排队论及其模型
- 格式:ppt
- 大小:2.58 MB
- 文档页数:171
排队论模型(⼀)基本概念⼀、排队过程的⼀般表⽰凡是要求服务的对象称为顾客,凡是为顾客服务的称为服务员⼆、排队系统的组成和特征主要由输⼊过程、排队规则、服务过程三部分组成三、排队模型的符号表⽰1、X:表⽰顾客到达流或顾客到达间隔时间分布2、Y:服务时间分布3、Z:服务台数⽬4、A:系统容量限制5、B:顾客源数⽬6、C:服务规则 FCFS先到先服务 LCFS后到先服务各种分布符号有:M-负指数分布;D-确定型; Ek-k阶埃尔朗分布;GI-⼀般相互独⽴分布;G-⼀般随机分布等。
这⾥k阶埃尔朗分布是为相互独⽴且服从相同指数分布的随机变量时服从⾃由度为 2k的χ2分布。
例如,M/M/1表⽰顾客相继到达的间隔时间为负指数分布、服务时间为负指数分布和单个服务台的模型。
D/M/C表⽰顾客按确定的间隔时间到达、服务时间为负指数分布和C个服务台的模型。
⾄于其他⼀些特征,如顾客为⽆限源或有限源等,可在基本分类的基础上另加说明。
M/M/1排队模型•到达时间泊松过程(Poisson process);•服务时间是指数分布(exponentially distributed);•只有⼀部服务器(server),遵循先到先服务规则•队列长度⽆限制•可加⼊队列的⼈数为⽆限四、排队系统的运⾏指标1、平均队长:指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的数学期望,记做Ls2、平均排队长:指系统内等待服务的顾客数的数学期望,记做Lq3、平均逗留时间:顾客在系统内逗留的时间(包括排队等待的时间和被服务的时间)的数学期望,记做Ws4、平均等待时间:指⼀个顾客在排队系统中排队等待时间额数学期望,记做Wq5、平均忙期:指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机构再次空闲的时间)长度的数学期望,记做Tb6、系统的状态:指系统中顾客数(⼆)输⼊过程与服务时间的分布当输⼊过程是泊松流的时候,顾客相继到达的时间间隔T必服从指数分布(三)⽣灭过程⼀、定义(四)M/M/s等待制排队模型⼀、单服务台模型1、定义2、队长的分布⼆、⼏个重要的数量指标1、平均队长2、平均排队长3、平均逗留时间4、平均等待时间5、重要关系6、忙期和闲期平均逗留时间等于平均忙期三、多服务台模型(M/M/s/∞)。
第四章 排队模型两类排队模型:1. Markov 排队模型2. 非Markov 排队模型Markov 排队模型:4-0 Little 定理1961 年 J.D.Little 证明 1974 年 S.Slidhan 一般性证明定理 : 在极限平稳状态下,排队系统内顾客平均数L 系 和 顾客在系统内平均逗留时间W 系 之间的关系,不管到达流的分布如何,也不管服务规则如何,均有以下关系:为到达流的强度系系λλ14.-=L W证明:设 X(t) ---- t 时刻前到达的瞬时顾客数, Y(t)--- t 时刻前离开的瞬时顾客数.Y(t)在稳定后,流入与流出的顾客数应相等, 则在t 时刻留在系统内的顾客数为:Z(t)=X(t)-Y(t)在足够长的时间T 来考虑有:队队系系系系同理可以证明所以有逗留时间系统内每个顾客的平均时间的总和所有顾客在系统内逗留时间个顾客在系统内的逗留第其中的小面积的总和高度为长度为阴影部分的面积W L W L W Tt t i t t Tt T t T T dtt Z T L iiii i iiii i T.:.:...,:.11]1*[1][1)(10λλλλλ==--=--=⨯====∑∑∑∑⎰4-1 M/M/1/0 (单通道损失制)服务员数:n=1 队长:m=0M -- 到达流为Poisson,流强λM -- 服务时间服从指数分布:)0()(>=⋅-t e t f t μμ 状态为系统内顾客数,I={0,1}"0"表示服务员闲,其概率为:P 0(t);"1"表示服务员忙,其概率为:P 1(t); 状态转换图:Fokker-Plank k 方程:可得:)0(1)0(:341)()(24)()()(14)()()(1010011100==-=+-+-=-+-=∙∙P P t P t P t P t P t P t P t P t P 初始条件λμμλ联立求解4-1与4-3得:λμλλμλμμλλμλλλμλλμμμμλμλμλμλ+=∞+=∞∞→==+-+=-=+++=-++-=-+-=+----+-∙∙)(,)()0(,1)0(0)(1)()(44)()()()(1[)()(1010)(01)(000000P P t P P t e t P t P e t P t P t P t P t P t P tt定义:系统负载能力:μλρ=指标:(1) ρμλμ+=+===110P Q 请求服务的顾客数被服务顾客数 (2) 绝对通过能力:ρλμλλμλ+=+===1Q A 数单位时间被服务的顾客(3) 损失概率(即顾客来时,系统服务员忙,顾客离去)ρρμλλμλμ+=+=+-=-==1111Q P P 损例一:一条电话线,呼叫率为:0.8次/分(λ=0.8),每次平均通话时间为:τ=1.5分。
运筹学中的排队论分析与应用运筹学是一门研究如何最优化决策的学科。
在现代社会中,许多场景下都存在排队现象,例如银行、超市、机场等场所。
排队论作为运筹学的一个重要分支,专门研究如何通过合理的排队策略来优化服务效率与用户体验。
本文将介绍排队论的基本原理、应用场景以及如何利用排队论进行实际问题的分析与解决。
一、排队论的基本原理排队论是研究排队系统的理论与方法,其基本原理包括排队模型、排队规则以及排队指标。
1. 排队模型排队模型是对排队系统进行抽象和建模的过程,常用的排队模型有M/M/1、M/M/c、M/G/1等。
其中,M表示顾客到达过程符合泊松分布,而服务过程符合指数分布;1表示一个服务台,c表示多个服务台;G表示总体服从一般分布。
2. 排队规则排队规则是指在排队系统中,顾客到达和离开的规则。
常用的排队规则有先到先服务(First-Come-First-Serve,简称FCFS)、最短作业优先(Shortest Job First,简称SJF)、优先级法则等。
3. 排队指标排队指标是对排队系统性能的度量,常用的排队指标包括平均等待时间、平均逗留时间、系统繁忙度等。
这些指标可以帮助我们评估排队系统的效率,并进行比较和优化。
二、排队论的应用场景排队论的应用场景非常广泛,几乎可以涵盖各个行业。
下面以几个典型的应用场景为例,介绍排队论在其中的分析与应用。
1. 银行排队银行是排队论的典型应用场景之一。
通过排队论的分析,银行可以确定合理的柜台数量和工作人员配置,以减少客户的等待时间和提高服务效率。
此外,银行还可以考虑引入预约系统、自助服务等方式,进一步优化排队系统。
2. 售票窗口排队售票窗口也是一个常见的排队场景,如电影院、火车站等。
利用排队论,可以根据顾客到达的速率和服务时间的分布,预测等待时间,并提前安排足够的窗口进行服务,以提高售票效率和用户体验。
3. 交通信号灯优化交通信号灯的优化也可以借助排队论的方法。
通过对道路上车辆到达和通过的流量进行统计和分析,可以调整信号灯的信号周期和配时方案,以减少交通拥堵和减少等待时间。
排队论模型1. 引言排队论是运筹学中的一个重要分支,研究的是排队系统中顾客的到达、等待和服务过程。
在现实生活中,我们经常会遇到排队的场景,如银行、超市、医院等。
通过排队论模型的分析,可以帮助我们优化服务过程,提高效率和顾客满意度。
本文将介绍排队论模型的基本概念和常用模型。
2. 基本概念2.1 排队系统排队系统是指顾客到达一个系统,并等待被服务的过程。
一个排队系统通常包含以下几个要素:•到达过程:顾客到达系统的时间间隔可以是随机的,也可以是确定的。
•排队规则:系统中的顾客通常按照先来先服务原则排队。
•服务过程:系统中的服务员或服务设备为顾客提供服务,服务时间也可以是随机的或确定的。
•系统容量:排队系统中通常有一定的容量限制,即同时能够容纳的顾客数量。
2.2 基本符号在排队论中,通常使用以下符号来表示不同的概念:•λ:到达率,表示单位时间内系统的平均到达顾客数量。
•μ:服务率,表示单位时间内系统的平均服务顾客数量。
•ρ:系统利用率,表示系统的繁忙程度,计算公式为ρ = λ / μ。
•L:系统中平均顾客数,包括正在排队等待服务的顾客和正在接受服务的顾客。
•Lq:系统中平均等待队列长度,即正在排队等待服务的顾客数。
•W:系统中平均顾客逗留时间,包括等待时间和服务时间。
•Wq:系统中平均顾客等待时间,即顾客在排队等待服务的平均时间。
3. 常用模型3.1 M/M/1模型M/M/1模型是排队论中最简单的模型之一,其中M表示指数分布。
M/M/1模型满足以下几个假设:•顾客到达率λ满足均值为λ的指数分布。
•服务率μ满足均值为μ的指数分布。
M/M/1模型的特点是顾客到达率和服务率是独立的,且符合指数分布。
根据排队论的理论分析,可以计算出系统的性能指标,如系统利用率、平均顾客数、平均等待队列长度等。
3.2 M/M/c模型M/M/c模型是M/M/1模型的扩展,其中c表示服务员的数量。
M/M/c模型满足以下假设:•顾客到达率λ满足均值为λ的指数分布。
队列问题的公式通常用于解决一些具有队列特性的数学问题。
下面列举几个常见的队列问题公式:
1.排队论中的M/M/1公式:M/M/1模型表示一个系统有无限个顾客和有限
个服务台,顾客以泊松流到达,服务时间和服务时间是相互独立的,服从
相同的指数分布。
该模型可以用以下公式表示:L = λW,其中L是队列长
度,λ是平均到达率,W是平均服务时间。
2.排队论中的M/M/c公式:M/M/c模型表示一个系统有无限个顾客和c个服
务台,顾客以泊松流到达,服务时间和服务时间是相互独立的,服从相同
的指数分布。
该模型可以用以下公式表示:L = (c / (c - λ)) * λ * W,其中L
是队列长度,λ是平均到达率,W是平均服务时间。
3.优先队列公式:优先队列是一种数据结构,其中元素具有优先级。
最常见
的优先队列公式是查找具有最大优先级的元素的时间复杂度为O(log n),插入新元素的时间复杂度为O(log n),删除具有最大优先级的元素的时间复杂度为O(log n)。
4.循环队列公式:循环队列是一种使用固定大小的数组实现队列的方法,其
中头尾指针可以指向队列的开头和结尾。
循环队列的公式包括:front =
(front + enqueue) % size和rear = (rear + enqueue) % size,其中front是头指针,rear是尾指针,enqueue是入队操作,size是数组大小。
以上是一些常见的队列问题公式,它们可以帮助我们解决一些具有队列特性的数学问题。
排队论模型排队论也称随机服务系统理论。
它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。
现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。
排队的内容虽然不同,但有如下共同特征:➢有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。
➢有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。
由顾客和服务员就组成服务系统。
➢顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。
排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。
一、排队论的一些基本概念为了叙述一个给定的排队系统,必须规定系统的下列组成部分:➢输入过程即顾客来到服务台的概率分布。
排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。
我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。
所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。
➢排队规则即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。
所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。
等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。
➢服务机构服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。
和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。
若以ξn表示服务员为第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξn},n=1,2,…所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ1,ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{Tn}也是独立的。
医院排队论模型(1)医院排队论模型指的是人在医院排队就诊的过程中,如何利用排队论模型来优化排队过程,提高就诊效率,降低排队时间。
下面从排队论模型的三要素(到达率、服务率、队列容量)出发,探讨在医院排队过程中如何优化流程。
第一、到达率到达率指的是单位时间内到达就诊的人数。
在医院排队过程中,到达率的分析可以帮助医院预测每天需要接待的患者数量,从而根据就诊人数、科室人员数量等资源来合理安排诊疗流程,避免出现拥堵的情况。
在医院安排就诊计划时,可以根据就诊需求、人员数量、诊室开放时长等来制定排班计划,如早上安排主诊医生接待复杂病人,下午安排副诊医生接待一般患者等。
第二、服务率服务率指的是单位时间内完成服务的人数。
在医院排队过程中,每个病人的就诊时间不同,有的患者需要进行详细检查、化验,需要较长时间,有的患者可能只需要短暂检查,大约十几分钟左右。
因此,为了提高个体效率,医院可以根据病人种类、健康状况等特不同性制定不同的服务时间,避免患者等待时间过久。
医院服务行业,提高服务水平可以吸引更多患者就诊,轻松排队也能提高了患者就诊时的舒适度和安全感。
第三、队列容量队列容量指的是医院可以容纳等待就诊人数和等待空间。
医院到达的患者数量与就诊人数不匹配,往往会造成人流混乱,交通拥堵等问题。
因此,医院应该合理利用队列容量,充分利用场地现有资源,设置等待区域、设立排队标识等措施,通过这些技术手段,既可以避免人流混乱,也可以避免就诊过程中因不注意安全方面出现不必要的伤害。
以上是基本的医院排队论模型,通过对到达率,服务率和队列容量的分析可以合理安排医院就诊计划,优化流程,提高服务水平、减少等待时间,使得医院就诊流程得到良性循环。