第14章二极管和晶体管
- 格式:ppt
- 大小:11.01 MB
- 文档页数:46
二极管和晶体管
二极管和晶体管都是电子元件,常用于电路中控制电流的流动。
二极管是一种电子元件,可以单向导电,即当正极连接到二极管的“+”端时,负极连接到二极管的“-”端时,二极管会导通,而当反向电压作用于二极管上时,它并不会导通。
二极管通常用于控制电流的流动,例如在电路中的开关控制和稳压器中。
晶体管是一种双极型电子元件,由三个区域组成:基区、发射区和集电极。
当电压作用于基区时,它会形成一个电子流,经过发射极流向集电极。
晶体管可以用于控制电流的流动和放大信号,它的放大倍数很高,因此被广泛应用于电子设备中。
二极管和晶体管都有各自的优点和缺点,例如二极管可以单向导电,但晶体管的放大倍数更高。
在实际应用中,二极管和晶体管需要根据具体情况进行选择和使用。
前言集成电路只有在高倍放大的情况下才能看到它的真面目。
它的表面到处是错综复杂的细微的连线,而在这下面则是同样错综复杂的掺杂硅的图形,所有这些都是按照一套称作layout的蓝图做出来的。
模拟和混合信号集成电路的layout很难做到自动化。
每个多边形的shape和placement都需要对器件物理,半导体制造和电路理论的深刻理解。
尽管已经有30年的研究了,但仍旧有许多不确定性。
这些知识分布在艰涩难懂的期刊文章和未出版的手稿里。
本书则把这些知识整体统一串连了起来。
原本这本书是打算写给LAYOUT设计师看的,同时它也适合那些希望更好的理解电路和LAYOUT之间关系的电路设计师。
由于本书拥有大量的读者,特别是那些对于高等数学和固体物理学不是很精通的人,所以本书尽量降低了数学运算,并使用了最普遍使用的变量和单位。
读者只要会基本代数和基本的电子学就可以。
书中的练习假定读者能使用LAYOUT编辑软件,不过即使没有,大部分习题还是能用笔和纸完成的。
本书有14章和5篇附录。
前2章是对器件物理学和半导体工艺的一个整体概括。
在这2章里,简单的文字解释和图形模型代替了数学推导。
第3章是关于3种原型工艺:标准BIPOLAR, SILICON-GATE CMOS 和ANALOG BICOMS。
重点将放在截面图和这些截面图与样品器件的传统layout之间的相互关系。
第4章着重讨论了LAYOUT在决定可靠性方面的作用和通常的失效机制。
第5和6章则是电阻和电容的LAY OUT。
第7章以电阻和电容为例讨论了匹配的原理。
第8章到第10章是BIPOLAR器件的LAYOUT,而第11,12章有关场效应管的LAYOUT和匹配。
第13,14章讨论了一些更深入的话题,包括器件合并,G UARD RINGS,ESD保护结构和FLOORPLANNING。
附录则包含缩写表,MILLER指数的讨论,习题中需要的样例LAYOUT规则和书中使用的公式的推导。
《电子技术基础》课程学习指导书第14章 半导体二极管和三极管一、选择题:14.1 半导体的导电能力( c )。
(a) 与导体相同 (b) 与绝缘体相同 (c) 介乎导体和绝缘体之间14。
2 P 型半导体中空穴数量远比电子多得多,因此该半导体应( c )。
(a ) 带正电 (b ) 带负电 (c) 不带电 14。
3 N 型半导体的多数载流子是电子,因此它应( c ). (a) 带负电 (b ) 带正电 (c) 不带电14.4 将PN 结加适当的反向电压,则空间电荷区将( b )。
(a ) 变窄 (b ) 变宽 (c) 不变 14。
5 普通半导体二极管是由( a )。
(a )一个PN 结组成 (b )两个PN 结组成 (c )三个PN 结组成14。
6 电路如图所示,直流电压U I =10 V,稳压管的稳定电压U Z =6 V ,则限流电阻R 上的压降U R 为( c )。
(a)10V (b )6V (c)4V (d )—4VRO14。
7 电路如图所示,已知u I=3V,则晶体管T此时工作在( b )。
(a)放大状态 (b)截止状态 (c)饱和状态10V1kΩβ=50二、填空题:14。
8 半导体二极管的主要特点是具有单向导电性 .14。
9 理想二极管的正向电阻为 0 .14.10 理想二极管的反向电阻为无穷大 .14。
11 二极管导通的条件是加在二极管两端的电压是正向电压大于PN结的死区电。
14。
12 N型半导体中的多数载流子是自由电子。
14。
13 P型半导体中的多数载流子是空穴。
三、计算题14.14 电路如图所示,二极管D为理想元件,U S=5 V,求电压u O。
u OUo=Us=5V14.15 电路如图所示,二极管为理想元件,u i=3sin ωt V ,U =3V ,当ωt =0瞬间,求输出电压u O 。
u OUo=0v14。
16 电路如图所示,输入信号u i=6sin ωt V 时,求二极管D 承受的最高反向电压。
电工学第七版下册知识点及相关习题摘要秦曾煌主编总体内容概况14章半导体二极管晶体管的基本知识15章基本放大电路(共发射极放大电路等)16章集成运算放大器基本运算17章电路中的反馈(主要是负反馈知识)18章直流稳压电源(整流电路,滤波器,稳压电路)以上为模拟电路,以下为数字电路20章门电路及其组合(数字进制编码器译码器)21章触发器知识点及对应例题和习题14章6页半导体特性,N型半导体和P型半导体8页PN结10页二极管特性例14.3.1 14页稳压二极管例14.4.3 14.23页双极型晶体管例14.5.1习题14.3.1----14.4.2 14.3.6 二极管及稳压二极管导电性14.5.1---14.5.6 14.5.9 双极型晶体管分析15章38--40页共发射极放大电路,及静态值确定例15.2.145页动态分析例15.3.1 49页输入信号图解分析52页分压式偏置放大电路例15.4.1 60页射极输出器性质71页共模抑制比习题15.2.1---15.2.4 15.2.5 15.2.7 共发射极放大电路15.3.1----15.7.1 15.3.5 15.4.3 偏置放大电路射极输出器差分电路16章95.96页运算放大器98.99页理想运放例16.1.1100--105页比例运算加减法运算例16.2.3112页电压比较器例16.3.1习题16.2.1---16.2.5 16.2.6 16.2.7 16.2.13 比例运算16.3.1,16.3.2电压比较器17章132页正反馈和负反馈的判别133---136页负反馈的四种类型141页表17.2.1 负反馈对输入电阻和输出电阻的影响146页RC振荡电路习题17.1.1---17.2.4 负反馈及类型判定17.2.5,17.3.1,17.2.7,17.2.9负反馈的计算18章158页单相半波整流电路例18.1.1 159页单相桥式整流电路167页RC滤波器例18.2.1习题18.1.1--18.1.4 整流电路18.2.1--18.3.3 滤波和稳压电路18.1.6 18.1.7 18.3.4 直流稳压电源综合20章222--224页数制的转化227--229页基本逻辑门电路图20.2.2 20.2.3 20.2.4 231--232页基本逻辑门电路组合图20.2.5 20.2.6 20.2.7 250.251页逻辑代数运算254页逻辑运算实例259页由逻辑图得状态表例20.6.1 20.6.2 262页由状态表得逻辑图例20.6.3 例20.6.4 269页编码器273页译码器习题20.1.1 20.1.2 进制转换20.2.1--20.5.3 门电路逻辑式20.5.4--20.6.6 门电路组合运算20.5.8--20.5.11 逻辑式和逻辑图的转化20.5.12---20.5.13 逻辑式化简21章298页RS触发器。
第14章半导体器件教学内容:PN结的单向导电性;二极管的伏安特性及主要参数;晶体管的基本结构、电流分配与放大原理,晶体管特性及主要参数。
教学要求:了解PN结的单向导电性;了解二极管的伏安特性及主要参数;理解晶体管、场效应管的放大原理。
重点:晶体管特性曲线。
一、选择题1、理想二极管的反向电阻为( b )。
(a) 零 (b) 无穷大 (c) 约几百千欧2、当温度升高时,半导体的导电能力将( a )。
(a) 增强(b) 减弱(c) 不变 (d) 不能确定3、半导体二极管的主要特点是具有( b )。
(a) 电流放大作用(b) 单向导电性 (c) 电压放大作用4、二极管的反向饱和峰值电流随环境温度的升高而( a )。
(a) 增大(b) 减小(c) 不变5、晶体管的电流放大系数β是指( b )。
(a) 工作在饱和区时的电流放大系数(b) 工作在放大区时的电流放大系数(c) 工作在截止区时的电流放大系数6、稳压管的动态电阻 r Z是指( b )。
(a) 稳定电压 UZ 与相应电流 IZ 之比(b) 稳压管端电压变化量∆UZ 与相应电流变化量∆IZ 的比值(c) 稳压管正向压降与相应正向电流的比值7、已知某晶体管的穿透电流 I CEO = 0.32mA,集基反向饱和电流 I CBO = 4μA,如要获得 2.69 mA的集电极电流,则基极电流 I B应为( c )。
(a) 0.3mA (b) 2.4mA (c) 0.03mA (d) 0.24mA8、已知某晶体管的 I CEO为 200μA,当基极电流为 20μA 时,集电极电流为1mA,则该管的 I CBO约等于( c )。
(a) 8 mA (b) 10 mA (c) 5μA (d) 20μA9、已知某晶体管处于放大状态,测得其三个极的电位分别为 6V、9V 和 6.3V,则 6V所对应的电极为( a )。
9V所对应的电极为( c )。
6.3V 所对应的电极为( b )。
14.3.8在图14.29所示电路,试求:下列几种情况下输出端Y的电位VY及各元件(R,DA,DB)中通过的电流:(1)VA=VB=0V;(2)VA=+3V,VB=0V;(3)VA=VB=+3V。
二极管的正向压降可忽略不计。
VA=VB=0时,即DA,DB均导通,由欧姆定律IR= E/R=12/3.9=3.08mAIA,IB是两个二极管中电流,于是IA=IB=0.5IR=1.54mA,VY=0VA=3V,VB=0时,VB较低,DB先导通,使VY=0, DA截止,IA=0,于是IR =IB =12/3.9=3.08mA,IA=0VA=VB =+3V,两个二极管同时导通,使VY=+3V,IR=(12-3)/3.9=2.30mAIA=IB=0.5IR=0.5(12-3)/3.9=1.15mA14.3.9在图14.30所示电路中,试求下列几种情况下输出端电位VY及各元件中通过的电流:(1)VA=+10V,VB=0V;(2)VA=+6V,VB=+5.8V;(3)VA=VB=+5V。
设二极管的正向电阻为零,反向电阻无穷大。
VA=+10V,VB=0时,DA导通,VA导通 VY=10*9/(1+9)=9VDB截止,于是由欧姆定律IA=VA/(1+9)=10/10=1mAIB =IA = 1mA,IB=0(2) VA=6V,VB=5.8V时,DA先导通,使VY=6*9/(1+9)=5.4V,DB=端电压VBY=VB-VY=5.8-5.4=0.4V设二极管正向电阻为0,于是DB导通,由支路电流法IA+9(IA+IB)=VAIB+9(IA+IB)=VB所以(IA+IB)(1+9+9)=VA+VB由KCL定律IR=IA+IB所以IR=(VA+VB)/19=(6+5.8)/19=0.62mA所以,由欧姆定律VY=IR*R=0.62*9=5.59V于是IA=(6-5.59)/1=0.41mAIB=(5.8-5.59)/1=0.21mA(3)VA=VB=5V,两个二极管同时导通。