基于视频分析的车流量综合检测算法
- 格式:pdf
- 大小:554.40 KB
- 文档页数:7
基于视频监控技术的交通流量监测及管理交通问题一直是城市面临的头号难题。
随着城市化进程加快,交通流量管理和监测成为城市规划的关键。
视频监控技术已经被广泛应用于城市交通管理领域,通过监控交通流量,交通管理者能够更好地预测和处理交通拥堵,减少交通事故的发生和提升城市交通运输效率。
监测技术借助视频监控技术进行交通流量监测是最常见的监管方式。
这种方法的核心是将固定摄像头捕捉到的实时视频传输到中央控制台。
专业的交通监控系统使用高性能摄像机,可采集视频数据并进行实时图像处理。
基于高效算法进行图像处理,该系统可提供对数据的实时分析,包括车流量、车速、道路拥堵情况和其他交通信息。
该系统不断收集并分析数据,从而为交通管理者提供实时的数据和反馈,以便他们更好地优化路网和交通流量。
管理系统基于实时视频监测数据,并结合其他的数据资源,并借助预测算法和模型,交通管理者能够生成一个强大的交通管理系统。
这个系统有能力在实时情况下进行数据分析和可视化,准确地进行路网情况评估,并提供实时路况信息给驾驶员,以便他们能够电子地选择路线。
这种系统不仅能够减少拥堵,还可以大大提高交通出行的效率。
基于区块链技术的管理系统,可以将实时地交通流量数据进行存储和共享,对路网资源和交通工具进行优化调度,同时确保交通设施的秩序和公平性。
此外,应用区块链技术还能让交通出行的数据更加安全和完备,从而提高社会公共治理的水平。
面临的挑战尽管交通管理者能基于视频监控技术实现交通流量监泽和管理,但是在实际使用中还必须处理以下挑战:一是个人隐私问题,必须做好隐私保护工作,避免信息泄露。
二是结构复杂,由于城市交通由多种交通流量交叉组成,而每种交通流量具有独特的难题和困难,因此设计出一套全面的监管系统是非常复杂的。
三是大数据分析方面,必须使用最新的技术,以尽可能地分析和挖掘出更多交通信息,来更好地处理拥堵和事故问题。
结论总的来说,交通管理者可以借助视频监控技术更好地解决交通难题。
基于视频的车流量统计算法设计摘要:智能交通系统(ITS)已经被科学家认为是解决当前城市交通问题最有效的方法,也是目前和未来交通发展的主流方向。
ITS的前提是获得交通道路的实时信息,比如车速、车流量等。
本文主要研究ITS中基于视频检测技术的车流量统计方法,对所涉及的运动目标检测、背景提取、阴影去除以及车辆统计等核心技术进行了详细的研究。
本文的工作主要分为以下四部分:1)对车流量统计相关算法进行了研究,针对目标检测算法,研究了光流法、帧间差分法和背景差分法。
针对背景提取算法,研究了均值法、统计中值法、单高斯背景模型法和混合高斯背景模型法;针对阴影消除算法,研究了基于HSV颜色空间变换的阴影消除算法、基于色彩特征不变量的阴影消除算法和基于纹理特征的阴影消除算法。
同时,本文对上述算法进行了实验对比分析。
2)给出了一种改进的混合高斯模型背景提取算法,当读入一定帧数的图像之后认为背景达到稳定状态,读入新的视频帧时,对当前帧进行判断,如果像素点和稳定背景图像的像素点差值大于阈值Th1,就对该像素点进行更新,反之就不更新。
3)给出了一种改进的基于虚拟区域的车流量统计算法,首先设置检测区域和检测线,然后跟踪检测区域中车辆的质心到检测线的距离d,如果d小于Th2认为有一辆车辆通过,通过实验验证,本文算法的精确率能达到90%左右。
4)实现了一个车流量统计系统,整个系统主要包括视频播放模块、GMM背景更新模块、前景构建模块和车辆计数模块。
视频播放模块主要完成视频的播放和显示;GMM背景更新模块主要是实现本文的背景提取算法;前景构建模块的主要功能是通过阴影去除和形态学操作得到较好的前景图像;车辆计数模块的主要功能是完成本文的车流量统计算法。
本文深入研究了车流量统计的相关算法,并给出了一种改进的混合高斯模型算法和一种改进的基于虚拟区域的车流量统计算法,最后用VC实现了一个车流量统计系统,实验结果表明本文设计的系统能够对车辆目标进行准确检测与统计。
基于视频的车流量统计算法常志国;李晶;胡云鹭;郭茹侠【摘要】The vehicle counting algorithm based on virtual line inevitably exists the possibility of missing and error. Concerning this issue, this paper extracts and combines two types of image information- the virtual lines’ relative positions with the objects and its pixel value variance, then a new vehicle segmentation and counting method is proposed. First, it determines the relative positions between the objects and the virtual lines, and combines with the variance of virt ual lines’ pixel value. With these information, it can improves the accuracy of the traffic flow by means of dividing vehicles. A testing system is developed for testing the performance of the method. The system has run in some kinds of weather, and its result is analyzed. The results show that the method has excellent performance both in real-time and accuracy in the daytime and the accuracy was above 95% for each lane of traffic. But the performance in the nighttime may not be optimal. Therefore, improvement is planned to make during following research.%基于虚拟检测线的车辆计数算法不可避免地会出现漏检和误检问题。
《基于深度学习的车辆检测与跟踪算法研究》篇一一、引言随着科技的不断进步,智能交通系统已经成为现代社会的重要研究方向。
车辆检测与跟踪作为智能交通系统中的关键技术,其研究与应用具有广泛的实际意义。
传统的车辆检测与跟踪方法往往依赖于特定的硬件设备和复杂的算法,而基于深度学习的算法在处理图像和视频数据方面表现出了显著的优势。
本文将研究基于深度学习的车辆检测与跟踪算法,探讨其原理、应用及未来发展方向。
二、深度学习在车辆检测与跟踪中的应用1. 车辆检测车辆检测是智能交通系统中的一项基本任务,主要目的是在图像或视频中识别出车辆的位置。
传统的车辆检测方法通常依赖于特征提取和分类器,而深度学习可以通过学习大量数据中的特征,自动提取出有效的车辆特征。
常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等。
基于深度学习的车辆检测方法可以实现对车辆的实时检测,并且在不同的场景和光照条件下均能保持良好的性能。
其中,基于CNN的车辆检测方法主要通过在图像中滑动窗口,将每个窗口的图像输入到CNN中进行分类,从而确定是否存在车辆。
此外,还有一些基于区域的方法和基于目标的方法,可以更准确地检测出车辆的位置。
2. 车辆跟踪车辆跟踪是在连续的图像帧中识别出同一辆车,并对其位置进行估计和预测的过程。
传统的车辆跟踪方法通常依赖于颜色、形状等特征进行匹配,而深度学习可以通过学习车辆的时空特征,实现更准确的跟踪。
基于深度学习的车辆跟踪方法主要利用神经网络来预测车辆的位置。
例如,通过将相邻帧的图像输入到递归神经网络(RNN)中,可以学习到车辆的时空特征和运动规律,从而实现对车辆的准确跟踪。
此外,还有一些基于目标检测的跟踪方法,如Siamese网络等,可以同时实现车辆的检测和跟踪。
三、算法研究及优化针对车辆检测与跟踪任务的特点,研究人员不断提出新的深度学习算法和模型结构。
例如,一些研究人员通过改进CNN的结构和参数优化方法,提高了车辆检测的准确性和速度。
专利名称:一种基于视频分析的车流量统计方法专利类型:发明专利
发明人:常志国,李晶,胡云鹭,郭茹侠,何创,闻江申请号:CN201510962491.2
申请日:20151219
公开号:CN105427626A
公开日:
20160323
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于虚拟检测线的车流量统计方法,并应用于实际的道路交通场景中。
对实时交通视频流进行处理,采用帧差法进行运动目标的识别和提取。
车流量检测部分,基于虚拟检测线的车辆计数方法不可避免地会出现漏检和误检问题。
针对这一问题,本发明提取并结合了两种图像信息:位置信息和像素变化信息,提出了一种新的基于虚拟检测线的车流量分割计数方法。
该方法结合了虚拟线圈和目标跟踪各自的优势,兼顾了车流量统计的实时性和准确性。
实验结果表明,本方法在多种不同天气状况下在各车道对视频车辆计数的准确率均大于95%,具有容易推广实施的优势。
申请人:长安大学
地址:710064 陕西省西安市碑林区南二环中段33号
国籍:CN
代理机构:西安通大专利代理有限责任公司
代理人:徐文权
更多信息请下载全文后查看。