;当0<x<1时,f′(x)<0,所以函数f(x)的单调增区间是(1,+∞).(2)h(x)=+2x﹣,则h′(x)=,令h′(x)=0,得x=,当0<x<时,h′(x)<0,函数h(x)在(0,)上单调减;当x>时,h′(x)>0,函数h(x)在(,+∞)上单调增.所以[h(x)]min=h()=2m﹣,①当(2m﹣1)≥,即m≥时,函数y=h(h(x))的最小值h(2m﹣)= [+2(2﹣1)﹣1]=,即17m﹣26+9=0,解得=1或=(舍),所以m=1;②当0<(2﹣1)<,即<m<时,函数y=h(h(x))的最小值h()=(2﹣1)=,解得=(舍),综上所述,m的值为1.(3)由题意知,K OA=+lnx,K OB=,考虑函数y=,因为y′=在[1,e]上恒成立,所以函数y=在[1,e]上单调增,故K OB∈[﹣2,﹣],所以K OA∈[,e],即≤+lnx≤e在[1,e]上恒成立,即﹣x2lnx≤m≤x2(e﹣lnx)在[1,e]上恒成立,设p(x)=﹣x2lnx,则p′(x)=﹣2lnx≤0在[1,e]上恒成立,所以p(x)在[1,e]上单调减,所以m≥p(1)=,设q(x)=x2(e﹣lnx),则q′(x)=x(2e﹣1﹣2lnx)≥x(2e﹣1﹣2lne)>0在[1,e]上恒成立,所以q(x)在[1,e]上单调增,所以m≤q(1)=e,综上所述,m的取值范围为[,e].【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲21.如图,圆O的弦AB,MN交于点C,且A为弧MN的中点,点D在弧BM 上,若∠ACN=3∠ADB,求∠ADB的度数.【考点】NB:弦切角.【分析】连结AN,DN.利用圆周角定理,结合∠ACN=3∠ADB,求∠ADB的度数.【解答】解:连结AN,DN.因为A为弧MN的中点,所以∠ANM=∠ADN.而∠NAB=∠NDB,所以∠ANM+∠NAB=∠ADN+∠NDB,即∠BCN=∠ADB.又因为∠ACN=3∠ADB,所以∠ACN+∠BCN=3∠ADB+∠ADB=180°,故∠ADB=45°.B.选修4-2:矩阵与变换22.已知矩阵A=,若A=,求矩阵A的特征值.【考点】OV:特征值与特征向量的计算.【分析】利用矩阵的乘法,求出a,d,利用矩阵A的特征多项式为0,求出矩阵A的特征值.【解答】解:因为A==,所以,解得a=2,d=1.所以矩阵A的特征多项式为f(λ)==(λ﹣2)(λ﹣1)﹣6=(λ﹣4)(λ+1),令f(λ)=0,解得矩阵A的特征值为λ=4或﹣1.C.选修4-4:坐标系与参数方程23.在极坐标系中,已知点A(2,),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.【考点】Q4:简单曲线的极坐标方程.【分析】点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB 最短时,点B为直线x﹣y+2=0与直线l的交点,求出交点,进而得出.【解答】解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,则点A(2,)的直角坐标为(0,2),直线l的直角坐标方程为x+y=0.AB最短时,点B为直线x﹣y+2=0与直线l的交点,联立,得,所以点B的直角坐标为(﹣1,1).所以点B的极坐标为.D.选修4-5:不等式选讲24.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3.【考点】R6:不等式的证明.【分析】利用基本不等式的性质进行证明.【解答】证明:∵a3+b3+c3=a2b2c2,a3+b3+c3≥3abc,∴a2b2c2≥3abc,∴abc≥3,∴a+b+c≥3≥3.当且仅当a=b=c=时,取“=”.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]25.在平面直角坐标系xOy中,点F(1,0),直线x=﹣1与动直线y=n的交点为M,线段MF的中垂线与动直线y=n的交点为P.(Ⅰ)求点P的轨迹Г的方程;(Ⅱ)过动点M作曲线Г的两条切线,切点分别为A,B,求证:∠AMB的大小为定值.【考点】K8:抛物线的简单性质.【分析】(Ⅰ)连接PF,运用中垂线的性质可得|MP|=|PF|,再由抛物线的定义可得点P的轨迹方程;(Ⅱ)求得M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y ﹣n=k(x+1),联立抛物线的方程,消去y,运用相切的条件:判别式为0,再由韦达定理,结合两直线垂直的条件:斜率之积为﹣1,即可得证.【解答】解:(Ⅰ)据题意,MP⊥直线x=﹣1,∴|MP|为点P到直线x=﹣1的距离,连接PF,∵P为线段MF的中垂线与直线y=n的交点,∴|MP|=|PF|,∴P点的轨迹是抛物线,焦点为F(1,0),准线为直线x=﹣1,∴曲线Г的方程为y2=4x;(Ⅱ)证明:据题意,M(﹣1,n),过点M的切线斜率存在,设为k,则切线方程为:y﹣n=k(x+1),联立抛物线方程可得ky2﹣4y+4k+4n=0,由直线和抛物线相切,可得△=16﹣4k(4k+4n)=0,即k2+kn﹣1=0,(*)∵△=n2+4>0,∴方程(*)存在两个不等实根,设为k1,k2,∵k1=k AM,k2=k BM,由方程(*)可知,k AM•k BM=k1•k2=﹣1,∴切线AM⊥BM,∴∠AMB=90°,结论得证.[选修4-5:不等式选讲]26.已知集合U={1,2,…,n}(n∈N*,n≥2),对于集合U的两个非空子集A,B,若A∩B=∅,则称(A,B)为集合U的一组“互斥子集”.记集合U的所有“互斥子集”的组数为f(n)(视(A,B)与(B,A)为同一组“互斥子集”).(1)写出f(2),f(3),f(4)的值;(2)求f(n).【考点】1H:交、并、补集的混合运算.【分析】(1)直接由“互斥子集”的概念求得f(2),f(3),f(4)的值;(2)由题意,任意一个元素只能在集合A,B,C=C U(A∪B)之一中,求出这n个元素在集合A,B,C中的个数,再求出A、B分别为空集的种数,则f(n)可求.【解答】解:(1)f(2)=1,f(3)=6,f(4)=25;(2)任意一个元素只能在集合A,B,C=C U(A∪B)之一中,则这n个元素在集合A,B,C中,共有3n种;其中A为空集的种数为2n,B为空集的种数为2n,∴A,B均为非空子集的种数为3n﹣2n+1+1,又(A,B)与(B,A)为一组“互斥子集”,∴f(n)=.2017年5月24日。
江苏省灌云高级中学2017届高三数学第三次学情调研考试(文科)数学试卷一、填空题:本大题共14小题,每小题5分,共70分. 1. 集合{1,0,1}-的所有子集个数为_________. 2. 复数z 满足(12)5i z +=,则z = 。
3. 函数()sin cos f x x x =-的最小值是 。
4. 函数11()2x y -=的值域是_________.5. 如图,程序执行后输出的结果为_________.6. 某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______________辆 7. 已知n m ,是两条不同的直线,βα,为两个不同的平面, 有下列四个命题:①若βα⊥⊥n m ,,m ⊥n ,则βα⊥; ②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//; ④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________.8. 在△ABC 中,AB =2,AC =1,D 为BC 的中点,则AD BC ⋅=_________. 9. 直线x +ay +3=0与直线ax +4y +6=0平行的充要条件是_________. 10. 椭圆2214x y m+=的一条准线方程为m y =,则=m ________. 11.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________. 12、已知函数x x f y sin )(=的一部分图象如右图所示,则函数)(x f 可以是________13.已知函数()c f x x x=+,若对任意*x N ∈,都有()(3)f x f ≥,则实数c 的取值范围是 14、已知点Q b a p 与点),((1,0)在直线0132=+-y x 的两侧,则下列说法 (1)0132>+-b a (2)0≠a 时,ab有最小值,无最大值 (3)M b a R M >+∈∃+22,使恒成立 (4)且0>a 1≠a ,时0>b , 则1-a b 的取值范围为(-),32()31,∞+⋃-∞ 其中正确的是 (把你认为所有正确的命题的序号都填上) 二、解答题:本大题共6小题,共计90分. 15.已知函数21()cos ,()1sin 22f x xg x x ==+. (1)若点A (,)y α([0,]4πα∈)为函数()f x 与()g x 的图象的公共点,试求实数α的值;(2)求函数()()(),[0,]4h x f x g x x π=+∈的值域.16、如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,N M BC AB AD PA ,,22====分别为PB PC ,的中点。
(1)求证:DM PB ⊥;(2)求截面ADMN 的面积。
17.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为横断面的腰长为x (米),外周长(梯形的上底线段.......BC 与两腰长的和......)为y (米).⑴求y 关于x 的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过10.5米,则其腰长x 应在什么范围内?⑶当防洪堤的腰长x 为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.18. 已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0,0)x y a b a b+=>>的一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点,直线1PF 与圆C 相切。
(1)求m 的值与椭圆E 的方程; (2)设D 为直线PF 1与圆C 的切点,在椭圆E 上是否存在点Q ,使△PDQ 是以PD 为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由。
19.已知函数2()ln ()2x f x x kx k =+-为常数,(1)试讨论()f x 的单调性;(2)若()f x 存在极值,求()f x 的零点个数。
20.已知0p ≠,数列{}n a 满足:*112,1()n n a a pa p n N +==+-∈ (1)求数列{}n a 的通项公式;(2)1*2()n n b q n N -=-∈,当2n ≥时,,p q 都在区间(0,1)内变化,且满足22221n n p q --+≤时,求所有点(,)n n a b 所构成图形的面积; (3)当1p >时,证明:*122311...().n n a a a n n n N p a a a p++<+++<∈江苏省灌云高级中学高三年级12月学情检测文科数学试卷参考答案1、8;2、1-2i ;3、2-;4、(0,+∞);5、64;6、6,30,10;7、①④;8、32-;9、a =-2;10、5;11、12m ≥;12、x cos 2-;13、[6,12];14、(3)(4)15.(本小题满分14分)解: (1)∵点A (,)y α(0απ≤≤)为函数()f x 与()g x 的图象的公共点∴21cos 1sin 22αα=+111cos 21sin 2222αα⇒+=+ cos 2sin 21αα⇒-=-----------------------------------------------------------------4分⇒22cos 2sin 22sin 2cos 21αααα+-=sin 40α⇒=∴4,k k Z απ=∈,4k k Z πα⇒=∈ ∵[0,]4πα∈ ∴0α=,4π--------------------------------------------------------7分 (2) ∵()()()h x f x g x =+ ∴21()cos 1sin 22h x x x =++111cos 21sin 2222x x =+++113cos 2sin 2222x x =++322)2x x =+3)42x π=++------------------------------------------10分 ∵[0,]4x π∈ ∴32444x πππ≤+≤sin(2)14x π≤+≤ ∴332)2422x π+≤++≤.即函数()h x 的值域为3[2,2+.----------------------------------------14分 16、(本题满分14分)(1)证明:因为N 是PB 的中点,AB PA =, 所以PB AN ⊥。
由PA ⊥底面ABCD ,得PA AD ⊥,又90BAD ︒∠=,即BA AD ⊥,∴ ⊥AD 平面PAB ,所以PB AD ⊥ , ∴ ⊥PB 平面ADMN ,∴DM PB ⊥。
………… 7分(2)由,M N 分别为PB PC ,的中点,得//MN BC ,且1122MN BC ==, 又//AD BC ,故//MN AD ,由(1)得⊥AD 平面PAB ,又AN ⊂平面PAB ,故AD AN ⊥, ∴四边形ADMN 是直角梯形, 在RtPAB ∆中,PB ==12AN PB ==∴ 截面ADMN的面积111()(2)2224S MN AD AN =+⨯=+=。
……14分 17.(本题满分14分)解:⑴1()2AD BC h =+,其中22xAD BCBC x =+⋅=+h x =,∴ 1(22BC x x =+,得182xBC x =-,由1802h x BC x ⎧=≥⎪⎪⎨⎪=->⎪⎩,得26x ≤< ∴1832,(26)2xy BC x x x =+=+≤<; --------------------6分 ⑵18310.52x y x =+≤得34x ≤≤∵[3,4][2,6)⊂ ∴腰长x 的范围是 [3,4]------10分⑶1832x y x =+≥1832x x =,即[2,6)x =时等号成立.∴外周长的最小值为------14分18. (本小题满分16分).解(1)∵点A(3,1)在圆C 上,∴2(3)15m -+=又3m <,∴1m = …………………………2分 设1(,0)F c -,∵(4,4)P∴直线1PF 的方程为4(4)40x c y c -++= …………………………4分 ∵直线1PF 与圆C 相切0)c => …………………………6分即4c =由222216911a b a b⎧-=⎪⎨+=⎪⎩ 解得22182a b ⎧=⎪⎨=⎪⎩ ∴椭圆E 的方程是221182x y += …………………………8分 (2) 直线1PF 的方程为240x y -+=由22240(1)5x y x y -+=⎧⎨-+=⎩得切点(0,2)D …………………………10分 又∵P(4,4), ∴线段PD 的中点为M(2,3) 又∵椭圆右焦点2(4,0)F233242MF k ==-- 又12PD k =,∴线段PD 的垂直平分线的斜率为 -2 …………………………14分∵322-<-,∴线段PD 的垂直平分线与椭圆有两个交点即在椭圆上存在两个点Q,使△PDQ 是以PD 为底的等腰三角形. ………………………16分 (或与过点M 的椭圆右侧切线斜率比较说明)19.(本小题满分16分) 解:(1)函数的定义域为(0,)+∞211'()x kx f x x k x x-+=+-= ………………………2分方程210x kx -+=的判别式24k ∆=-(i )当22k -<<时,0∆<,在()f x 的定义域内()0f x '>,()f x 是增函数………3分 (ii )当2k =±时,0∆=若2k =-,2(1)'()0x f x x+=>,()f x 是增函数 若2k =,2(1)'()x f x x-=,那么(0,1)(1,)x ∈⋃+∞时,()0f x '>,且()f x 在1x =处连续,所以()f x 是增函数 ………………………4分(iii )当2k <-或2k >时,0∆>,方程210x kx -+=有两不等实根12x x ==当2k <-时,120x x <<,当0x >时,210x kx -+>恒成立,即()0f x '>,()f x 是增函数当2k >时,210x x >>,此时()f x 的单调性如下表:………………………6分综上:当2k ≤时,()f x 在(0,)+∞是增函数当2k >时,()f x 在,)+∞是增函数,在是减函数…………………7分(2)由(1)知当2k >时,()f x 有极值∵1212k x k-==<<,∴1ln 0x < 且2211111111(4)()()ln 20222x x x x f x f x x kx x -==+-<-=<极大 …………9分 ∵()f x 在1(0,)x 是增函数,在12(,)x x 是减函数,∴当2(0,]x x ∈时,1()()0f x f x ≤<,即()f x 在2(0,]x 无零点 …………11分 当2(,)x x ∈+∞时,()f x 是增函数,故()f x 在2(,)x +∞至多有一个零点…………13分 另一方面,∵(2)ln(2)0f k k =>,2()0f x <,则2()(2)0f x f k <由零点定理:()f x 在2(,2)x k 至少有一个零点 ……………………15分 ∴()f x 在2(,)x +∞有且只有一个零点综上所述,当()f x 存在极值时,()f x 有且只有一个零点。