天线的方向图
- 格式:pdf
- 大小:990.68 KB
- 文档页数:22
天线主要性能指标和相关知识天线的主要性能指标 1、方向图:天线方向图是表征天线辐射特性空间角度关系的图形。
以发射天线为例从不同角度方向辐射出去的功率或场强形成的图形。
一般地用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图分为水平面方向图和垂直面方向图。
平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。
描述天线辐射特性的另一重要参数半功率宽度在天线辐射功率分布在主瓣最大值的两侧功率强度下降到最大值的一半(场强下降到最大值的 0.707 倍3dB 衰耗)的两个方向的夹角表征了天线在指定方向上辐射功率的集中程度。
一般地GSM 定向基站水平面半功率波瓣宽度为 65°在 120°的小区边沿天线辐射功率要比最大辐射方向上低 9-10dB。
2、方向性参数不同的天线有不同的方向图为表示它们集中辐射的程度方向图的尖锐程度我们引入方向性参数。
理想的点源天线辐射没有方向性在各方向上辐射强度相等方向是个球体。
我们以理想的点源天线作为标准与实际天线进行比较在相同的辐射功率某天线产生于某点的电场强度平方 E2 与理想的点源天线在同一点产生的电场强度的平方 E02 的比值称为该点的方向性参数D=E2/E02。
3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数但两者又不尽相同。
增益是在同一输出功率条件下加以讨论的方向性系数是在同一辐射功率条件下加以讨论的。
由于天线各方向的辐射强度并不相等天线的方向性系数和增益随着观察点的不同而变化但其变化趋势是一致的。
一般地在实际应用中取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。
另外表征天线增益的参数有 dBd 和 dBi。
DBi 是相对于点源天线的增益在各方向的辐射是均匀的;dBd 相对于对称阵子天线的增益dBi=dBd+2.15。
相同的条件下增益越高电波传播的距离越远。
天线方向性图的测量[权威资料] 天线方向性图的测量对于一面发射天线,如果有另一面性能较好的接收天线相配合,就可以测定发射天线的发射方向图。
对于一面接收天线,如果有一面发射天线相配合,就可以测定接收天线的接收方向图。
只是在测定方向图时,不管被测的是发射天线还是接收天线,都需要有电动伺服系统,能够平稳地、连续地在方位面和俯仰面上进行调整。
用来配合测试的天线可以与被测天线处于同一地球站内,也可以处在地理位置相隔较远的地球站上。
这种测定天线方向性图的方法,称为“辅助地球站测量法”。
要想测定发射天线的方向性图,则与之配合的接收天线就是“辅助地球站”;要想测定接收天线,则与之配合的发射天线就是“辅助地球站”。
这种测量法与其它一些方法相比有以下优点:一是既能测接收方向图,又能测发射方向图;二是测量的角度范围比较大,能够测到远旁瓣;三是测量的结果比较准确,测量精度在可控范围内。
使用这种测量方法,不论是测量发射方向性图还是测量接收方向性图,都必须向卫星发射一个不加调制的单载波,且要求其频率和功率都十分稳定。
上行功率的确定要考虑两个方面的因素,一方面上行功率要足够大,以保证在天线转动到远旁瓣时仍能接收到信号;另一方面,上行功率又不能过大,避免使卫星转发器进入饱和状态,一旦转发器处于饱和状态,会影响方向性图在主瓣附近的细节,还会影响主瓣与旁瓣之间的电平关系。
如图1(a)所示,某天线在测试时因为上行发射功率太大导致转发器饱和,主瓣被压缩,主瓣与旁瓣的电平差不符合指标要求;而在调小发射功率后再测,结果就正常了,见图1(b)。
所以,确定上行功率时需要得到卫星测控站的帮助,只要确认在天线主瓣对准卫星时转发器未饱和即可。
上行功率的确定还要兼顾测试接收机的性能,以保证接收机工作在线性范围内,避免由于接收机的原因导致测量误差。
在测量中还需注意,尽可能不使用LNB(低噪声下变频单元),而应使用LNA(低噪声放大器),且放大器中不可启用AGC(自动电平调整)功能。
阵列天线方向图MATLAB 仿真一.实验要求1.运用MATLA仿真16单元阵列天线的方向图。
2.变换9和d观察曲线变化。
二.实验原理1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。
假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元天线阵的方向图。
这就是方向图相乘原理。
一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。
这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
三、仿真结果16单元天线方向图,9 =0°, d=2/入16单元天线方向图,0 =0°, d= X16单元天线方向图,0 =20 °, d=2/ Xradian16 单元天线方向图,9 =20°, d=X结果分析:经过仿真结果实现了16单元天线方向图,并分别在d=2/入时在9 =0。
9 =20°方向形成波束。
在d= X时,通过对比d=2/入时的曲线可以发现随着阵元之间间隔的增加,方向图衰减越快,主次瓣的差距越大,次瓣衰减越快,效果越好。
四、源代码1.clear;theta=-pi/2:0.01:pi/2;lamda=0.03;d=lamda/2;n1=16; beta=2*pi*d*sin(theta)/lamda; z11=(n1/2)*beta;z21=(1/2)*beta; f1=sin(z11)./(n1*sin(z21));F1=abs(f1); figure(1); plot(theta,F1, 'b' ); xlabel( 'theta/radian' ); ylabel( 'amplitude' ); legend( 'n=16' );2.clear;theta=-pi/2:0.01:pi/2; lamda=0.03;d=lamda;n1=16; beta=2*pi*d*sin(theta)/lamda; z11=(n1/2)*beta;z21=(1/2)*beta; f1=sin(z11)./(n1*sin(z21));F1=abs(f1); figure(1); plot(theta,F1, 'b' ); xlabel( 'theta/radian' ); ylabel( 'amplitude' ); legend( 'n=16' );3.clear;theta=-pi/2:0.01:pi/2; lamda=0.03;d=lamda/2;n1=16; beta=2*pi*d*(sin(theta)-pi/9)/lamda; z11=(n1/2)*beta;z21=(1/2)*beta; f1=sin(z11)./(n1*sin(z21));F1=abs(f1); figure(1); plot(theta,F1, 'b' ); xlabel( 'theta/radian' ); ylabel( 'amplitude' ); legend( 'n=16' );4.clear;theta=-pi/2:0.01:pi/2;lamda=0.03;d=lamda;n1=16; beta=2*pi*d*(sin(theta)-pi/9)/lamda; z11=(n1/2)*beta;z21=(1/2)*beta; f1=sin(z11)./(n1*sin(z21));F1=abs(f1); figure(1);plot(theta,F1, 'b' );xlabel( 'theta/radian' ); ylabel( 'amplitude' ); legend( 'n=16' );。
实验四、电波天线特性测试一、实验原理天线的概念无线电发射机输出的射频信号功率,通过馈线输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。
选择合适的天线天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。
具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。
选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。
天线的方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。
衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。
全向天线由于其无方向性,所以多用在点对多点通信的中心台。
定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。
垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图。
立体方向图虽然立体感强,但绘制困难,平面方向图描述天线在某指定平面上的方向性。
天线的增益增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。
第一篇:天线的方向图测量(设计性)试验理学院材料物理专业近代物理实验(设计性)试验报告2012年6月23号中国石油大学近代物理实验报告班级:材料物理10-2 姓名:同组者:设计性实验不同材质天线的方向图测量(measurement of antenna parameters)【中国石油大学(华东)理学院材料物理专业10-2 】摘要:天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。
任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。
但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低。
天线辐射的是无线电波,接收的也是无线电波,然而发射机通过馈线送入天线的并不是无线电波,接收天线也不能把无线电波直接经馈线送入接收机,其中必须进行能量的转换。
研究天线问题,实质上是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的天线特性。
我们知道电磁场满足麦克斯韦(Maxwell)方程组。
因此,求解天线问题实质上是求解满足一定边界条件的电磁场方程,它的理论基础是电磁场理论。
研究天线主要是得到天线的相关特性,天线特性一般由电路特性和辐射特性两个方面表征。
电路特性包括天线的输入阻抗、效率、频率宽度和匹配程度等;辐射特性包括方向图、增益、极化、相位等,为了达到最佳的通信效果,要求天线必须具备一定的方向性,较高的转换效率,以及满足系统工作的频带宽度。
根据无线电技术设备的任务不同,常常要求天线不是向所有方向均匀地辐射(或对所有方向具有同等的接受能力),而是只向某个特定的区域辐射(或只接受来自特定区域的无线电波),在其它方向不辐射或辐射很弱(接受能力很弱或不能接收),也就是说,要求天线具有方向性。
天线所辐射的无线电波能量在空间方向上的分布,通常是不均匀的,这就是天线的方向性。
即使最简单的天线也有方向性,完全没有方向性的天线实际上不存在。