仍为等比数列,例如am,a2m,a3m也为等比数列.
第九页,共39页。
(3)数列{λan}(λ≠0),{|an|}皆为等比数列,公比分别为q和|
q|.
一个等比数列各项的k次幂,仍组成一个等比数列,新公比是原公比的
k次幂.
例如(lìrú),以q为公比的等比数列的各项的倒数构成的数列仍为等比
数列,公比为
∴第4个数为12q-6.∴6+6q+12q-6=12,解得
q 故2 .所求的4个数为9,6,4,2.
方法3(fāngfǎ)二:设后3个数分别为4-d,4,4+d,则第1个数1(为4 d)2,
由题意
解得4-d=6.∴d=-2.故所求的4个数为49,6,4,
1(4 d)2(4 d)4 216,
4.在等比数列{an}中,若a1,a10是方程(fāngchéng)3x2-2x6=0的两根,则a4·a7=_________. 【解析】a4a7=a1a10=-2. 答案:-2
第三十八页,共39页。
5.已知实数(shìshù)a,b,c成等差数列,a+1,b+1,c+4成等比数列, 且a+b+c=15,求a,b,c. 【解析】∵a,b,c成等差数列,设公差为d,又a+b+c=15. ∴b=5,∴a+1=6-d,c+4=9+d, 又a+1,b+1,c+4成等比数列, ∴(a+1)(c+4)=(b+1)2,即(6-d)(9+d)=62, ∴d=3或d=-6,∴a,b,c分别为2,5,8或11,5,-1.
2.
4
第二十页,共39页。
【误区警示】在解决本题时注意审题,要求的是三个正数,所以解 出d=-10时需要舍去,不要忽视条件,导致(dǎozhì)错误.