简易数字频率计电路设计知识讲解
- 格式:doc
- 大小:248.00 KB
- 文档页数:17
m u l t i s i m简易数字频率计哈尔滨工业大学简易频率计的仿真设计目录1.设计要求 (3)2.电路工作原理 (3)频率计总电路图如下所示: (4)4. 电路的测试 (7)5. 分析与评价 (9)附录:元器件清单 (10)1.设计要求本次设计任务是要求设计一个简易的数字频率计,即用数字显示被测信号频率的仪器,数字频率计的设计指标有:1. 测量信号:正弦信号、方波信号等周期变化的物理信号;2. 测量频率范围:0Hz~9999Hz;3. 显示方式:4位十进制数显示。
2.电路工作原理频率计总电路图如下所示:频率计的基本原理:通过将被测周期信号整形为同频率的方波信号后,利用555定时器组成的振荡电路所产生的频率为1Hz的标准方波,作为基准时钟,与被整形后的方波信号一起经过闸门电路处理输入计数电路,再利用74LS90N的十进制计数功能进行级联计数,计数后输入8位数据/地址锁存器74LS273N以实现锁存和清零功能,最后输入到译码显示电路中,用BCD7段译码器显示出来,这样就实现了对被测周期信号的频率测量并显示的功能。
频率计的工作原理流程图如下所示:脉冲形成电路闸门电路计数译码显示电路门控电路时间基准信号发生器3.电路组成介绍3.1脉冲形成电路脉冲形成电路由信号发生器与整形电路组成,输入信号先经过限幅器,再经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限副作用。
由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。
线路图如下所示:3.2闸门电路闸门电路的作用是控制计数器的输入脉冲,在电路中用一个与非门来实现(如下图所标注)。
当标准信号(正脉冲)来到时闸门开通,被侧信号的脉冲通过闸门进入计时器计数;正脉冲结束时闸门关闭,计数器无时钟脉冲输入。
3.3 时基电路时基电路是由555定时器构成的振荡器组成,其功能为产生标准时间为1秒的脉冲,选取振荡器的频率,其中高电平的时间为t1=1秒,低电平时间为0.25秒。
EDA简易数字频率计设计摘要EDA(Electronic Design Automation)是电子设计自动化的缩写,是现代电子工业领域中的一种重要工具。
EDA工具可以帮助工程师完成电路设计、仿真、验证和布局等工作,从而提高设计效率和精度。
本文将介绍如何通过EDA工具设计一个简单的数字频率计。
设计原理数字频率计是一种可以实时测量电信号频率的仪器。
其工作原理是利用计数模型,通过计算信号周期数与时间,间隔测算信号频率。
本文设计的数字频率计采用2种常见的计数模型:频率分频计数和门限计数。
频率分频计数频率分频计数法是利用可编程可除模块,将输入的高频脉冲信号分频后,通过计数器来计算脉冲个数,最终计算出信号的频率。
其计数原理如下图所示:图1:频率分频计数法图1:频率分频计数法其中,n为分频系数,f为输入信号频率。
门限计数门限计数法是将输入信号经过比较门限后,产生一个矩形脉冲,再利用计数器计算脉冲个数,最终计算出信号的频率。
其计数原理如下图所示:图2:门限计数法图2:门限计数法其中,T表示输入信号周期,Δt为门限宽度。
设计流程本文采用EDA工具LTspice进行数字频率计的设计。
使用LTspice的原因是它是一款功能强大、易于学习、免费的EDA软件,广泛应用于电路设计和仿真领域。
设计流程如下:1.确定输入信号的电路参数:输入信号频率、振幅、时钟等。
2.选择计算频率的计数模型:这里采用频率分频计数和门限计数2种模型,建立计算模型电路。
3.进行仿真,测试电路的性能:可以通过分析波形图、输出计数结果等方式验证电路的正确性和有效性。
设计实例本文将以一个简单的设计实例来说明如何进行数字频率计的设计。
假设输入信号频率为1 kHz,振幅为5V,计数器工作电压为3.3V,门限计数的门限宽度为10 us,计数模型电路如下图所示:V1 IN 0 PULSE(0 5 0 10n 10n 1u 2u)R1 IN N1 50C1 N1 N2 10nD1 N2 0 DQ1 D Q3 VCC TXR2 TX N3 1megC2 N3 0 1uXU1 Q3 CLK TX DFFXU2 CLK 0 N5 D2R3 D2 N7 10kC3 N7 0 1n以上代码中,V1为输入信号源,R1和C1组成低通滤波器,滤除杂波信号,D1、Q1、R2、C2和D2构成频率分频计数器,XU1和XU2分别为D触发器和门限计数器。
简易数字频率计设计方案汇总(三款简易数字频率计
设计原理图详解)
简易数字频率计设计方案(一)
本次设计的数字频率计以AT89C52为核心,在软件编程中采用的是C51语言,测量采用了多周期同步测量法,它避免了直接测量法对精度的不足,同时消除了直接与间接相结合方法,需对被测信号的频率与中介频率的关系进行判断带来的不便,能实现较高的等精度频率和周期的测量。
硬件电路设计方案
多周期同步测量法的基本思路是使被测信号与闸门之间实现同步化,从而从根本上消除了在闸门时间内对被测信号进行计数时的±1量化误差,使测量精度大大提高。
倒数计数器就是基于该方法而设计出来的一种具有创新思想的测频、测周期的仪器。
它采用多周期同步测量法,即测量输入多个(整数个)周期值,再进行倒数运算而求得频率。
其优点是:可在整个测频范围内获得同样高的测试精度和分辨率。
1、系统级方案设计。
简易数字频率计引言数字频率计是一种用来测量信号频率的仪器。
在电子工程、通信工程和音频工程等领域中都有广泛的应用。
本文将介绍一个简易的数字频率计,它基于微控制器和计数器电路,能够精准地测量输入信号的频率。
设计原理该简易数字频率计的设计原理主要包括三个部分:输入电路、计数器电路和显示电路。
输入电路输入电路用于接收待测量的信号,并将其转换为微控制器可以处理的数字信号。
一般使用一个信号放大器将输入信号放大,并通过一个阻抗匹配电路将信号阻抗与测量电路相匹配。
计数器电路计数器电路是本频率计的核心部分。
它通过计数器器件来测量输入信号的周期时间,并计算出频率值。
常见的计数器器件有74HCxx系列、CD40xx系列等。
在该设计中,我们选择了74HC160 4位可编程同步二进制计数器。
显示电路显示电路用于将测量得到的频率值以可读性良好的方式展示出来。
一般使用数码管进行数字显示。
本设计中使用了共阴极的4位7段数码管,通过串口通信将测量到的频率值发送给数码管进行显示。
硬件设计硬件设计主要包括信号放大电路、计数器电路和显示电路。
信号放大电路设计信号放大电路使用了一个运放进行信号放大,具体的放大倍数可以根据实际需求进行调整。
为了防止输入信号的干扰,还可以添加一个低通滤波器来滤除高频噪声。
计数器电路设计74HC160计数器电路的设计如下: - 连接74HC160的CLK 引脚到信号输入引脚,即可通过输入信号的上升沿触发计数器的计数。
- 使用74HC160的O0~O3输出引脚接到后续的显码驱动电路。
显示电路设计数码管的控制可以使用74HC595移位寄存器进行。
通过接口电路和微控制器进行通信,将测量到的频率值发送给74HC595,然后74HC595控制数码管进行数字显示。
软件设计软件设计主要包括信号处理和数据显示。
信号处理软件部分主要是通过计数器来测量输入信号的周期时间并计算出频率值。
通过编写的程序,将计数器的数值传输给微控制器,并进行运算得到频率值。
根据系统设计要求, 需要实现一个 4 位十进制数字频率计, 其原理框 图如图 1 所示。
主要由脉冲发生器电路、 测频控制信号发生器电路、 待测 信号计数模块电路、 锁存器、 七段译码驱动电路及扫描显示电路等模块组 成。
由于是4位十进制数字频率计, 所以计数器CNT10需用4个,7段显示译 码器也需用4个。
频率测量的基本原理是计算每秒钟内待测信号的脉冲个 数。
为此,测频控制信号发生器 F_IN_CNT 应设置一个控制信号时钟CLK , 一个计数使能信号输出端EN 、一个与EN 输出信号反 向的锁存输出信号 LOCK 和清零输出信号CLR 。
若CLK 的输入频率为1HZ ,则输出信号端EN 输出 一个脉宽恰好为1秒的周期信号, 可以 作为闸门信号用。
由它对频率计的 每一个计数器的使能端进行同步控制。
当EN 高电平时允许计数, 低电平时 住手计数,并保持所计的数。
在住手计数期间,锁存信号LOCK 的上跳沿 将计数器在前1秒钟的计数值锁存进4位锁存器LOCK ,由7段译码器译出 并稳定显示。
设置锁存器的好处是: 显示的数据稳定, 不会由于周期性的标准时钟 CLKEN待测信号计数电路脉冲发 生器待测信号F_INLOCK锁存与译 码显示驱 动电路测频控制信 号发生电路CLR扫描控制数码显示清零信号而不断闪烁。
锁存信号之后,清零信号CLR对计数器进行清零,为下1秒钟的计数操作作准备。
时基产生与测频时序控制电路主要产生计数允许信号EN、清零信号CLR 和锁存信号LOCK。
其VHDL 程序清单如下:--CLK_SX_CTRLLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CLK_SX_CTRL ISPORT(CLK: IN STD_LOGIC;LOCK: OUT STD_LOGIC;EN: OUT STD_LOGIC;CLR: OUT STD_LOGIC);END;ARCHITECTURE ART OF CLK_SX_CTRL ISSIGNAL Q: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1')THENIF Q="1111"THENQ<="0000";ELSEQ<=Q+'1';END IF;END IF;EN<=NOT Q(3);LOCK<=Q(3)AND NOT(Q(2))AND Q(1);CLR<=Q(3)AND Q(2)AND NOT(Q(1));END PROCESS;END ART;测频时序控制电路:为实现系统功能,控制电路模块需输出三个信号:一是控制计数器允许对被测信号计数的信号EN;二是将前一秒计数器的计数值存入锁存的锁存信号LOCK;三是为下一个周期计数做准备的计数器清零信号CLR。
模拟电子技术电路设计仿真作业简易数字频率计1.问题的重述数字频率既是一种十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号以及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。
2. 频率计电路分析及设计设计要求:1.测量范围:0~9999Hz2.最大读数9999Hz,闸门信号的采样时间为1s3.采用4位数码显示4.输入信号最大幅值可以扩展设计原理:所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。
数字频率计测量频率的原理框图如下图。
其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确的等于1s。
闸门电路由标准秒信号进行控制,当秒信号到来时,闸门开通,被测脉冲信号通过闸门送到级数译码显示电路。
秒信号结束时闸门关闭,计数器停止计数。
由于计数器记得的脉冲数N是在1s时间内的累计数,所以被测信号ui的频率为NHz。
脉冲形成电路脉冲形成电路是555电路构成的施密特触发器。
为了扩展被测信号的频率范围,输入信号u i先经过限幅器,再经过施密特触发器整形,当输入信号幅值较小时,限幅器的二极管截止,不起限幅作用。
图中电阻R3和R4的作用是将被测信号进行电平移动,因为555构成的施密特触发器的上触发电平U T+=(2/3)U CC,下触发电平U T−=(1/3)U CC。
输入信号的直流电平U IO应满足下列关系:(1/3)U CC<U IO<(2/3)U CC。
输入信号的幅度U im与直流电平幅度U IO和回差∆U T有关,一般来说,∆U T越小,对输入信号的幅度U im要求越小。
若取+U CC=+5V,则回差∆U T=1.67V。
若取U IO=2.5V,则取R3=R4=10kΩ,则输入信号的幅度U im=0.83V。
目录第一章概述1.1 数字频率计功能及特点1.2 数字频率计应用意义第二章设计方案2.1 设计指标与要求2.2 设计原理2.3方案论证第三章数字频率计分析及参数设计3.1 电路基本原理3.2 时基电路设计3.3闸门电路设计3.4控制电路设计3.5 小数点显示电路设计3.6 整体电路图第四章设计总结4.1 整体电路图4.2 元器件列表4.3 设计心得与体会4.4 附录4.5 参考文献第一章、概述数字频率计是直接用十进制数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波、尖脉冲信号和其他具有周期特性的信号的频率,而且还可以测量它们的周期。
经过改装,可以测量脉冲宽度,做成数字式脉宽测量仪;可以测量电容做成数字式电容测量仪;在电路中增加传感器,还可以做成数字脉搏仪、计价器等。
因此数字频率计在测量其他物理量如转速、振动频率等方面获得广泛应用。
1.1 整体功能及特点1,频率计主要用于测量正弦波、矩形波、三角波和尖脉冲及其它各种周期信号。
2,测量信号复制范围0.5-5v3,显示方式:四维十进制LED显示4,测量范围:1HZ-10HZ5,测量误差:≤±0.1%6,自动检测切换量程1.2 数字频率计应用意义数字频率计是一种应用很广泛的仪器电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。
集成电路的类型很多,从大的方面可以分为模拟电路和数字集成电路2大类。
数字集成电路广泛用于计算机、控制与测量系统,以及其它电子设备中。
一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。
数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个领域。
第二章设计方案2.1 设计指标与要求2.1.1 设计指标1,频率计主要用于测量正弦波、矩形波、三角波和尖脉冲及其它各种周期信号。
一.设计的基本原理和框图1.1基本原理:数字频率计是用数字显示被测信号的频率的仪器,被测信号可以是正弦波,方波或者其他周期性变化的信号,它的基本原理是时基信号发生器提供标准的时基脉冲信号,若其周期为1s则门控电路的输出信号持续时间亦准确到1s。
闸门电路有标准秒信号控制,当秒信号到来时闸门开通,信号通过闸门送到计数译码显示电路,秒信号结束时闸门关闭,计数器停止计数,由于计数器记得脉冲数N 的是一秒内的累积数,所以被测频率是NHZ。
闸门时间可以取大于或者小于1秒的值,测得的频率时间间隔与闸门时间的取值成正比,在这里取的闸门时间为1s。
在此,数字频率计由分频器,片选电路,计数器,锁存器,译码电路和显示电路作为主要组成部分。
1.2设计框图如图1.1所示:图1.1二.单元电路设计2.1分频电路模块分频器在总电路中有两个作用。
由总图框图中分频器有两个输出,一个给计数器,一个给锁存器。
时钟信号经过分频电路形成了20分频后的门信号。
另一个给锁存器作锁存信号,当信号为低电平时就锁存计数器中的数。
分频电路图如图2.1图2.1 分频电路图2.2片选信号电路模块这个电路有两个用途:一是为后面的片选电路产生片选信号,二是为译码模块提供选择脉冲信号。
电路图如图2.2图2.2 片选信号电路图2.3计数器模块计数器模块为该电路中的核心模块,它的功能是:当门信号为上升沿时,电路开始计算半个周期内被测信号通过的周期数,到下升沿后结束。
然后送给锁存器锁存。
计数器电路图如图2.3所示:图2.3 计数器电路图2.4锁存器模块在分频信号的下降沿到来时,锁存器将计数器的信号锁存,然后送给编译模块中。
其电路图如图2.4所示:图2.4 锁存器电路图2.5译码信号模块此模块是对四个锁存器进行选择,按顺序的将四个锁存器中的数值送给译码模块中译码。
其电路图如图2.5图2.5 译码信号电路图2.6片选模块该模块接收到片选信号后,输出给显示器,选择显示那个显示管。
简易数字频率计设计1、数字频率计测频的基本原理所谓频率,就是周期性信号在单位时间(1S )内变化的次数,若在一定时间间隔T 内测得这个周期性信号的重复变化次数为N ,则其频率可表示为f=N/T图6(a )是数字频率计的组成框图。
被测信号v X 经放大整形电路变成计数器所要求的脉冲信号A ,其频率与被测信号的频率f X 相同。
时基电路提供标准时间基准信号T ,其高电平持续时间t 1=1s ,当1s 信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到1s 信号结束时闸门关闭,停止计数。
若在闸门时间内计数器计得的脉冲数为N ,则被测信号频率f X =NHz 。
逻辑控制电路的作用有两个:一是产生锁存脉冲L ,使显示器上的数字稳定;二是产生清“0”脉冲R ,使计数器每次测量从零开始计数。
各信号之间的时序关系如图6(b )所示。
2、数字频率计的主要技术指标①频率准确度:一般用相对误差来表示,即)f f Tf 1(f f cc x x x ∆+±=∆ 式中,N1N N Tf 1x ±=∆=为量化误差(即±1个字误差),显然,当闸门时间T 选定后,f x 越高,量化误差就越小;TTf f c c ∆=∆为闸门时间相对误差,主要由时基电路标准频率的准确度决定,xc c Tf 1f f 〈〈∆。
v 数字频率计结构框图和时序图②频率测量范围:在输入电压符合规定要求值时,能够正常进行测量的频率区间称为频率测量范围。
频率测量范围主要由放大整形电路的频率响应决定。
③数字显示位数:频率计的数字显示位数决定了频率计的分辨率。
位数越多,分辨率越高。
④测量时间:频率计完成一次测量所需要的时间,包括准备、计数、锁存和复位时间。
3、设计内容及要求⑴技术要求测量频率范围:1000Hz~10000Hz;被测信号:方波或正弦波峰峰值为3V~5V(与TTL 兼容);显示方式:4位十进制数显示。
⑵设计步骤及要求①拟定数字频率计的组成框图,设计各单元电路,并用Multisim仿真;②在通用电路板上安装、调试电路,并测试技术指标;③拟写设计报告。
电路CAD课程设计报告设计题目:简易数字频率计专业班级:电子信息0701学号:学生姓名:同组学生:简易数字频率计摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分紧密的联系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是测量频率的重要手段之一。
电子计数器测频有两种方式:一是直接测频法;二是间接测频法,如周期测频法。
本文阐述了基于通用集成电路设计了一个简单的数字频率计的过程。
AbstractBe one of the most fundamnetal parameter in electron technology medium frequency, parameter measurement scheme,measurement result all have very close something to do with a lot of electricity and,the frequency measurement looks like being more important therefore right away.The method measuring frequency has various,among them the electronic counter measures frequency having accuracy height,usage is conveient, measurement is prompt,easy to realize measurement process automation waits for merit and,is one of the important means that frequency measures.The electronic counter frequency having two kinds way:Measure frequency law first directly;Two is indirect measure frequency law,if the period measure frequency law.目录一、设计任务与要求 (3)二、方案设计与论证 (3)三、单元电路设计与参数计算 (4)1. 我所设计的电路单元 (4)2.各部分单元电路原理图 (5)3. 计频电路部分 (6)4. 计频电路部分电路原理图 (7)5. 单元电路总结 (8)四、总原理图及元器件清单 (9)1.总原理 (9)2.说明 (10)3.元器件清单 (10)五、结论与心得 (10)六、设计后思考 (10)参考文献 (11)一、设计任务与要求设计一个简易数字频率,该频率计测量频率小于10kHz。
数字频率计(51单片机)数字频率计(51单片机)数字频率计(Digital Frequency Counter)是一种常用的电子测量仪器,可用于测量信号的频率。
在本文中,我们将介绍如何使用51单片机实现一个简单的数字频率计。
一、原理简介数字频率计的基本原理是通过计算信号波形周期内的脉冲数来确定频率。
在实际应用中,我们通常使用51单片机作为微控制器,通过计数器和定时器模块来实现频率计算。
二、硬件设计1.信号输入首先,我们需要将待测信号输入到频率计中。
可以使用一个输入接口电路,将信号连接到51单片机的IO口上。
2.计时模块我们需要使用51单片机的定时器/计数器来进行计时操作。
在这里,我们选择使用定时器0来进行计数,同时可以利用定时器1来进行溢出次数的计数,以扩展计数范围。
3.显示模块为了显示测量结果,我们可以使用数码管、LCD液晶显示屏等显示模块。
通过将结果以可视化的方式呈现,方便用户进行观察和读数。
三、软件设计1.定时器配置首先,我们需要对定时器进行配置,以确定计时器的计数间隔。
通过设置定时器的工作模式、计数范围和时钟频率等参数,可以控制定时器的计数精度和溢出时间。
2.中断服务程序当定时器溢出时,会触发中断,通过编写中断服务程序,实现对计数器的相应操作,例如将计数值累加,记录溢出次数等。
3.数字频率计算根据计数器的值和溢出次数,我们可以计算出信号的频率。
通过简单的公式计算,即可得到测量结果。
四、实验步骤1.搭建硬件电路,将待测信号连接到51单片机的IO口上,并连接显示模块。
2.根据硬件设计要求,配置定时器的工作模式和计数范围。
3.编写中断服务程序,实现对计数器的相应操作。
4.编写主程序,实现数字频率计算和显示。
5.下载程序到51单片机,进行测试。
五、实验结果与分析通过实验,我们可以得到信号的频率测量结果,并将结果以数码管或LCD屏幕的形式进行显示。
通过对比实际频率和测量频率,可以评估数字频率计的准确性和稳定性。
如何设计一个简单的频率计频率计是一种用于测量信号频率的设备,广泛应用于电子、通信、自动化等领域。
本文将介绍如何设计一个简单的频率计,并提供相关原理和步骤。
一、简介频率计是一种测量频率的仪器。
它可以通过测量信号周期的时间来计算频率。
频率计可以根据测量的频率范围和精度要求,选择不同的设计方案。
下面将介绍一种简单的频率计设计。
二、设计原理该频率计设计基于计数器原理。
其思想是通过计数已知时间内信号周期的脉冲数来确定频率。
三、所需元器件1. 计数器芯片:选择适合频率范围的计数器芯片。
2. 晶振:提供稳定的时钟信号作为计数器的时基。
3. 预处理电路:用于处理输入信号,确保其满足计数器的输入要求。
四、设计步骤1. 确定测量范围和精度要求:根据应用需求确定频率计所需要测量的频率范围和精度要求,选择合适的计数器芯片。
2. 选择计数器芯片和晶振:根据测量范围和精度要求,选择适合的计数器芯片和晶振。
计数器芯片的型号选择要能满足测量范围,并具有足够的计数位数。
晶振的频率要足够稳定。
3. 设计输入信号预处理电路:根据计数器芯片的输入要求,设计合适的输入信号预处理电路。
例如,如果输入信号幅值过大或过小,需要进行合适的电平转换或调整。
五、连接设计1. 将输入信号接入预处理电路,确保信号满足计数器芯片的输入要求。
2. 将预处理后的信号接入计数器芯片的计数端。
3. 将晶振连接至计数器芯片的时钟输入端。
4. 连接供电电源,确保设计正常工作。
六、测试与调试1. 给设计供电,确保所有连接正确。
2. 输入已知频率的信号,观察频率计是否能准确测量。
3. 如果测量结果不准确,检查元器件连接是否正确、晶振频率是否稳定等。
4. 根据实际情况调整设计参数,直至测量结果满足要求。
七、注意事项1. 设计中要注意信号的幅值范围和频率范围。
2. 选择合适的计数器芯片和晶振,以保证测量精度和稳定性。
3. 调试时要注意设计的连通性和元器件的正确连接。
八、总结设计一个简单的频率计需要确定测量范围和精度要求,选择适合的计数器芯片和晶振,并设计合适的输入信号预处理电路。
一、设计目的(1)掌握电子电路的一般设计方法和设计流程;(2)学习使用PROTEL软件绘制电路原理图及印刷板图;(3)掌握应用Protues等软件对所设计的电路进行仿真,通过仿真结果验证设计的正确性。
二、设计要求设计一个简易数字频率计,具体要求如下:1.频率计测量范伟0-9999HZ;2最大读书时9999Hz,闸门信号的采样时间为1S;3.采用4位数码管显示;4.输入信号最大幅值可以扩展;5.利用PROTEL软件绘制电路原理图及印刷板图, 并用EWB软件仿真.三、设计原理1.数字频率计测频的基本原理所谓频率,就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T秒内测得这个周期性信号的重复变化次数为N,则其频率可表示为:f=N/T如下图(图1)所示,为简易数字频率计的组成框图。
被测信号X经放大整形电路变成计数器所要求的脉冲信号I,其频率与被测信号的频率f x 相同。
时基电路提供标准时间基准信号II,其高电平持续时间t1=1 秒,在一秒信号之内,时基信号为高电平,闸门开通,被测脉冲信号通过闸门,计数器计数,直当到一秒信号结束时,信号变成低电平,闸门关闭,计数器停止计数。
若在闸门开启时间一秒内计数器计得的脉冲个数为N,则被测信号频率f x =N(Hz)。
逻辑控制电路的作用有两个:一是当时间脉冲一秒结束时产生锁存脉冲IV,使显示器上的数字稳定;二是一秒结束下降沿到来时产生清“0”脉冲V,使计数器每次测量时从零开始计数而不进行累加,从而达到题目的要求。
图1:数字频率计各信号之间的关系及原理图2.数字频率计的主要技术指标1.频率测量范围:在输入电压符合要求规定值时,能够正常进行测量的频率区间被称为测量频率范围。
频率测量范围主要由放大整形电路的频率响应决定的。
2.数字显示位数:频率计的数字显示位数决定了频率计的分辨率,位数越多,分辨率越高3.测量时间:频率计完成一次测量所需要的时间,包括准备计数,锁存和复位时间。
简易数字频率计电路设计数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
一、设计目的1.了解数字频率计测量频率与测量周期的基本原理;2.熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。
二、设计任务与要求要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:1.测量范围:1HZ—9.999KHZ,闸门时间1s;10 HZ—99.99KHZ,闸门时间0.1s;100 HZ—999.9KHZ,闸门时间10ms;1 KHZ—9999KHZ,闸门时间1ms;2.显示方式:四位十进制数3. 当被测信号的频率超出测量范围时,报警.三、数字频率计基本原理及电路设计所谓频率,就是周期性信号在单位时间(1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为fx=N/T 。
因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。
可见数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成,总体结构如图4-2-6:图4-2-6数字频率计原理图从原理图可知,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。
可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生清“0”脉冲Ⅴ,使计数器每次测量从零开始计数。
简易数字频率计电路设计简易数字频率计电路设计摘要请对内容进行简短的陈述,一般不超过300字关键字:周期;频率;数码管,锁存器,计数器,中规模电路,定时器在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
本章要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示。
数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、数码管、时基电路、逻辑控制、译码显示电路几部分组成。
目录前言 (1)1.数字频率计的原理 (2)2.系统框图 (3)3.系统各功能单元电路设计 (3)3.1 时基电路设计 (3)3.2 放大整形电路 (4)3.3 逻辑控制电路 (6)3.4 锁存单元 (6)3.5 分频电路 (7)3.6 显示器 (8)3.7 报警电路 (9)4.系统总电路图 (10)结束语 (11)参考文献 (12)前言数字频率计是一种专门对被测信号频率进行测量的电子测量仪器。
被测信号可以是正弦波、方波或其它周期性变化的信号。
数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。
在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。
频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。
正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。
在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。
频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。
频率计被用来对各种电子测量设备的本地振荡器进行校准。
在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。
1.数字频率计的原理所谓频率,就是周期性信号在单位时间 (1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为 fx=N/T 。
因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。
可见数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成,从原理图可知,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。
可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生清“0”脉冲Ⅴ,使计数器每次测量从零开始计数。
2.系统框图图2 系统框图3.系统各功能单元电路设计3.1 时基电路设计555定时器主要是与电阻、电容构成充放电电路,并由两个比较器来检测电容器上的电压,以确定输出电平的高低和放电开关管的通断。
这就很方便地构成从微秒到数十分钟的延时电路,可方便地构成单稳态触发器,多谐振荡器,施密特触发器等脉冲产生或波形变换电路RD1是置零输入端。
只要在 RD1端加上低电平,输出端Uo便被置成低电平,不受其他输入端状态的影响。
正常工作必须使 R D1处于高电平。
当U11 >U R1 .U12 >U R2时,比较器C1的输出U1 =0,比较器C2的输出U C2 =1,SR锁存器被置0,T D导通,同时U0为低电平。
当U11<UR1,U12>UR2时, UC2=1,U1=1 ,锁存器的状态保持不变,因而TD和输出的状态也维持不变。
当U11 <U R1,U12 <U R2时,U C2 =0,U1 =1 故锁存器被置1,U0为高电平,同时T D截止。
当U11 >U R1,U12 <U R2时,U C2 =0,U1 =0,锁存器处于Q=Q1=1的状态,U0为高电平,同时TD截止。
时基电路的作用是产生标准的时间信号,可以由555组成的振荡器产生,若时间精度要求较高时,可采用晶体振荡器。
由555定时器构成的时基电路包括脉冲产生电路和分频电路两部分。
由个555定时器产生一个脉冲信号,将555定时器产生的脉冲信号送入逻辑控制电路,再由逻辑控制电路送入计数器本设计时基电路采用的是555振荡器产生1000HZ,周期为1ms的脉冲信号的电路如图所示。
0.1K图3时基电路电阻参数可以由振荡频率计算公式f=1.43/((R1+2R2)*C)根据计算公式f=1.43/((R8+2R10)*C),取C=1uF.已知f=1000HZ算得R8=0.86K R10=1K 3.2 放大整形电路放大整形电路可以采用晶体管 3DGl00和74LS00,其中3DGl00组成放大器将输入频率为fx的周期信号如正弦波、三角波等进行放大。
与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。
U1B计算过程:Vce=0.5Vcc,已知Vcc=0.5V,得Vce=0.25VVce=Vcc-IcRe,IcQ =0.5A, IBQ=(Vcc-VBEQ)/Rb=0.025A放大倍数= IcQ /IBQ=200把信号Vi加到整形放大电路的输入端时,得到该级的输入电压U01 =A U1(U P -U N),其中A U1是输入级的电压增益。
U01传送到中间级进行电压放大,从而在该级的输出端产生U 02 = AU1AU2(UP-UN). 输出级输出电压。
施密特触发器是脉冲波形变换中经常使用的一种电路,输入信号从低电平上升的过程中电路状态转换时对应的输入电平,与输入信号从高电平下降过程中对应的输入转换电平不同。
在电路状态转换时,通过电路内部的正反馈过程使输入电压波形的边沿变得很陡。
利用施密特触发器的回差特性将它整形成规则的矩形波。
若负向阀值取为,则回差电压。
整形后输出波形如图5所示。
由于输入信号的干扰在输出中表现为2个矩形脉冲。
若减小负向阀值取为,则回差电压。
此时整形后输出波形如图5所示,消去了干扰。
当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,出现输出电压变化滞后现象。
①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时Vo=1。
以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出Vo维持1不变。
②当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。
③当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3Vcc,定时器状态翻转为1,输出Vo=1。
因为所选元器件的工作触发均由高低电平来实现,因此计频时需要对不同的波形来进行整形。
该部分主要由一个555芯片来实现,在时基电路产生的脉冲信号输入到放大整形电路,产生的波形如图4,完成由正弦波和三角波到方波的整形,为了便于观察和调试,在本电路中引进了一个示波器来进行观察。
实验中截图如下:图5 整形波形3.3 逻辑控制电路在时基信号结束时产生的负跳变用来产生锁存信号Ⅳ,锁存信号Ⅳ的负跳变又用来产生清“0”信号。
脉冲信号和清零信号两个单稳态触发器74LSl23产生,它们的脉冲宽度由电路的时间常数决定。
由74LS123的功能表可得当R=B=1的情况下,触发脉冲从A端输入,在触发脉冲的负跳变作用下输出端Q非可落得一正脉冲。
前面时基电路产生的脉冲信号从B端输入在触发脉冲的负跳变作用下,输出端Q可获得一正脉冲, Q非端可获得一负脉冲,其波形关系正好满足Ⅳ和V的要求。
电路中的脉冲经由闸门进入下个单元工作。
手动复位开关S按下时,计数器清“ 0 ”。
图6 逻辑控制电路3.4 锁存单元锁存器是一种对脉冲电平敏感的存储单元电路,具有记忆功能。
它们可以在特定输入脉冲电平作用下改变状态。
锁存器的作用是将计数器在闸门时间结束时所计得的数进行锁存,使显示器上能稳定地显示此时计数器的值.闸门时间结束时,逻辑控制电路发出锁存信号Ⅳ,将此时计数器的值送译码显示器。
当时钟脉冲CP的正跳变来到时,锁存器的输出等于输入,即Q=D。
将计数器所得到的输出值输入到锁存器中,锁存器具有记忆功能,可以保持计数器得到的脉冲个数。
正脉冲结束后,无论D为何值,输出端Q的状态仍保持原来的状态Qn 不变.所以在计数期间内,计数器的输出不会送到译码显示器。
从计数器输入的脉冲个数保存在锁存器中,即当R D =1,LD=0时,电路工作在同步置数状态。
R D =LD=EP=ET=1时,电路工作在计数状态,从电路的0000状态开始连续输入16个计数脉冲,电路将从1111状态返回0000状态,C端从高电平跳变到低电平,进位。
锁存器上面的街头连接的是译码器,下面的接头接的是计数器,详情见总电路图3.5 分频电路分频电路的作用:1、合理地分割各单元的工作频段;2、合理地进行各单元功率分配;3、使各单元之间具有恰当的相位关系以减少各单元在工作中出现的声干涉失真;4、利用分频电路的特性以弥补单元在某频段里的声缺陷5、将各频段圆滑平顺地对接起来。
假如计数器输入的频率fo 则Qo,Q1,Q2,Q3端输出脉冲的频率依次为1/2fo1/4fo1/8fo 1/16fo本设计分频电路采用的是10分频,即1/10。
由于分频器的4位输出对应16种状态,每种状态是依次先后输出的,即不同状态对应不同的时间位置,而串并变换器输出两种状态,且串并变换器输出的4种状态与分频器的12种状态中的两种状态相同.由于本设计中需要1s、0.1s、10ms、1ms四个闸门时间(频率分别为1HZ,10HZ,100HZ,1000HZ),555振荡器产生1000HZ,周期为1ms的脉冲信号,需经分频才能得到其他三个周期的闸门信号,可采用74LS160分别经过一级、二级、三级10分频得到。