小学奥数行程问题
- 格式:pptx
- 大小:81.65 KB
- 文档页数:10
小学奥数行程问题及答案 Fill in the approver at this time小学奥数行程问题及答案一1.甲、乙二人以均匀的速度分别从A、B两地同时出发;相向而行;他们第一次相遇地点离A地4千米;相遇后二人继续前进;走到对方出发点后立即返回;在距B地3千米处第二次相遇;求两次相遇地点之间的距离..解:第二次相遇两人总共走了3个全程;所以甲一个全程里走了4千米;三个全程里应该走43=12千米;通过画图;我们发现甲走了一个全程多了回来那一段;就是距B地的3千米;所以全程是12-3=9千米;所以两次相遇点相距9-3+4=2千米..2.甲、乙、丙三人行路;甲每分钟走60米;乙每分钟走67.5米;丙每分钟走75米;甲乙从东镇去西镇;丙从西镇去东镇;三人同时出发;丙与乙相遇后;又经过2分钟与甲相遇;求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇;所以距离是60+75×2=270米;这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷67.5-60=36分钟;所以路程=36×60+75=4860米..3.A;B两地相距540千米..甲、乙两车往返行驶于A;B两地之间;都是到达一地之后立即返回;乙车较甲车快..设两辆车同时从A地出发后第一次和第二次相遇都在途中P地..那么两车第三次相遇为止;乙车共走了多少千米解:根据总结:第一次相遇;甲乙总共走了2个全程;第二次相遇;甲乙总共走了4个全程;乙比甲快;相遇又在P点;所以可以根据总结和画图推出:从第一次相遇到第二次相遇;乙从第一个P点到第二个P点;路程正好是第一次的路程..所以假设一个全程为3份;第一次相遇甲走了2份乙走了4份..第二次相遇;乙正好走了1份到B地;又返回走了1份..这样根据总结:2个全程里乙走了540÷3×4=180×4=720千米;乙总共走了720×3=2160千米..4、小明每天早晨6:50从家出发;7:20到校;老师要求他明天提早6分钟到校..如果小明明天早晨还是6:50从家出发;那么;每分钟必须比往常多走25米才能按老师的要求准时到校..问:小明家到学校多远第六届小数报数学竞赛初赛题第1题解:原来花时间是30分钟;后来提前6分钟;就是路上要花时间为24分钟..这时每分钟必须多走25米;所以总共多走了24×25=600米;而这和30分钟时间里;后6分钟走的路程是一样的;所以原来每分钟走600÷6=100米..总路程就是=100×30=3000米..5.小张与小王分别从甲、乙两村同时出发;在两村之间往返行走到达另一村后就马上返回;他们在离甲村3.5千米处第一次相遇;在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远相遇指迎面相遇解:画示意图如下..第二次相遇两人已共同走了甲、乙两村距离的3倍;因此张走了3.5×3=10.5千米..从图上可看出;第二次相遇处离乙村2千米..因此;甲、乙两村距离是10.5-2=8.5千米..每次要再相遇;两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时;两人已共同走了两村距离3+2+2倍的行程..其中张走了3.5×7=24.5千米;24.5=8.5+8.5+7.5千米..就知道第四次相遇处;离乙村8.5-7.5=1千米..答:第四次相遇地点离乙村1千米..。
行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。
小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。
已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。
已知牛牛每分钟走50米,求甲、乙两地之间的路程。
(7)上学路上当当发现田田在他前面,于是就开始追田田。
当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。
问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。
15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。
行程问题【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【解答】后来小刚的速度是小明的(300-100)÷(200-100)=2倍,所以小明每100秒行150米,因此全程是1600+150×3=2050米。
【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米?【解答】后来的速度比是(4×0.9):(3×1.2)=1:1,所以甲行3/7,乙还离A地4/7-3/7=1/7,即AB两地相距17÷1/7=119千米。
【题目3】从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时?【解答】上山速度看作1,下山速度看作2,去时下山路程是1,上山路程是2/3,返回时上山路程是1,下山路程是2/3,所以有7÷(1÷2+2/3÷1)×(2/3÷2+1÷1)=8小时。
【题目4】甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
【解答】原定时间是6÷25%+6=30分钟,即1/2小时。
原定速度是10÷1/3+10=40千米,则两地之间的距离是40×1/2=20千米【题目5】小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离【解答】去时速度坡路12平路9,返回坡路4平路8,如果返回坡路4×3=12平路8×3=24用去90÷3=30分钟。
小学奥数行程问题公式奥数行程问题知识点总
结大全
【根本公式】:路程=速度×时间
【根本类型】
相遇问题:速度和×相遇时间=相遇路程;
追及问题:速度差×追及时间=路程差;
流水问题:关键是抓住水速对追及和相遇的时间不产生影响;
顺水速度=船速+水速逆水速度=船速-水速
静水速度=〔顺水速度+逆水速度〕÷2 水速=〔顺水速度-逆水速度〕÷2
〔也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个〕
其他问题:利用相应知识解决,比方和差分倍和盈亏;
【复杂的行程】
1、屡次相遇问题;
2、环形行程问题;
3、运用比例、方程等解复杂的题。
查看:小升初奥数行程问题公式和例题解析汇总。
第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定()2;路程一定2(),牢记平均速度公式,就不会错。
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
一、行程问题:S=V×T;总结如下:当路程一定时;速度和时间成反比当速度一定时;路程和时间成正比当时间一定时;路程和速度成正比二、衍伸总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2两岸问题:S=3A-B;两次相遇相隔距离=2×A-B 电梯问题:S=人与电梯的合速度×时间=人与电梯的合速度×时间平均速度:V平=2V1×V2÷V1+V21、邮递员早晨7时出发送一份邮件到对面的山坳里;从邮局开始要走12千米的上坡路;8千米的下坡路..他上坡时每小时走4千米;下坡时每小时走5千米;到达目的地后停留1小时;又从原路返回;邮递员什么时候可以回到邮局解析核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡;去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地;去时每小时走6千米;回时每小时走9千米;来回共用5小时..小明来回共走了多少千米解析当路程一定时;速度和时间成反比速度比=6:9=2:3时间比=3:23+2=5小时;正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米;一辆汽车原计划用6小时从A城开到B城;汽车行驶了一半路程;因故在途中停留了30分钟..如果按照原定的时间到达B城;汽车在后半段路程速度应该加快多少解析核心公式:速度=路程÷时间前半程开了3小时;因故障停留30分钟;因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地;A;B两地的距离等于B;C 两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟;但在B地停留了7分钟;甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时;甲车就超过乙车..解析11-7=4分钟甲乙车的速度比=1:0.8=5:4甲乙行的时间比=4:5=16:20所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上;有一行人与一骑车人同时向南行进..行人速度为3.6千米/小时;骑车人速度为10.8千米/小时..这时有一列火车从他们背后开过来;火车通过行人用22秒;通过骑车人用26秒..这列火车的车身总长是多少米解析S=V火车-V人×时间=V火车-V车×时间V人=3.6千米/小时=1米/秒V车=10.8千米/小时=3米/秒S=V火车-1×22=V火车-3×26S=286米或者合时间比=22:26=11:13合速度比=13:11V人:V车=1:314-1:14-3=13:11所以V火车=14米/秒S=14-1×22=286米6、小刚和小强租一条小船;向上游划去;不慎把水壶掉进江中;当他们发现并调过船头时;水壶与船已经相距2千米;假定小船的速度是每小时4千米;水流速度是每小时2千米;那么他们追上水壶需要多少时间解析我们来分析一下;全程分成两部分;第一部分是水壶掉入水中;第二部分是追水壶第一部分;水壶的速度=V水;小船的总速度则是=V船+V水那么水壶和小船的合速度就是V船;所以相距2千米的时间就是:2/4=0.5小时第二部分;水壶的速度=V水;小船的总速度则是=V船-V水那么水壶和小船的合速度还是V船;所以小船追上水壶的时间还是:2/4=0.5小时7、甲、乙两船在静水中速度分别为每小时24千米和每小时32千米;两船从某河相距336千米的两港同时出发相向而行;几小时相遇如果同向而行;甲船在前;乙船在后;几小时后乙船追上甲船解析时间=路程和÷速度和T=336÷24+32=6小时时间=路程差÷速度差T=336÷32-24=42小时8、甲、乙两港间的水路长208千米;一只船从甲港开往乙港;顺水8小时到达;从乙港返回甲港;逆水13小时到达;求船在静水中的速度和水流速度..解析流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=顺水速度-逆水速度÷2船速=顺水速度-逆水速度×2V顺=208÷8=26千米/小时V逆=208÷13=16千米/小时V船=26+16÷2=21千米/小时V水=26-16÷2=5千米/小时9、小明早上从家步行去学校;走完一半路程时;爸爸发现小明的数学书丢在家里;随即骑车去给小明送书;追上时;小明还有3/10的路程未走完;小明随即上了爸爸的车;由爸爸送往学校;这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间解析小明走1/2-3/10=2/10的路程;爸爸走了7/10的路程因此小明的速度:自行车的速度=2/10:7/10=2:7因此时间比就是7:27-2=5份;对应5分钟所以小明步行剩下的3/10需要7分钟那么小明步行全程需要:7/3/10=70/3分钟10、一只狗追赶一只野兔;狗跳5次的时间兔子能跳6次;狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子解析狗跳5次的时间=兔子跳6次的时间→狗跳20次的时间=兔子跳24次的时间狗跳4次的路程=兔子跳7次的路程→狗跳20次的路程=兔子跳35次的路程综上得到V狗:V兔=35:24当时间一定时;路程和速度成正比S狗:S兔= V狗:V兔=35:24=1750:1200因此狗只需要跑1750米即可11、主人追他的狗;狗跑三步的时间主人跑两步;但主人的一步是狗的两步.狗跑出10步后;主人开始追;主人跑出了多少步才追上狗解析主人跑2步的时间=狗跑3步的时间→主人跑2步的时间=狗跑3步的时间主人跑1步的路程=狗跑2步的路程→主人跑2步的路程=狗跑4步的路程综上得到主人跑2步可以追上狗4-3=1步现在狗比主人多跑了10步所以主人要跑20步12、某人从甲地前往乙地办事;去时有2/3的路程乘大客车;1/3的路程乘小汽车;返回时乘小汽车与大客车行的时间相同;返回比去时少用了5小时;已知大客车每小时行24千米;小汽车每小时行72千米;甲地到乙地的路程、是多少千米解析当时间一定时;路程和速度成正比返回:时间一定;路程比=速度比=24:72=1:3=3:9去时:路程比=2:1=8:4返回的时间:3/24+9/72=1/4去时的时间:8/24+4/72=7/187/18-1/4=5/36;对应5小时12对应5×12÷5/36=432千米13、某工厂每天派小汽车于上午8时准时到总工程师家接他到工厂上班;有一天早晨总工程师临时决定提前回工厂办事;匆匆从家步行出发;途中遇到接他的小汽车;立即上车到工厂;结果比平时早40分钟到达..总工程师上车时是几时几分解析A-------B----------------CAB段汽车开一个来回需要40分钟;所以AB段汽车开需要20分钟汽车是8点钟准时到A点;所以工程师上车是在8:00-0:20=7:4014、小明从家去体育馆看球赛.去时他步行5分钟后;跑步8分钟;到达体育馆..回来时;他先步行10分钟后;开始跑步;结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少解析去时的时间:5+8=13分钟回来的时间:13+3.25=16.25分钟去时步行时间:5分钟;回来步行时间:10分钟去时跑步时间:8分钟;回来跑步时间:6.25分钟跑步与步行的时间比为8-6.25:10-5=1.75:5速度比就是5:1.75=20:715、B在A;C两地之间;甲从B地到A地去送信;出发10分钟后;乙从B 地出发去送另一封信..乙出发后10分钟;丙发现甲乙刚好把两封信拿颠倒了;于是他从B地出发骑车去追赶甲和乙;以便把信调过来.已知甲、乙的速度相等;丙的速度是甲、乙速度的3倍;丙从出发到把信调过来后返回B 地至少要用多少时间解析A-----------B------------C分成如下几个部分:先追上乙;把信取到手并返回B点..用时1:3=10:30;就是10分钟再追上甲;把信交给甲并把信取到手并返回B点..用时1:3=30:90;就是30分钟再追上乙;把信交给乙并返回B点..用时1:3=50:150;就是50分钟总共用时:10+30+50=90分钟16、甲放学回家需走10分钟;乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6;甲每分钟比乙多走12米;那么乙回家的路程是几米解析甲乙路程比1:7/6=6:7甲乙时间比10:14=5:7甲乙速度比6/5:7/7=6:5=72:60所以乙的路程=60×14=840米17、在400米环形跑道上;A、B两点相距100米如图..甲、乙两人分别从A、B两点同时出发;按逆时针方向跑步..甲每秒跑5米;乙每秒跑4米;每人每跑100米;都要停10秒钟.那么;甲追上乙需要的时间是秒..解析甲每秒跑5米;则跑100米需要100/5=20秒;连同休息的10秒;共需要30秒乙每秒跑4米;则跑100米需要100/4=25秒;连同休息的10秒;共需要35秒35秒时;乙跑100米;甲跑100+5×5=125米因此;每35秒;追上25米;所以甲追上乙需要35×4=140秒18、小明从家去学校;如果他每小时比原来多走1.5千米;他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米;那么他走这段路的时间就比原来时间多几分几之解析原时间:现时间=5:4原速度:现速度=4:5=6:7.5现速度=6-1.5=4.5原速度:现时间=6:4.5原时间:现时间=4.5:66-4.5/4.5=1/319、甲、乙两列火车的速度比是5:4.乙车先发;从B站开往A站;当走到离B站72千米的地方时;甲车从A站发车往B站;两列火车相遇的地方离A;B两站距离的比是3:4;那么A;B两站之间的距离为多少千米解析A---------N---------M-----B3 4 72千米速度比=路程比=5:4=15:12路程比=3:4=15:2020-12=8份对应72千米全程=15+20×72÷8=315千米20、已知小明与小强步行的速度比是2:3;小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米;那么小明在20分钟里比小强少走几米解析小明:小强:小刚=8:12:15=48:72:9072-48×20=480米21、甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发;开始时甲的速度为8米/秒;乙的速度为6米/秒;当甲每次追上乙以后;甲的速度每秒减少2米;乙的速度每秒减少0.5米.这样下去;直到甲发现乙第一次从后面追上自己开始;两人都把自己的速度每秒增加0.5米;直到终点.那么领先者到达终点时;另一人距离终点多少米解析第一次甲追上乙;400÷8-6=200秒;S甲=200×8=1600米;S乙=200×6=1200米第二次甲速度变成6;乙速度变成5.5;400÷6-5.5=800秒S甲=800×6+1600=6400米;S乙=800×5.5+1200=5600米第三次甲速度变成4;乙速度变成5;400÷5-4=400秒S甲=400×4+6400=8000米;S乙=400×5+5600=7600米第四次开始;甲速度变成4.5;乙速度变成5.5;400÷5.5-4.5=400秒S甲=400×4.5+8000=9800米;S乙=400×5.5+7600=9800米9800<1000;因此乙先到达终点..乙跑到终点时;甲还剩下:200×5.5-4.5÷5.5=400/11米22、一支解放军部队从驻地乘车赶往某地抗洪抢险;如果将车速比原来提高1/9;就可比预定的时间20分钟赶到;如果先按原速度行驶72千米;再将车速比原来提高1/3;就可比预定的时间提前30分钟赶到..这支解放军部队的行程是多少千米解析速度比=9:10;时间比=10:9=10/3:3速度比=3:4 ;时间比=4:3=2:1.5因此;按照原速度行驶72千米需要10/3-2=4/3小时S=72×10/3÷4/3=180千米23、甲、乙两人同时从山脚开始爬山;到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍..甲到山顶时;乙距山顶还有400米;甲回到山脚时;乙刚好下到半山腰..求从山顶到山脚的距离..解析甲到山脚时;乙到半山腰→甲走1.5个上坡;乙走1.25个上坡时间一定;路程比=速度比=1.5:1.25=6:5=2400:2000因此山的高度为:2400米24、甲、乙两车分别从A;B两地同时相向开出;四小时后两车相遇;然后各自继续行驶三小时;此时甲车距B地10千米;乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地解析整体考虑总共行了7个小时;甲车比乙车多行80-10=70千米;因此甲车每小时比乙车多行10千米4小时乙行的路程=3小时甲行的路程+10乙=40千米/小时;甲=50千米/小时T=80/40-10/50=1.8小时25、从家里骑摩托车到火车站赶乘火车.如果每小时行30千米;那么早到15分钟;如果每小时行20千米;则迟到5分钟.如果打算提前5分钟到;那么摩托车的速度应是多少解析S=30×T-15/60=20×T+5/6015+5=20分钟速度比=30:20=3:2时间比=2:3=40:60正好需要:40+15=55分钟提前5分钟:55-5=50分钟时速=30×40÷50=24千米/小时26、同样走100米;小明要走180步;父亲要走120步.父子同时同方向从同一地点出发;如果每走一步所用的时间相同;那么父亲走出450米后往回走;还要走多少步才能遇到小明解析父亲走450米;走了450×120÷100=540步小明走540步;走了540÷180×100=300米两人相差450-300=150米150÷100/120+100/180=108步27、小明从家到学校时;前一半路程步行后一半路程乘车;从学校回家时;前1/3时间乘车;后2/3时间步行;结果去学校的时间比回家所用的时间多2小时;已知小明步行的速度为每小时5千米;乘车速度为每小时15千米;那么小明从家到学校的路程是千米解析回家乘车和步行的路程比是1/3×15:2/3×5=3:2所以回家乘车的路程是3/53/5-1/2=1/10;对应15千米/小时行驶1小时或5千米/小时行驶3小时S=15/1/10=150千米或者去时;路程比=1:1=5:5;速度比=5:15;时间比=1/5:1/15返回;时间比=2:1;速度比=5:15;路程比=2×5:1×15=2:3=4:6所以去时的时间=5/5+5/15=4/3;返回的时间=4/5+6/15=6/54/3-6/5=2/15;对应2小时全程=10×2/2/15=150千米28、A、B两地相距207千米;甲、乙两车8:00同时从A地出发到B地;速度分别为60千米/小时;54千米/小时;丙车8:30从B地出发到A地;速度为48千米/小时..丙车与甲、乙两车距离相等时是几点几分解析假设丙也是从8点出发;到达B点时正好是8:30那么丙走的路程就是:0.5×48=24千米;那么全程就变成:207+24=231千米丙车与甲、乙两车的距离;可以看成甲乙的平均速度与丙相遇V平=V甲+V乙÷2=57千米/小时T=231÷V平+V丙=231÷57+48=2.2小时=2小时=12分所以这时是:8:00+2:12=10:12分29、小明通常总是步行上学;有一天他想锻炼身体;前1/3路程快跑;速度是步行速度的4倍;后一段的路程慢跑;速度是步行速度的2倍.这样小明比平时早35分到校;小明步行上学需要多少分钟解析这天;路程比=1:2;速度比=4:2;时间比=1/4:2/2;时间=1/4+1=5/4平时;时间=3/1=33-5/4=7/4对应35分平时用时=35×3÷7/4=60分钟30、红光农场原定9时来车接601班同学去劳动;为了争取时间;8时同学们就从学校步行向农场出发;在途中遇到准时来接他们的汽车;于是乘车去农场;这样比原定时间早到12分钟..汽车每小时行48千米;同学们步行的速度是每小时几千米解析A------B--------------------C8点钟;同学们从A点出发;到B点遇到来接他们的车汽车来回AB需要12分钟;那么走一趟AB需要6分钟而人走AB需要:60-6=54分钟时间比=速度比的反比;54:6=48:48/9所以同学步行的速度是16/3千米/小时31、从甲地到乙地;如果提速20%;提前1小时到达;如果按原速先行120米;再提速25%;则提前40 分钟;问甲到乙的距离解析设原速度为x;两地相距y y/x=y/1.2x+1y/x=120/x+y-120/1.25x+2/3得x=45千米/小时y=270千米。
小学四年级奥数行程问题1、甲、乙两辆车同时从两地出发,相向而行。
甲车每小时行45千米,乙车每小时行55千米。
甲、乙两车多长时间后相遇?2、两个城市之间的距离为450千米,一辆汽车以每小时65千米的速度从第一个城市驶向第二个城市。
请问这辆汽车需要多少小时到达第二个城市?3、两个人同时从两个不同的地方出发,走向彼此。
一个人每分钟走50米,另一个人每分钟走40米。
请问,他们需要多少时间才能相遇?4、一辆摩托车和一辆自行车同时从同一地点出发,沿着同一条路前往目的地。
摩托车的速度是每小时60千米,自行车的速度是每小时10千米。
请问,摩托车多长时间后能够追上自行车?5、一辆火车以每小时80千米的速度前行,一个乘客从火车上跳下去,同时一个新乘客以每小时5千米的速度上车。
请问,这两个乘客何时能够相遇?答案:1、相遇时间 = (甲速度 +乙速度)×时间设甲、乙两车x小时后相遇,根据题意可得方程:(45 + 55)x = 100x。
解得x=1,所以甲、乙两车1小时后相遇。
2、时间 =距离 /速度设这辆汽车需要x小时到达第二个城市,根据题意可得方程:450/65=x。
解得x=7.71,所以这辆汽车需要7.71小时到达第二个城市。
3、时间 =距离 / (一个人速度 +另一个人速度)设他们需要x分钟才能相遇,根据题意可得方程:50+40=90x。
解得x=1,所以他们需要1分钟才能相遇。
4、时间 =距离 / (摩托车速度 -自行车速度)设摩托车x小时后能够追上自行车,根据题意可得方程:60−10=(60−10)x。
解得x=5,所以摩托车5小时后能够追上自行车。
5、时间 =距离 / (火车速度 +新乘客速度 -老乘客速度)设这两个乘客x小时后相遇,根据题意可得方程:80+5−5=(80+5−5)x。
解得x=1,所以这两个乘客1小时后相遇。
小学四年级奥数在现今的教育体系中,奥数已成为了一种广受欢迎的数学教育方式。
特别是在小学四年级阶段,奥数的学习对于培养学生的数学思维和解决问题的能力具有重要的作用。
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第国际数学奥林匹克竞赛。
以下是整理的《⼩学奥数⾏程问题应⽤题五篇》相关资料,希望帮助到您。
1.⼩学奥数⾏程问题应⽤题 1、甲、⼄两辆汽车分别以不同的速度从东西两城相向⽽⾏,途中相遇,相遇点距离东城75千⽶,相遇后两车继续以原速前进,到达对⽅出发地后,两车⽴即返回,在途中第⼆次相遇,这时相遇点距东城45千⽶。
求东西两城相距多少千⽶? 2、客车和货车分别以不同的速度从A、B两城相向⽽⾏,途中相遇,相遇点距B城40千⽶,相遇后两车继续以原速前进,到达对⽅出发地后,两车⽴即返回,在途中第⼆次相遇,这时相遇点距B城60千⽶,求A、B两城相距多少千⽶? 3、甲、⼄两车同时从A、B两站相对开出,第⼀次相遇在离A站120千⽶处,然后各⾃安原速继续⾏驶,分别到达对⽅车站后⽴即返回,第⼆次相遇时离A站的距离占A、B两站距离的40%,A、B两站相距多少千⽶? 2.⼩学奥数⾏程问题应⽤题 1、A、B两地相距21千⽶,上午9时整,甲、⼄两⼈分别从A、B两地出发,相向⽽⾏,甲到达B地后⽴即返回,⼄到达A 地后⽴即返回,上午11时他们第⼆次相遇。
此时,甲⾏的路程⽐⼄⾏的路程多5千⽶。
甲每⼩时⾏多少千⽶? 2、A、B两城相距160千⽶,早晨6时整,甲车和⼄车分别从A、B两城出发,相向⽽⾏,甲车到达B城后⽴即返回,⼄车到达A城后⽴即返回,12时整他们第⼆次相遇。
此时,甲⾏的路程⽐⼄⾏的路程多24千⽶。
甲车每⼩时⾏多少千⽶? 3、东西两城相距120千⽶,上午8时整,客车和货车分别从东西两城出发,相向⽽⾏,客车到达西城后⽴即返回,货车到达东城后⽴即返回,11时整他们第⼆次相遇。
此时,客车型的路程是货车的2倍。
客车每⼩时⾏多少千⽶?3.⼩学奥数⾏程问题应⽤题 1、甲、⼄两地之间的距离是360千⽶,两辆汽车同时从甲地开往⼄地,第⼀辆汽车每⼩时⾏40千⽶,第⼆辆汽车每⼩时⾏50千⽶,第⼆辆汽车到达⼄地⽴即返回,两辆车从开出到相遇共⽤了多少⼩时? 2、A、B两城之间的距离是880千⽶,甲车和⼄车同时从A城开往B城,甲车每⼩时⾏60千⽶,⼄车车每⼩时⾏50千⽶,甲车车到达B城⽴即返回,两辆车从开出到相遇共⽤了多少⼩时? 3、东、西两城之间的距离是600千⽶,客车和货车同时从东城开往西城,客车每⼩时⾏65千⽶,货车车每⼩时⾏55千⽶,客车车到达西城⽴即返回,客车从开出到与货车相遇共⽤了多少⼩时?4.⼩学奥数⾏程问题应⽤题 1、甲⼄两辆汽车同时从东西两地相向开出,甲车每⼩时⾏56千⽶,⼄车每⼩时⾏48千⽶,两车在离中点32千⽶处相遇,求东西两地的距离是多少千⽶? 2、甲⼄两辆汽车同时从东站开往西站。
小学二年级奥数题《行程问题大全及答案》题库大全姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、操场的一侧插着10面彩旗,每两面彩旗之间的距离是2米,从第1面彩旗到第10面彩旗之间相距多少米?答案与解析:2x(10-1)=18(米)2、小朋友做早操,9个人排成一行,前后两人之间的距离是2米,从第一个小朋友到最后一个小朋友的距离是多少米?答案与解析:(9-1)x2=16(米)3、河岸边有一排柳树,张爷爷每天早晨锻炼,沿河边第1棵树走到第9棵树,一共走了72米。
平均每两棵树之间相隔多少米?答案与解析:72(9-1)=9(米)4、随着神七问天,我国航天员翟志刚成功完成了中国人太空行走第一步。
在19分35秒的时间里,翟志刚与飞船一起飞过了9165千米,约()千米。
答案与解析:92005、根据图意完成下面各题。
1.小英从家去超市,她应该先向()走()米到书店,再向()走()米到体育馆,最后向()走()米到超市。
2.小东从家去体育馆,要先向()走()米到银行,再向()走()米到邮局,最后向()走()米到体育馆。
3.小丽从家去书店,一共要走()米;小丰从家去邮局,一共要走()米。
4.小丰要去小丽家玩,他应该怎样走?他途经哪些地方?他总共要走多远的路程?答案与解析:1.东;350;南;100;东;300;2.西;370;北;330;西;200;3.600;550;4.先向东走150米,再向北走200米,再向东走300米,最后向北走200米到小丽家。
他途经敬老院、体育馆、超市。
总共要走850米。
6、看图回答问题。
(1)文文要从家去医院,先向()走()米到超市,再向()走()米到医院。
(2)文文从学校出发,向()走()米到(),再向()走()米到(),再向()走()米到(),最后向()走()米到自己家,他从学校回家总共要走()米。
小学奥数行程问题1. 引言在小学奥数中,行程问题是一个常见且重要的题型。
行程问题涉及到人或物体从一个地点到另一个地点的移动,通常要求计算所需的时间、距离、速度等相关信息。
本文将介绍小学奥数中常见的行程问题类型以及解题方法。
2. 行程问题类型2.1 单程问题单程问题是指从一个地点到另一个地点的单向行程,通常要求计算所需的时间、距离或速度。
在解决单程问题时,可以使用以下公式: - 时间 = 距离 / 速度 - 距离 = 时间 * 速度 - 速度 = 距离 / 时间2.2 往返问题往返问题是指从一个地点到另一个地点后再返回原地的行程。
解决往返问题时,需要考虑总行程的时间、距离或速度,并且要注意来回的路程一般是相同的。
在求解总行程的时间、距离或速度时,可以使用以下公式: - 总时间 = 单程时间 * 2 - 总距离 = 单程距离 * 2 - 总速度 = 总距离 / 总时间2.3 相遇问题相遇问题是指两个或多个人或物体从不同的地点出发,最终在某一地点相遇的行程问题。
解决相遇问题时,需要考虑各个人或物体的行程时间、距离或速度,并且要注意相遇的时间是相同的。
在求解相遇时间、距离或速度时,可以使用以下公式: - 相遇时间 = 相遇距离 / 相遇速度 - 相遇距离 = 相遇时间 * 相遇速度 - 相遇速度 = 相遇距离 / 相遇时间3. 解题方法3.1 问题分析在解决行程问题时,首先要对问题进行分析,理解题目所给的条件和要求。
分析题目可以帮助我们明确问题的关键信息,有助于后续的解题过程。
3.2 建立方程根据题目要求和所给的条件,可以建立相应的方程来求解行程问题。
根据具体情况,可以使用时间、距离和速度之间的关系来建立方程。
3.3 代入求解将已知的数值代入到建立的方程中,可以求解未知数的值。
根据题目要求,可能需要计算时间、距离或速度的值。
4. 示例4.1 单程问题示例问题:小明骑自行车以每小时10公里的速度,行驶了3小时,请计算他行程的距离。
奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
小学奥数必做的30道行程问题行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小明来回共走了多少千米?【解析】当路程一定时,速度和时间成反比速度比=6:9=2:3时间比=3:23+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A 城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。
小学奥数《行程问题及公式》1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
3)静水速度=(顺水速度+逆水速度)/2 4)水流速度=(顺水速度–逆水速度)/25、基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例1:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?例2:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?例3:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。
例4:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?例5:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?例6:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?例7:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。