常用塑胶件结构设计
- 格式:ppt
- 大小:10.83 MB
- 文档页数:78
塑胶件结构设计方案引言塑胶件在各个工业领域广泛应用,其结构设计方案对产品质量和成本控制有着重要影响。
本文将针对塑胶件结构设计方案进行详细讨论,探讨结构设计原则、注意事项以及常用的设计方法。
结构设计原则1. 符合产品功能和使用要求在进行塑胶件的结构设计时,首先需要确保塑胶件能够满足产品所需的功能要求。
例如,如果塑胶件用于承载重量,则需要考虑其强度和刚度;如果用于密封材料,则需要考虑其密封性能。
2. 合理利用材料在塑胶件的结构设计过程中,要充分利用材料的性能,尽量减少材料的浪费。
通过合理的形状设计、壁厚控制和孔洞设置等手段,达到最佳的材料利用效果。
3. 提高设计可生产性在塑胶件结构设计中,需要考虑到产品的可生产性。
合理的结构设计能够简化生产工艺、降低制造成本,并且提高产品的生产效率。
4. 考虑装配和维修性在塑胶件的结构设计过程中,需要考虑到产品的装配和维修性。
合理的结构设计可以使得塑胶件易于装配,并且方便进行维修和更换。
结构设计注意事项1. 壁厚控制塑胶件的壁厚对其性能和生产工艺有着重要影响。
过厚的壁厚会增加材料的消耗,并降低塑胶件的强度和刚度;而过薄的壁厚则容易导致塑胶件的变形和破裂。
因此,在结构设计过程中,需要合理控制塑胶件的壁厚,以实现最佳的性能和生产效果。
2. 强度和刚度要求根据不同的使用场景和功能要求,需要合理设计塑胶件的强度和刚度。
通过在关键部位增加加强结构或调整几何形状,可以满足产品的强度和刚度要求。
3. 模具设计在进行塑胶件结构设计时,需要考虑到制造过程中所需的模具设计。
合理的塑胶件结构设计能够简化模具结构,降低模具制造成本,并提高生产效率。
4. 表面处理和装饰塑胶件在设计过程中需要考虑到表面处理和装饰要求。
通过合理的设计,可以方便后续的表面处理(如喷塑、镀银等)和装饰操作,提高产品的美观性和附加值。
塑胶件结构设计方法1. 结构拓扑优化结构拓扑优化是一种常用的塑胶件结构设计方法。
通过应用有限元分析和优化算法,将原始的结构进行优化,以实现最佳的结构形式和性能。
2.4,扣位2.4.1,扣位也称卡扣,是塑胶件连接固定的常用结构,在强度要求不高的情况下可以用于代替螺丝固定.扣位设计在于“扣”,需要结合紧密,保证测试强度,达到安装目的即可.卡扣常做在装饰件固定,面底壳组装,屏固定,按键限位,盖体扣合,方向球等结构处.2.4.2,卡扣分公扣,母扣,公扣为凸,母扣为凹.卡扣原理:扣合前:有导向斜角引导扣合方向,公母扣均做导入角,一般取60°,45°.扣合中:公扣弹性臂变形压入,弹性臂要保证变形,强度要足够,一般变形量≧扣合量.扣合后:公扣凸与母扣凹贴合,分离方向不易取出,要求扣合面或扣合角小于导向斜角.2.4.3,卡扣常见形式及尺寸a.装饰件扣合,一般为一端插入,另一端扣合,扣合量0.3-0.7mm,插入0.6-1.5mm,如装饰片,电池盖,屏固定及充电器面底壳扣合等,也有全扣位结构,扣位较多,还会增加辅助导向骨.如手机盖,在此不做介绍.图2.4.3ab.下图结构常见内部隐藏扣,不易拆卸,死扣结构;在公扣部件上做插穿结构,可通过插穿孔方便拆卸.如路由器将公扣结构作在面壳壁厚内侧,母扣做在底壳内部,很难拆卸.液晶显示屏外壳也做类似死扣.图2.4.3bc.下图结构常见面底壳组装,第一组图在组合后常会在公扣端加管位骨限制错开,第二组则可以不用特别要求.母扣与公止口组合,公扣与母止口组合;和母扣与母止口组合,公扣与公止口组合的两种情况可以按下面两组图结构进行相应修改即可,安装方式类似.图2.4.3cd.强脱扣位,由材质,韧性决定,材质越软可以强脱越多.一般单边强脱ABS:0.3mm,PC:0.5,PP:0.8, TPE:1.5等,强脱同所承载的壁厚韧性有关,韧性足可以稍微加大强脱深度.具体依结构实际情况定.图2.4.3de.手感扣,通常作在滑动结构上,如电池盖,旋转环等结构.一端为弹扣状,另一端为齿或圆柱.另一种不作弹扣,直接强扣强出,扣合量一般在0.3-0.8之间.F.其他常见扣:2.4.4,卡扣设计考虑要素卡扣需要考虑布局数量位置,安装形式,安装强度,注意事项:a.规则外形,布局按右图方形圆形卡扣分布,方形壳体宽度≤20,宽度不做扣位;20<壳体宽度≤50,作1至2个扣位;圆形壳体一般扣位会均布,如做防呆,可以将扣位稍微移动,保证扣位分布均匀.b.不规则外形,按装配方向选择安装形式,曲线边凸凹处易出现翘曲,受力错位脱开问题,常做扣位+管位骨结构;c.扣位位置尽量靠近转角,防止翘曲,并与螺钉配合组装;卡扣一般在保证强度情况下尽量作少.d.卡扣安装形式与正反扣,要考虑组装,拆卸的方便,考虑模具的制作;e.卡扣处注意防止缩水与熔接痕;f.卡扣斜顶运动空间不小于5,一般取值8,退位不能有干涉,最好为平面,;g.在卡扣上非安装边做R角,不要干涉扣合过程.h.扣位导正,特征:止口,管位骨等,止口,管位骨在上述有说明.。
塑胶产品结构设计--卡扣塑胶产品结构设计卡扣在塑胶产品的结构设计中,卡扣是一种常见且重要的连接方式。
它不仅能够实现产品的快速装配和拆卸,还能在一定程度上保证产品的结构稳定性和密封性。
接下来,让我们深入了解一下塑胶产品结构设计中的卡扣。
一、卡扣的定义与作用卡扣,简单来说,是通过塑胶部件自身的弹性变形,实现两个或多个部件之间的连接或固定。
其作用主要体现在以下几个方面:1、装配便捷性:相较于传统的螺丝连接或胶水粘接,卡扣能够大大提高装配效率,减少装配时间和成本。
2、可拆卸性:在需要维修、更换部件或回收产品时,卡扣连接允许部件轻松分离,而不会对产品造成损坏。
3、增强结构稳定性:合理设计的卡扣可以在产品使用过程中提供一定的支撑和固定,增强整体结构的稳定性。
4、降低成本:减少了螺丝、胶水等附加连接件的使用,降低了材料和生产成本。
二、卡扣的分类根据不同的结构和工作原理,卡扣可以分为多种类型,常见的有以下几种:1、悬臂卡扣这是最常见的一种卡扣类型。
它通常由一个悬臂梁和一个卡钩组成。
在装配时,悬臂梁发生弹性变形,卡钩卡入对应的卡槽中,实现连接。
2、环形卡扣环形卡扣呈环状结构,通过自身的弹性收缩或扩张来实现与其他部件的连接。
3、扭转卡扣这种卡扣通过部件的扭转来实现连接和固定,具有较好的抗振动和抗松动性能。
4、插销式卡扣类似于插销的工作原理,通过插入和拔出动作实现连接和分离。
三、卡扣设计的要点1、材料选择塑胶材料的特性对卡扣的性能有着重要影响。
一般来说,应选择具有较高弹性模量和良好韧性的材料,如 ABS、PC 等。
同时,还需要考虑材料的耐疲劳性和耐环境性。
2、尺寸设计卡扣的尺寸包括悬臂长度、厚度、卡钩尺寸等。
这些尺寸的设计需要综合考虑材料的力学性能、装配力的大小以及连接的可靠性。
过长或过短的悬臂、过大或过小的卡钩都可能导致卡扣失效。
3、脱模斜度在模具设计中,要为卡扣设计合适的脱模斜度,以保证产品能够顺利脱模,同时不影响卡扣的功能。
塑料制品的常见结构设计随着现代产业的不断发展,塑料制品已经成为人们生活和工作中必不可少的一种材料。
它具有质轻、强度高、耐热、耐腐蚀等特点,广泛应用于机车、汽车、飞机以及家居用品、电子产品等领域。
而对于塑料制品的结构设计,其主要的目的在于提高产品的性能、延长使用寿命和增加产品的美观度。
本文将介绍一些常见的塑料制品结构设计方法及其应用。
一、拉伸设计拉伸设计一般用于塑料制品的生产过程中,通过设计塑料的拉伸流程,来改变塑料的分子结构,从而改变其性能和品质。
在拉伸设计中,良好的拉伸流程设计能够使塑料分子链得到整齐有序地排列,提高产品的强度和韧性。
例如,汽车和航空工业中用的塑料材料,通常都经过拉伸设计,以满足其强度、刚度、韧性的要求。
二、杆塞设计在塑料制品的生产过程中,杆塞设计通常用于改善产品的表面和内部质量。
对于塑料制品来说,其内部因为生产过程中加热和冷却的不均匀,可能会出现焊接痕迹、气泡、瑕疵等质量问题,杆塞设计则可通过加入杆塞,改善产品质量。
其设计原理为,通过计算产品内部的气流、温度等信息,确定塑料材料流动的方向、速度及压力等参数,以实现塑料内部的均匀化,达到优化产品内部结构的效果。
三、针轮设计针轮设计是一种常用于塑料制品挤压成型中的提高产品质量的方法。
它通过改善挤压过程中塑料流动的方向和速度,使得塑料分子链得到更加有序地排布,从而提高产品的强度和韧性。
其中,针轮是双螺杆挤出机的关键部件,在挤出过程中不断旋转,挤出材料。
针轮设计的核心在于,通过调节针轮的几何参数,使得塑料在针轮的作用下能够得到更充分的塑性变形和拉伸效应,达到优化材料微观结构的效果。
四、辊子设计辊子设计通常应用于塑料薄膜的生产过程中。
塑料薄膜是一种高强度、美观、防水、防镜面反射等重要用途的塑料制品,其质量关键在于生产过程中的辊子设计。
在辊子设计中,优秀的辊子设计能够使塑料薄膜表面均匀、色彩鲜艳、质地光滑。
其设计原理为,在制膜过程中,通过调整压力、速度和温度等参数,使辊子能够完全与塑料材料接触,并实现微观结构的改变,从而优化防水、防结霜以及降低声学反射等性能。
塑料产品结构设计资料目录一、零件壁厚 (1)二、脱模斜度 (4)三、圆角设计 (5)四、加强筋的设计 (7)五、支柱的设计 (8)六、螺丝柱的设计 (9)七、孔的设计 (10)八、止口的设计 (11)九、卡扣的设计 (13)十、反止口的设计 (18)零件设计必须满足来自于零件制造端的要求,对通过注射加工工艺而获得的塑胶件也是如此。
在满足产品功能、质量以及外观等要求下,塑胶件设计必须使得注射模具加工简单、成本低,同时零件注射时间短、效率高、零件缺陷少、质量高,这就是面向注射加工的设计。
现将详细介绍塑胶件设计指南,使得塑胶件设计是面向注射加工的设计。
一、零件壁厚在塑胶件的设计中,零件壁厚是首先考虑的参数,零件壁厚决定了零件的力学性能、零件的外观、零件的可注射性以及零件的成本等。
可以说,零件壁厚的选择和设计决定了零件设计的成功与失败。
1、零件壁厚必须适中由于塑胶材料的特性和注射工艺的特殊性,塑胶件的壁厚必须在一个合适的范围内,不能太薄,也不能太厚。
壁厚太小,零件注射时流动阻力大,塑胶熔料很难充满整个型腔,不得不通过性能更高的注射设备来获得更高的充填速度和注射压力。
壁厚太大,零件冷却时间增加,零件成型周期增加,零件生产效率低;同时过大的壁厚很容易造成零件产生缩水、气孔、翘曲等质量问题。
零件壁厚可根据材料的不同及产品外形尺寸的大小来选择,其范围一般为0.6~6.0mm,常用的厚度一般在1.5~3.0mm之间。
表1是常用塑料件料厚推荐值,小型产品是指最大外形尺寸L<80.0mm,中型产品是指最大外形尺寸为80.0mm<L<200.0mm,大型产品是指最大外形尺寸L>200.0mm。
表1 常用塑料件料厚推荐值(单位mm)2、尽量减少零件壁厚决定塑胶件壁厚的关键因素包括:1)零件的结构强度是否足够。
一般来说,壁厚越大,零件强度越好。
但零件壁厚超过一定范围时,由于缩水和气孔等质量问题的产生,增加零件壁厚反而会降低零件强度。