[精品]2019小升初数学(第一讲)资料讲解
- 格式:docx
- 大小:578.56 KB
- 文档页数:52
第一讲数与式一、知识梳理第一部分数的意义、分类与性质一、数的意义和分类1、数的意义(1)自然数:0、1、2、3、4……都是自然数。
可以表示物体的个数或次数。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
(2)0:一个物体也没有,用0表示。
0是最小的自然数。
0还有其他多种用法,在写数记数中,可以用0来占位;在测量活动中,用0表示起点;在相反意义量的记录中,用0作分界点。
负数:比0小的数是负数,比0大的数是正数。
0既不是正数,也不是负数。
(4)小数:分母是10、100、1000……的分数可以写成小数。
(5)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
两个数相除的商可以用分数表示。
把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
(6)百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫做百分比或百分率。
百分数是一种特殊的分数。
二、数的联系1、整数与小数:整数和小数在计数方法上是一致的,都是用十进制计数法记录的。
整数可以根据小数的基本性质改写成小数。
2、小数与分数:小数就是分母是10、100、1000……的十进分数,小数是特殊的分数。
3、分数与百分数:百分数虽然在形式上与分数是类似的,但在意义上有明显的不同。
百分数只能表示一个数是另一个数的百分之几,所以也叫做百分比(百分率),而分数不仅可以表示一个数是另一个数的几分之几,也可以用来表示一个具体的数量。
4、正数与负数:以0为分界点,比0大的数就是正数,比0小的数就是负数。
正数可以有正整数、正分数;负数可以有负整数、负分数。
0既不是正数,也不是负数。
三、数的性质1、整除(1)整除与除尽整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除a.。
除尽:数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽.整除是除尽的一种特殊情况,整除也可以说是除尽,但除尽不一定是整除.(2)因数和倍数如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数.倍数:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数.因数:一个数的因数的个数是有限的,其中最小的约数是1,最大的约数是它本身.因数和倍数是相互依存的(3)能被2.3.5整除的数的特征能被2整除的数的特征:个位上是0,2,4,6,8,:能被3整除的数的特征:个位上是0或5能被5整除的数的特征:各个位上的数字的和能被3整除能同时被2、5整除的数的特征:个位是0能同时被2、3、5整除的数的特征:个位是0,而且各个位上的数字的和能被3整除.(4)偶数和奇数一个自然数,不是奇数就是偶数偶数:能被2整除的数。
第一讲数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,,n m n≠互质)。
4、性质:①顺序性(可比较大小);②四则运算的封闭性(0不作除数);③稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:①(0)||(0)a aaa a≥⎧=⎨-≤⎩②非负性2(||0,0)a a≥≥③非负数的性质: i)非负数的和仍为非负数。
ii)几个非负数的和为0,则他们都为0。
二、【典型例题解析】:若||||||0,a b ababa b ab+-则的值等于多少如果m是大于1的有理数,那么m一定小于它的( D )A.相反数B.倒数C.绝对值D.平方已知两数a、b互为相反数,c、d互为倒数,x的绝对值是2,求220062007()()()x a b cd x a b cd-+++++-的值。
如果在数轴上表示a、b两上实数点的位置,如下图所示,那么||||a b a b-++化简的结果等于()A.2aB.2a- D.2b已知2(3)|2|0a b-+-=,求b a的值是()有3个有理数a,b,c,两两不等,那么,,a b b c c ab c c a a b------中有几个负数设三个互不相等的有理数,既可表示为1,,a b a+的形式式,又可表示为0,ba,b的形式,求20062007a b+。
三个有理数,,a b c的积为负数,和为正数,且||||||||||||a b c ab bc acXa b c ab bc ac=+++++则321ax bx cx+++的值是多少若,,a b c为整数,且20072007||||1a b c a-+-=,试求||||||c a a b b c-+-+-的值。
三、课堂备用练习题。
1、计算:1+2-3-4+5+6-7-8+…+2005+20062、计算:1×2+2×3+3×4+…+n(n+1)3、计算:5917336512913248163264+++++-4、已知,a b为非负整数,且满足||1a b ab-+=,求,a b的所有可能值。
小升初数学专题第1讲典型应用题(一)和差倍、年龄、植树问题一、知识地图典型应用题2:3⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪⎪⎧⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎩和差类型,解题方法.和倍类型,解题方法.和差倍分问题差倍类型,解题方法.工具线段图关键1:年龄差不变关键年龄倍数关系变化年龄问题关键:可以转化为和差倍问题解决工具线段图植树和方阵问题─────二、基础知识(一)和差问题:已知两个数的和及两个数的差,求这两个数。
方法①:(和-差)÷2=较小数,和-较小数=较大数方法②:(和+差)÷2=较大数,和-较大数=较小数例如:两个数的和是15,差是5,求这两个数。
方法:(15-5)÷2=5,(15+5)÷2=10。
(二)和倍问题:已知两个数的和及这两个数的倍数关系,求这两个数。
方法:和÷(倍数+1)=1倍数(较小数)1倍数(较小数)×倍数=几倍数(较大数)或和-1倍数(较小数)=几倍数(较大数)例如:两个数的和为50,大数是小数的4倍,求这两个数。
方法:50÷(4+1)=10 10×4=40(三)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数。
方法:差÷(倍数-1)=1倍数(较小数)1倍数(较小数)×倍数=几倍数(较大数)或和-1倍数(较小数)=几倍数(较大数)例如:两个数的差为80,大数是小数的5倍,求这两个数。
方法:80÷(5-1)=20 20×5=100(四)年龄问题关键①:年龄差不变例如:今年爸爸比儿子大30岁,明年爸爸比儿子大几岁?答:还是30岁,爸爸长1岁,儿子也长1岁。
明年父子年龄差=明年爸爸的年龄-明年儿子的年龄=(今年爸爸的年龄+1)-(今年儿子的年龄+1)=今年爸爸的年龄+1-今年儿子的年龄-1=今年爸爸的年龄-今年儿子的年龄=30(岁)关键②:年龄的倍数关系是变化的。
第一讲 计算专题在小升初的分数计算中,掌握一些实用的简便方法,可以提高同学们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除的过程中可以巧妙的拆分,从而达到先约分再计算,可以使计算过程更加简便。
(2)设数法:根据算式中数字的特点,用字母代表数字或算式,可以化繁为简,达到简算的目的。
(3)拆分法:根据算式的特点,通过拆分方便约分,从而达到简便运算。
(4)乘积不变的规律,商不变的规律。
计算:15 × 27 + 35 × 41【解析】:在分数的计算的过程中,可以巧妙的拆分,从而使计算的过程更加简便。
原式=35 × 9 + 35 × 41=35 ×(9 + 41)=35 × 50=301、用简便方法计算:16.205.20115.207.201⨯-⨯【解析】:原式2、用简便方法计算:15 × 27 + 35 × 41【解析】: 原式=35 × 9 + 35 × 41=35 ×(9 + 41)015.201.05.2015.201)16.2017.20=⨯=⨯-=(=35 × 50=30把纯循环小数化分数:【解析】:1、.将下列循环小数化为分数【解析】:(2)先看小数部分335.02、请将算式•••++100.010.01.0的结果写成最简分数 【解析】:原式11110010111137990900900900300++=++===计算:(1 + 12 + 13 + 14 )×(12 + 13 + 14 + 15 )-(1+ 12 + 13 + 14 + 15 )×(12 + 13 + 14 )【解析】:观察算式,直接算会很麻烦,这时巧用字母代替算式中的某个算式,即令1 + 12 + 13 + 14 =a , 12 + 13 + 14 =b ,化繁为简,从而达到简算。
小升初数学讲义(总31页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一讲 分、小数的基本计算【学习目标】1. 初步了解分、小数混合的计算方法,能熟练、准确地进行分数和小数的四则计算。
2. 能合理运用运算规律,准确、简捷地计算分、小数四则混合运算。
【基本练习】 直接写出得数。
1. =⨯7394 =÷3894 =÷14376 =⨯3276 =+854.0 =-8.065 =⨯1054 =÷12562. =+⨯652132 =÷-5125385 =÷⨯356153=⨯⨯879473 =⨯-10)5323( =⨯+⨯31323232 【问题思考】1. 说说下面各题的运算顺序,再计算。
(1) 32)]12561(1[÷+- (2) [2-34思考:有分数和小数混合的运算,该怎样去计算更简捷?2.下面各题,怎样简便就怎样算。
(1) 1039710945-⨯- (2) 75.14114725.1⨯+⨯ (3))731.2541(8.3⨯+-思考:你是怎样进行简便计算的?说一说你运用了什么运算定律与计算方法 3.解方程。
(1) 52)8.052(43=-⨯x (2) 15761125=+x x思考:说说你解方程的步骤。
你的过程是否合理与简捷?【简单应用】 1. 计算下面各题。
(1)53657273⨯-÷ (2))4.0157(14÷÷ (3) ]45)54375.067[(613⨯⨯-÷2. 解方程。
(1) 653232=+x (2)514.053=-x (3)8325.0=-x x3. 下面各题,怎样简便就怎样算。
(1)375.0542192+÷+ (2) 54)75.065(512++⨯ (3) )15854(3261-÷⨯(4)322691362-÷- (5) 125.0)]3215.2(311[5÷---【拓展练习】1. )9575()927729(+÷+ 549995499549543+++3. 2010减去它的21,再减去余下的31,再减去余下的41,再减去余下的51,……,一直减到最后余下的20101,最后结果是多少? 4. 5.学习水平检测(一)学校 姓名 成绩1. 直接写出得数。
小升初数学行程问题 1
第一讲行程问题
走路、行车、一个物体的移动,总是要涉及到三个数量:
距离走了多远,行驶多少千米,移动了多少米等等;
速度在单位时间内(例如1小时内)行走或移动的距离;
时间行走或移动所花时间.
这三个数量之间的关系,可以用下面的公式来表示:
距离=速度×时间
很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样
的数量关系也是最常见的,例如
总量=每个人的数量×人数.
工作量=工作效率×时间.。
小升初衔接数学讲义(共13讲)小升初衔接专题讲义第一讲数系扩张--有理数(一)一、问题引入与归纳1.正负数、数轴、相反数、有理数等概念。
2.有理数的两种分类。
3.有理数的本质定义,能写成 m/n (n≠0,m、n 互质)。
4.性质:①顺序性(可比较大小);②四则运算的封闭性(除数不能为零);③稠密性:任意两个有理数间都存在无数个有理数。
5.绝对值的意义与性质:① |a| = a(a≥0)或 |a| = -a(a<0)。
②非负性。
③非负数的性质:i)非负数的和仍为非负数。
ii)几个非负数的和为零,则它们都为零。
二、典型例题解析:例1:若ab ≠ 0,则 (a+b)/|ab| 的值等于多少?例2:如果 m 是大于 1 的有理数,那么 m 一定小于它的(D)。
A。
相反数 B。
倒数 C。
绝对值 D。
平方例3:已知两数 a、b 互为相反数,c、d 互为倒数,x 的绝对值是 2,求 x^2-(a+b+cd)x+(a+b)2006+(-cd)2007 的值。
例4:如果在数轴上表示 a、b 两个实数点的位置,如下图所示,那么 |a-b|+|a+b| 化简的结果等于()A。
2a B。
-2a C。
0 D。
2b例5:已知 (a-3)^2+|b-2|=9,求 ab 的值是()A。
2 B。
3 C。
9 D。
6例6:有 3 个有理数 a、b、c,两两不等,那么 a-b/b-c,c-a/a-b 中有几个负数?例7:设三个互不相等的有理数,既可表示为 1,a+b,a 的形式式,又可表示为 b/a,b 的形式,求 a^2006+b^2007.例8:三个有理数 a、b、c 的积为负数,和为正数,且 X = (abc/|ab|+|bc|+|ac|)+ab+bc+ac,则 ax^3+bx^2+cx+1 的值是多少?例9:若 a、b、c 为整数,且 |a-b|^2007+|c-a|^2007=1,试求 |c-a|+|a-b|+|b-c| 的值。
数学13种典型例题口诀及解析1.正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
231型中间一行3个作侧面,共3种基本图形。
222型中间两个面,只有1种基本图形。
33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
2.和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
3.鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=124.浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5.路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
V犹师版小升刼敎修修案A2018小升初教学糸列课題第一讲小升初知识模块专题、【整数和小数】1. 最小的一位数是1,最小的自然数是02. 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是七分之3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位4・整数和小数都是按照十进制计数法写出的数。
5. 小数的性质:小数的末尾添上0或者去掉0, 小数的大小不变。
6.小数皆向右移动一位、二位、三位 ........ 原来的数分别扩大10倍、100倍、1000倍…… 小数点向左移动一位、二位、三位……原来的数 几、百分之几、千分之几可以用小数来表示。
I 口、分别缩小10倍、100倍、1000倍……:、【数的整除】1・因数和倍数:204-4=5, 20是4和5的倍数,4和5是20的因数。
2. 一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。
3・能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
4.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。
质数都有2个因数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
合数至少有3个因数。
最小的质数是2,最小的合数是41 〜20以内的质数有:2、3、5、7、11、13、17、191 〜20 以内的合数肴“4、6、8、9、10、12、14、15、16、185.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。
6・公约因数、公倍数:几个数公有的因数,叫做这几个数的因数;其中最大的一个,叫做这几个数的最大公因数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
7.互质数:公因数只有1的两个数叫做互质数。
三、【分数和百分数】1•分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
2•分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
3•分数和小数的联系:小数实际上就是分母是10、100、1000的分数。
4•分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
5•分数的分类:分数可以分为真分数和假分数。
真分数:分子小于分母的分数叫做真分数。
真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。
假分数大于或者等于lo6・最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或者百分比。
百分数通常用“%”来表示。
【四则运算】1. 一个加数二和•另一个加数被减数二差+减数减数二被减数•差 一个因数二积十另一个因数 被除数二商X 除数 除数二被除数-商2. 在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运3 •运算定律:(1) 加法交换律:a+b=b+a 乘法交换律: 两个数相加,交换加数的位置,它们的和不变。
两个数相乘,交换因数的位置,它们的积不变。
(2) 加法结合律:(a+b)+c=a+(b+c)乘法结合律:(aXb)X c=a X (b X c)三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个 数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个 数相乘,再同第一个数相乘,它们的积不变。
(3) 乘法分配律:(a+b) Xc=aXc+bXc两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两 个积相加,结果不变。
(4) 减法的性质:a-b-c=a-(b+c) 除法的性质:a^b^c=a4-(bXc), 从一个数里连续减去两个数,等算。
a X b=b X a于从这个数里减去两个减数的和。
V 一个数连续除以两个数,等于这个数除以两个除数的积。
W五、【量的计量】1.长度单位有:千米米、分米、厘米、毫米,写出它们之间的进率面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。
体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。
质量单位有:吨、千克、克,写出它们之间的进率。
时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。
2. 一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。
小月有:4、6、9、11月,共4个,每月30天。
二月平年是28天,闰年是29天。
左拳记月法3・一年有4个季度,每个季度3个月。
4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5•名数:把计量得到的数和单位名称合起来叫做名数。
单名数:只带有一个单位名称的叫做单名数。
如4千克.复名数:带有两个或两个以上单位名称的叫做复名数。
如4千克250克$ 6・名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单、位的名数化成高级单位的名数除以进率。
六、【比和比例】1•比的意义:两个数相除又叫做两个数的比。
2•求比值:比的前项除以比的后项所得的商叫做比值。
3•比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比 值不变。
4.5.6.7.&求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相 同的数(零除外),结果是一个最简整数比。
9. 正比例关系:两种相关联的量,一种量变化,另一种量也随着变化, 如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量 就叫做成正比例的量,它们之间的关系叫做正比例关系。
用式子表示x : y=k (—定),用图表示正比例关系是一条直线。
应用比的基本性质可以化简比;用字母表示比与除法和分数的关系。
a : b=a*b=(bH0)比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺实际距离=图上距离一比例尺 图上距离=实际距离X 比例尺10.另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
用式子表示:xxy=k (一定),用图表示反比例关系是一条曲线。
1.条形统计图2.条形统计图特点:(1)用一个单位长度表示一定的数量。
(2)用直条的长短来表示数量的多少。
作用:从图中能清楚地看出各数量的多少,便于相互比较。
2.折线统计图的特点:(1)用一个单位长度表示一定的数量。
(2)用折线的起伏来表示数量的增减变化。
作用:从图中 能清楚地看出数量的增减变化情况,也能看出数量的多少。
60585654525048464442403836341 .折线统计图泰山景区2009—2017年游客数量情况统计图数量/万人t 59。
1>2、按各组成部分所占的比例算出各个扇形的圆心角的度数4、并注明相应的百分比。
各成份的名称可以注在图上, 也可以用图例表明「 写上标题 2.扇形统计图的特点:能清楚地看出各部分与整体之间的 关系。
扇形统计图。
3、根据 心角的度数,画出各个扇形,画一个圆1>长度单位:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?长度单位:千来JLOOQ米一2・分米_ 1O -厘* 一1O -亳米(km) (m) (dm) (cm) (mm2、面积单位:已学过的面积单位有哪些?每个面积单付卖际有名大?相邻单侍问的讲率是名小?面积单位:平方千米100 公顷1000Q平方米100平方分米100 (km2) (ha) k (m2) k (dm2)平方厘米」oo平方毫米(cm2) (mm2)3、体积单位:已学过的体积(容积)单位有哪些? 相邻单位间的进率是多少?体积单位和容积单位:4、质量单位: 已学过的质量单位有哪些?每个质量单位实际有多大?相邻单位间的进率是多少?质量单位:吨looo 千克pooq 克⑴~k(kg) —k(g)5、时间单位:已学过的时间单位有哪些?每个时间单位实际有多大?相邻单位间的进率是多少?1年=4个季度注:季度不是季节第一季度:1月、2月、3月一一闰年91天,平年90天第二季度:4月、5月、6月一一91天1年第三季度:7月、8月、9月一一92天第四季度:10月、11月、12月92天头10天闰年二月9天,平年二月8天)间10天剩下的天数(大月11天,小月10天,5、时间单位:已学过的时间单位有哪些?每个时 间单位实际有多大?相邻单位间的进率是多少?[个月=3个旬1个月 上旬 中旬 下旬5、时间单位:已学过的时间单位有哪些?每个时间单位实际有多大?相邻单位间的进率是多少?用年份数除以4,能被4整除的是闰年,不能被4 整除的是平年。
如果年份数的是整百、整千或几千几 百的,能被400整除的,才是闰年,反之,则是平年。
所以2010年是平年所以2012年是闰年所以1800年是平年 例如:2010-4=502......2 2012^-4=503 1800^400=4 (200)2000 v 400=5八、【量的计算】所以2000年是闰年九、【算数】加法交换律: 加法结合律:交换律: 乘法结合律: 乘法分配律: 除法的性质: 除法的性质: 两数相加交换加数的位置,和不变。
a + b = b + a a X b = b X a aXbXc = aX(bXc) aXb + aXc = aXb + c a-rb-rc = a4-(bXc) 在除法里,被除数和除数同时扩大(或缩小)相同的倍数, 商不变。
O 除以任何不是O 的数都得O 。
简便乘法:被乘数、乘数末尾有O 的乘 法,可以先把o 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、 有余数的除法:被除数=商>< 除数+余数 9、 方程、代数与等式 ① 等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的 基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
② 方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做 一元一次方程式。
学会一元一次方程式的例法及计算。