基于单片机的数字频率计的设计与实现
- 格式:doc
- 大小:707.50 KB
- 文档页数:53
目录1频率计的概要和发展动态 (1)2 单片机介绍 (1)2.1单片机的简介和发展 (1)2.2 AT89C51的原理 (2)2.2.1主要特性 (3)2.2.2管脚说明 (3)2.2.3振荡器特性 (4)2.2.4芯片擦除 (4)3 仿真软件protuse的介绍 (5)4系统模块设计 (6)5硬件部分 (6)5.1整形电路 (6)5.2控制电路 (7)5.3显示电路 (8)5.3.1 LCD1602引脚 (8)5.3.2 LCD1602的指令介绍 (8)5.4总体电路图 (9)6仿真结果 (11)6.1仿真结果 (11)6.2结果分析 (11)7 结论 (11)8参考文献 (12)附录 (12)1 keil C51软件介绍 (12)2 程序流程图 (13)3系统源程序 (14)1频率计的概要和发展动态在电子技术中,频率作为基本的参数之一,它与许多电参量的测量方案、测量结果密切相关,因此,频率的测量十分的重要。
在许多情况下,要对信号的频率进行精确测量,就要用到数字频率计。
数字频率计作为一种基础测量仪器,它被用来测量信号(方波、正弦波、锯齿波等)频率,并且用十进制显示测量结果。
它具有测量精度高、测量省时、使用方便等特点。
随着微电子技术和计算机技术的不断发展,单片机被广泛应用到大规模集成电路中,使得设计具有很高的性价比和可靠性。
所以,以单片机为核心的简易数字频率计设计,改善了传统的频率计的不足,充分体现了新一代数字频率计的优越性。
2 单片机介绍2.1单片机的简介和发展单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。
单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。
通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和IO接口电路等。
因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。
单片机经过1、2、3、3代的发展,正朝着多功能、高性能、低电压、低功耗、低价格、大存储容量、强IO功能及较好的结构兼容性方向发展。
摘要在电子技术领域中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
本文设计的测量频率计由硬件电路和软件设计两部分组成。
硬件电路以AT89S52单片机最小系统为核心,实现整个电路的测试信号控制、数据运算等功能,选用74LS160作为分频电路,并通过LCD显示模块显示测量的数据。
软件设计包括:单片机定时计数程序、LCD显示程序等。
该数字频率计可以对输入信号幅度为5V的正弦波信号、方波信号、三角波信号进行测量,测量的频率范围为1Hz--10MHz。
测量的相对误差为 1%。
本系统具有结构紧凑、体积小、可靠性高、测频范围宽、使用方便等优点。
关键字:数字频率计;信号;单片机AbstractIn the electronics field, the frequency is one of the most basic parameters, and is very closely related to many electrical parameters measurement program, measurement results, so the measurement of frequency becomes even more important. The measurement of frequency designed in this text consist of two parts: the hardware and software design .the hardware circuitry take AT89S52 microcomputer as the core, to achieve the functions of controlling of the entire circuit of the test signals, data operations and choose 74LS160 as a frequency divider circuits, and through LCD display module shows measured data. Software design includes: MCU timer counting procedures, LCD display procedures and so on. The digital frequency meter can measure amplitude sine wave signal, square wave, triangle wave signals of which input signal is 5v, the frequency measured ranges from 1Hz to10MHz. The relative measurement error is 1%. This system has the advantage of compact structure , small size, high reliability, test frequency range, and easy use. Keyword:Figure frequency meter;Signal;Single-chip目录1 绪论 (1)1.1课题背景 (1)1.2课题研究的目的和意义 (1)1.3国内外概况 (2)1.4课题的主要研究工作 (2)2 硬件电路的设计 (3)2.1系统方案选择 (3)2.2系统结构及基本设计原理 (5)2.3基本电路设计 (6)2.3.1前置整形电路 (6)2.3.2 分频电路 (7)2.3.3 选通通道 (10)2.4LCD1602在系统中的应用 (12)2.4.1 LCD1602的特点 (12)2.4.2 LCD1602的工作原理 (13)2.4.3 LCD1602与单片机的连接 (14)2.5控制核心AT89S52单片机 (14)2.5.1 AT89S52引脚功能描述 (14)2.5.2时钟振荡电路 (17)2.5.3复位及复位电路设计 (18)3 软件设计 (20)3.1主程序的设计 (20)3.2LCD1602显示子程序流程 (21)4 系统调试 (22)4.1系统的硬件调试 (22)4.2系统的软件调试 (23)4.3频率测量结果 (24)5 总结与展望 (25)5.1总结 (25)5.2展望 (25)致谢 (26)参考文献 (27)附录1 (29)附录2 (30)1 绪论1.1 课题背景数字频率计(DFM)是电子测量与仪表技术最基础的电子仪表类别之一, 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,而且它是数字电压表(DVM)必不可少的部件。
“基于单片机的数字频率计设计与实现”计划书一、实现功能1.完成测试输入信号的频率,范围量程0-9999Hz.2.设置一个按键,用以启动频率测试3.外部扩展多个LED数码管,用以显示数据4.对比数据,计算误差二、方案选择方案1:单片机系统等精度设计硬件方面(C8051为主控芯片、外围电路)采用C8051系列单片机设计,能有效的实现对高频被测信号的测量。
C8051系列单片机是完全集成的混合信号系统级芯片,具有与8051兼容的CIP—51微控制器内核,采用流水线结构。
使用其定时计数功能,以及WAVE进行仿真。
方案2:FPGA和单片机结合的系统设计FPGA( Field Programmable Gate Array) 和单片机是2 个并行工作的系统经EDA开发平台QuartusII合成门级电路,仿真验证,下载到CPLD完成硬件实现考虑方案1的原理清晰,系统简化,具有体积小,可靠性高,功耗低等特点,最终选择方案1三、总体框图及各模块功能显示模块功能:显示测量结果四、课题进度计划第一周:了解课程设计目的和任务、收集课题材料第二周:确立课题方案,完成计划书第三周:进行电路原理及编程思路讨论,初步完成电路设计,确定程序设计思路第四周:模块电路(及程序)仿真调试第五周:模块电路(及程序)仿真调试第六周:系统电路(及程序)仿真调试,课外完成元器件采购第七周:硬件焊板调试,完成电路板图,完善程序设计第八周:系统调试(软硬件)第九周:系统调试完善第十周:写设计报告、准备答辩提纲(ppt文档制作)、讨论答辩思路第十一周:完善设计报告、答辩提纲(ppt文档制作)、答辩思路第十二周:答辩五、设计环境硬件PC机、焊接工具,简易实验台软件WAVE六、预测困难1.电路原理和器件功能分析2.仿真软件的使用3.焊接调试过程中遇到难题七、参与人员及分工参与人员:分工情况:1. 材料收集及总体方案确定:2. 电路设计:3. 焊接调试:4. 程序设计:5. 记录归档:6. 原件采购:7. 论文:八、参考资料初步分析下面是我们找到原理图:附:数据对比。
基于51单片机的数字频率计一、实验内容1.1数字频率计概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。
本数字频率计将采用定时、计数的方法测量频率,采用四位LED数码管动态显示4位数。
测量范围从1Hz—10kHz的正弦波、方波、三角波。
用单片机实现自动测量功能。
1.2频率测量仪的设计思路与频率的计算频率测量仪的设计思路主要是:设置单片机T1为计数器模式,对输入信号进行计数,T0设置为定时器模式,定时时间为1秒,则计数器所计数值即为被测信号频率。
1.3 基本设计原理基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。
它以在单位时间内对被测信号上升沿计数的方法对正弦波、方波、三角波的频率进行自动的测量。
如果被测信号频率超过量程,则有警报灯闪烁。
所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。
1.4 频率计性能参数设计量程:0-10KHz波形:方波输入信号电压:5V二、数字频率计的硬件结构设计2.1 系统硬件的构成本频率计的数据采集系统主要元器件是单片机AT89C51,由它完成对待测信号频率的计数和结果显示等功能,外部还要有电源电路、复位电路、显示器,报警电路等器件,如下图所示:图一数字频率计功能模块2.2 AT89C51单片机引脚说明在本次设计中,采用89C51作为CPU处理器,充分利用其硬件资源,结合数码管,发光二极管,按键开关构成控制及显示模块。
在试验中选用P1.2,P1.3,P1.4端口分别控制数据和时钟信号的输入实现频率的动态显示。
基于单片机控制的数字频率计设计1. 简介在电子领域中,频率对于信号处理和电路设计至关重要。
频率计是一种测量电信号频率的仪器,它可以帮助工程师们更好地理解信号的特性,并在电路设计和调试中起到至关重要的作用。
在本文中,我将详细探讨基于单片机控制的数字频率计的设计原理和实现方法,希望能帮助读者全面理解这一主题。
2. 频率计原理频率计的原理在于对输入信号的周期进行测量,并通过适当的算法将其转换为频率。
基于单片机的数字频率计设计采用计数的方法来测量信号周期,然后利用计数的结果和时间基准来计算频率。
在这个过程中,单片机起到了关键的控制和计算作用,能够精准地对输入信号进行测量和处理。
3. 单片机选择在设计数字频率计时,单片机的选择至关重要。
一般情况下,我们会选择性能稳定、计算能力强、易于编程的单片机作为核心控制芯片。
常用的单片机包括STC系列、STM32系列和PIC系列等,它们都具有较好的性能和可靠性,适合用于数字频率计的设计和实现。
4. 系统设计数字频率计系统一般由信号输入、单片机控制、显示模块和电源模块等部分组成。
在系统设计中,信号输入模块用于接收待测信号,并将其转换为数字信号输入到单片机中;单片机控制模块负责对输入信号进行计数和处理,并输出结果到显示模块;显示模块一般采用数码管或液晶显示屏,用于显示测量的频率数值。
电源模块需要为整个系统提供稳定的工作电压,确保系统正常运行。
5. 算法设计在数字频率计的设计中,算法的设计对于测量结果的准确性和稳定性至关重要。
一般而言,常见的测频算法包括时间测量法、计数器法和分频计数法等。
这些算法都需要考虑精确的计数和时间基准,以确保测量结果的准确性。
在算法设计中还需要考虑到单片机的计算能力和存储空间,选择合适的算法和数据结构来降低系统的复杂度和成本。
6. 实现方法基于单片机的数字频率计的实现方法有多种,可以根据具体的需求和应用场景选择合适的硬件和软件方案。
在硬件设计方面,需要考虑信号输入电路、计数电路、显示电路和电源电路等部分;在软件设计方面,需要编写相应的程序代码,实现信号测量、数据处理和显示控制等功能。
基于单片机的数字频率计的设计与实现摘要随着电子信息产业的发展,信号作为其最基础的元素,其频率的测量在科技研究和实际应用中的作用日益重要,而且需要测频的范围也越来越宽。
传统的频率计通常采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量范围低,精度低。
因此,随着对频率测量的要求的提高,传统的测频的方法在实际应用中已不能满足要求。
因此我们需要寻找一种新的测频的方法。
随着单片机技术的发展和成熟,用单片机来做为一个电路系统的控制电路逐渐显示出其无与伦比的优越性。
本文阐述了以AT89C51单片机为控制器件的频率测量方法,并用汇编语言进行设计,采用单片机智能控制,结合外围电子电路,用以实现高低信号频率的测量。
本文设计的是一个简易数字频率计,被测信号可以是正弦波、三角波、方波。
首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。
本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。
关键词单片机;频率计;测量-Design and implementation of Digital FrequencyMeter Based on Single Chip MircrocomputeAbstractAlong with the development of electronic information industry, signal as the basic elements, the frequency measurement in scientificresearch and practical application is increasingly important, but also need the scope of frequency measurement is becoming more and more wide. The traditional frequency plan usually adopts combinational circuits and the sequential circuits of the hardware circuit structure, product not only large size, speed is slow, and measuring range, and low accuracy of low. Therefore, as for frequency measurement requirements, thetraditional method of frequency measurement in practical application already cannot satisfy requirements. Therefore, we need to find a new measuring method of frequency. Along with the development of technology and mature, use a singleship as a circuit system of control circuit shown its incomparable advantages.In this paper, with AT89C51 microcontroller to control the frequency of measurement devices and assembly language design, intelligent control using single chip, combined with the external electronic circuit, can be high and low frequency measurements. This paper designs a simple digital frequency, the measured signal can be sine wave , square wave. Firstly, the rectangular pulse, which the measured signal is amplified and reshaped, is used as control throttle valve. Then, the frequency counter counts the number of the periods using the internal timer/counter of signal is chip so as to gain the frequency value of measured signal. Finally, the frequency value of measured signal is displayed through static display circuits.From the analysis of theory, and introduces the digital frequency plan based on single chip design, selection of the system, and have all kinds of circuit components of hardware circuit simulaion.Keywords Micor- computer;Frequency;Measure-目录摘要...... ................................................................. (I)Abstract ........................................................... .. (II)第1章绪论 ..................................................................... .. (1)1.1 课题背景 ..................................................................... . (1)1.2 单片机的发展及特点 ..................................................................... .................1 1.3 频率计的基础知识 ..................................................................... .....................1 1.4 论文研究内容 ..................................................................... .............................2 第2章单片机简介及方案论证 ..................................................................... ...........3 2.1 AT89C51单片机简介 ..................................................................... ..................3 2.1.1 单片机及其引脚说明 ..................................................................... ...........3 2.1.2 AT89C51的定时/计数器原理 (5)2.1.3 定时/计数器的工作模式 ..................................................................... (6)2.1.4 定时,计数器的特殊功能控制寄存器 (6)2.1.5 定时,计数器(T0,T1)的控制寄存器 (7)2.2 数字频率计设计的几种方案 ..................................................................... (8)2.3 几种方案的优劣讨论 ..................................................................... .................8 2.4 本次设计采用的方案 ..................................................................... .................9 2.5 本章小结 ..................................................................... .....................................9 第3章系统硬件设计 ..................................................................... ........................ 10 3.1 数字频率计工作原理及结构框图 (10)3.1.1 一般数字式频率计的原理 ......................................................................10 3.1.2 基于单片机的数字频率计原理 .............................................................. 10 3.2 电路原理图 ..................................................................... ............................... 11 3.3 放大整形电路 ..................................................................... ........................... 11 3.3.1 放大整形电路的必要性 ..................................................................... ..... 11 3.3.2 放大整形电路的原理 ..................................................................... ......... 11 3.4 分频电路 ..................................................................... ................................... 15 3.4.1 分频电路介绍 ..................................................................... .................... 15 3.5 四选一电路 ..................................................................... ............................... 16 3.6 显示电路 ..................................................................... ................................... 17 3.6.1 显示原理 ..................................................................... ............................ 17 3.6.2 显示电路图 ..................................................................... ........................ 19 3.7 本章小结 ..................................................................... ................................... 20 第4章系统软件设计 ..................................................................... ........................ 21 4.1 软件流程图 ..................................................................... ............................... 21 4.2 测频软件实现原理 ..................................................................... . (21)-4.3 几个重要的分程序 ..................................................................... ................... 22 4.4 本章小结 ..................................................................... ................................... 23 结论 ..................................................................... ..................................................... 24 致谢 ..................................................................... ..................................................... 25 参考文献 ..................................................................... ............................................. 26 附录A ...................................................................... ................................................ 27 附录B ...................................................................... ................................................ 33 附录C ...................................................................... ................................................ 39 附录D ...................................................................... (40)第1章绪论1.1 课题背景在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关,,因此频率计在教学、科研、测量仪器、工业控制[1]等方面都有较广泛的应用。
基于单片机的频率计的设计1绪论1.1研究背景及主要研究意义频率是电子技术领域永恒的话题,电子技术领域离不开频率,一旦离开频率,电子技术的发展是不可想象的,为了得到性能更好的电子系统,科研人员在不断的研究频率,CPU 就是用频率的高低来评价性能的好坏,可见,频率在电子系统中的重要性。
频率计乂称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,其最基本的工作原理为:当被测信号在特定的时间段T内的周期个数N时,则被测信号的频率£=1\!/「电子计数器是一种基础测量仪器,到目前为止已有三十多年的发展历史。
早期, 设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量电子计算机的技术水平,决定电子技术器价格高低的主要依据。
目前这些技术日臻完善,成熟。
应用现代技术可以轻松地将电子计数器的频率扩展到微波频段。
1.2数字频率计的发展现状随着科学技术的发展,用户对电子计数器也提出了新的要求。
对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。
而对中高档产品,则要求有较高的分辨率,高精度,高稳定度,高测量速率;除通常通用计数器所具有的功能外,还要有数据处理功能,统计分析功能等等,或者包含电压测量等其他功能。
这些要求有的已经实现或者部分实现,但要真正地实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。
由于微电子技术和计算机技术的发展,频率计都在不断地进步着,灵敏度不断提高,频率范围不断扩大,功能不断增加。
在测试通讯、微波器件或产品时,通常都市较复杂的信号,如含有复杂频率成分、调制的含有未知频率分量的、频率固定的变化的、纯净的或叠加有干扰的等等。
为了能正确的测量不同类型的信号,必须了解待测信号特性和各种频率测量仪器的性能。
微波技术器一般使用类型频谱分析仪的分频或混频电路,另外还包含多个时间基准、合成器、中频放大器等。
虽然所有的微波计数器都是用来完成技术任务的, 但各自厂家都有各自的一套复杂计数器的设计、使得不同型号的技术其性能和价格会有所差别,比如说一些计数器可以测量脉冲参数,并提供类似与频率分析仪的屏幕显示,对这些功能具有不同功能不同规格的众多仪器,我们应该视测试需要正确的选择以达到最经济和最佳的应用效果。
基于单片机简易数字频率计基于单片机的简易数字频率计概述:数字频率计是一种用于测量信号频率的仪器,它能够将输入的模拟信号转换为数字信号,并通过单片机进行处理和显示。
本文将介绍基于单片机的简易数字频率计的原理和实现方法。
一、原理介绍数字频率计的原理基于信号的频率与周期的倒数之间的关系。
当输入信号的频率较高时,直接测量周期较为困难,因此常采用测量信号的脉宽来间接推算频率。
本文所介绍的简易数字频率计就是基于这一原理。
二、硬件设计1. 信号输入:将待测信号接入单片机的GPIO口,通过外部电路对信号进行电平转换和滤波处理,确保输入信号稳定且符合单片机的输入电压范围。
2. 定时器:单片机内部的定时器用于测量输入信号的脉宽。
通过配置定时器的计数器和预分频器,可以实现不同精度的测量。
一般情况下,选择合适的计数器和预分频器,使得定时器的溢出周期与待测信号的周期相当,以提高测量的准确性。
3. 显示模块:通过数码管或LCD显示模块,将测量到的脉宽转换为频率值并进行显示。
可以根据需要选择合适的显示方式和显示精度。
三、软件设计1. IO口配置:在单片机的软件中,需要配置GPIO口的输入和输出模式,以及中断触发条件等。
通过配置正确的IO口,可以实现对信号输入和输出的控制。
2. 定时器配置:配置定时器的计数器和预分频器,并设置中断触发条件。
在定时器中断服务函数中,可以对计数器的值进行读取和处理。
3. 测量算法:在定时器中断服务函数中,可以根据测量到的脉宽值计算出信号的频率。
具体的计算方法有多种,例如可以通过测量多个周期的脉宽平均值来提高测量的准确性。
4. 显示控制:将计算得到的频率值转换为合适的显示格式,并通过显示模块进行显示。
可以根据需要选择合适的显示精度和显示方式。
四、实现方法基于以上原理和设计,可以通过以下步骤来实现简易数字频率计:1. 硬件连接:将待测信号接入单片机的GPIO口,并通过外部电路进行电平转换和滤波处理。
2. 软件编程:根据单片机的型号和开发环境,编写相应的软件程序。
基于单片机的数字频率计的设计与实现摘要随着电子信息产业的发展,信号作为其最基础的元素,其频率的测量在科技研究和实际应用中的作用日益重要,而且需要测频的范围也越来越宽。
传统的频率计通常采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量范围低,精度低。
因此,随着对频率测量的要求的提高,传统的测频的方法在实际应用中已不能满足要求。
因此我们需要寻找一种新的测频的方法。
随着单片机技术的发展和成熟,用单片机来做为一个电路系统的控制电路逐渐显示出其无与伦比的优越性。
本文阐述了以AT89C51单片机为控制器件的频率测量方法,并用汇编语言进行设计,采用单片机智能控制,结合外围电子电路,用以实现高低信号频率的测量。
本文设计的是一个简易数字频率计,被测信号可以是正弦波、三角波、方波。
首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。
本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。
关键词单片机;频率计;测量Design and implementation of Digital FrequencyMeter Based on Single Chip MircrocomputeAbstractAlong with the development of electronic information industry, signal as the basic elements, the frequency measurement in scientific research and practical application is increasingly important, but also need the scope of frequency measurement is becoming more and more wide. The traditional frequency plan usually adopts combinational circuits and the sequential circuits of the hardware circuit structure, product not only large size, speed is slow, and measuring range, and low accuracy of low. Therefore, as for frequency measurement requirements, the traditional method of frequency measurement in practical application already cannot satisfy requirements. Therefore, we need to find a new measuring method of frequency. Along with the development of technology and mature, use a singleship as a circuit system of control circuit shown its incomparable advantages.In this paper, with AT89C51 microcontroller to control the frequency of measurement devices and assembly language design, intelligent control using single chip, combined with the external electronic circuit, can be high and low frequency measurements. This paper designs a simple digital frequency, the measured signal can be sine wave , square wave. Firstly, the rectangular pulse, which the measured signal is amplified and reshaped, is used as control throttle valve. Then, the frequency counter counts the number of the periods using the internal timer/counter of signal is chip so as to gain the frequency value of measured signal. Finally, the frequency value of measured signal is displayed through static display circuits.From the analysis of theory, and introduces the digital frequency plan based on single chip design, selection of the system, and have all kinds of circuit components of hardware circuit simulaion.Keywords Micor- computer;Frequency;Measure目录摘要 (I)Abstract (II)第1章绪论 (5)1.1 课题背景 (5)1.2 单片机的发展及特点 (5)1.3 频率计的基础知识 (5)1.4 论文研究内容 (6)第2章单片机简介及方案论证 (7)2.1 AT89C51单片机简介 (7)2.1.1 单片机及其引脚说明 (7)2.1.2 AT89C51的定时/计数器原理 (9)2.1.3 定时/计数器的工作模式 (10)2.1.4 定时/计数器的特殊功能控制寄存器 (10)2.1.5 定时/计数器(T0,T1)的控制寄存器 (11)2.2 数字频率计设计的几种方案 (12)2.3 几种方案的优劣讨论 (12)2.4 本次设计采用的方案 (13)2.5 本章小结 (13)第3章系统硬件设计 (14)3.1 数字频率计工作原理及结构框图 (14)3.1.1 一般数字式频率计的原理 (14)3.1.2 基于单片机的数字频率计原理 (14)3.2 电路原理图 (15)3.3 放大整形电路 (15)3.3.1 放大整形电路的必要性 (15)3.3.2 放大整形电路的原理 (15)3.4 分频电路 (19)3.4.1 分频电路介绍 (19)3.5 四选一电路 (20)3.6 显示电路 (21)3.6.1 显示原理 (21)3.6.2 显示电路图 (23)3.7 本章小结 (24)第4章系统软件设计 (25)4.1 软件流程图 (25)4.2 测频软件实现原理 (25)4.3 几个重要的分程序 (26)4.4 本章小结 (27)结论 (28)致谢 (29)参考文献 (30)附录A (31)附录B (37)附录C (43)附录D (44)第1章绪论1.1课题背景在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关,,因此频率计在教学、科研、测量仪器、工业控制等方面都有较广泛的应用。
测量频率的方法[1]有多种,其中电子计数测量频率具有精度高、使用方便、测量迅速以及便于实现测量自动化等优点,是频率测量的重要手段之一。
本设计就是用计数的方法,以单片机AT89C51为控制核心,充分利用其软硬件资源,设计并制作了频率计的计数、显示部分。
1.2单片机的发展及特点单片机的发展历史并不长,从1971年微处理器研制成功后,不久便产生了单片机。
纵观其发展过程,主要分为三个阶段。
第一阶段为单片机发展的初级阶段;第二阶段为高性能单片机发展阶段;第三阶段为16位单片机的推出和8位单片机继续提高性能的阶段。
单片机的应用已经渗透到工业、农业、商业、交通运输、教学科研以及人们的日常生活等各个领域中,成为现代社会生活的重要支柱,发挥着极其重要的作用,并取得了极为可观的效益。
1.3频率计的基础知识频率计数器是一种基础测量仪器,它能测量各种信号的频率。
到目前为止已有30多年的发展史。
早期,设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量频率计数器的技术水平,决定频率计数器价格高低的主要依据。
目前这些基本技术日臻完善,成熟。
应用现代技术可以轻松地将频率计数器的测频上限扩展到微波频段。
随着科学技术的发展,用户对频率计数器也提出了新的要求。
对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。
而对于中高档产品,则要求有高分辨率,高精度,高稳定度,高测量速率;除通常通用计数器所具有的功能外,还要有数据处理功能,统计分析功能,时域分析功能等等,或者包含电压测量等其他功能。
这些要求有的已经实现或者部分实现,但要真正完美的实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。
在测试通讯、微波器件或产品时,常常需要测量频率,通常这些都是较复杂的信号,如含有复杂频率成分、调制的或含有未知频率分量的、频率固定的或变化的、纯净的或叠加有干扰的等等。
为了能正确地测量不同类型的信号,必须了解待测信号特性和各种频率测量仪器的性能。
微波计数器一般使用类型频谱分析仪的分频或混频电路,另外还包含多个时间基准、合成器、中频放大器等。
仪器的频率测量准确度取决于时基。
大多数仪器使用的10MHz参考振荡器具有10-7或10-8的频率准确度和稳定度。
高分辨率比高精度更容易实现,因为增加显示位数比制造更稳定的振荡参考源要容易的多。
为了提高仪器的测量准确度和稳定度,可以购买一个具有小型恒温槽的参考振荡器作为时间基准。
好的恒温槽温度可以稳定到零点几度,这样就可以保证在外部温度变化时振荡器的频率变化相当小。
当然,仪器的固有准确度取决于制造的精度以及校准实验室对时基振荡器的校正;准确度主要取决于晶振的热稳定性,而与老化关系不大。
通过使用铯束频率标准或GPS信号作为一个参考频率源送入整个系统的所有仪器,可最大限度地提高频率测量准确度,这样在测量仪器中就不需要有精确的时基而可以达到10-12到10-14的频率测量准确度,也就是说,可以达到比仪器最高分辨率高得多的频率测量准确度。