超声波液位计原理
- 格式:doc
- 大小:43.50 KB
- 文档页数:8
超声波液位计的工作原理液位计工作原理超声波液位计是一种利用了超声波原理来进行测量液位的一种液位仪表,那么超声波液位计是如何工作的呢?超声波液位计的原理又是什么呢超声波液位计的工作原理:超声波液位计是一种利用了超声波原理来进行测量液位的一种液位仪表,那么超声波液位计是如何工作的呢?超声波液位计的原理又是什么呢?跟着中国传感器交易网的专家去了解一些基本知识。
超声波液位计的工作原理是通过一个可以发射能量波(一般为脉冲信号)的装置发射能量波,能量波遇到障碍物反射,由一个接收装置接收反射信号。
根据测量能量波运动过程的时间差来确定液(物)位变化情况。
由电子装置对微波信号进行处理,最终转化成与液位相关的电信号。
一次探头向被测介质表面发射超声波脉冲信号,超声波在传输过程中遇到被测介质(障碍物)后反射,反射回来的超声波信号通过电子模块检测。
通过专用软件加以处理,分析发射超声波和回波的时间差,结合超声波的传播速度,可以精确计算出超声波传播的路程,进而可以反映出液位的情况。
超声波液位计特点:多脉冲低电压多点发射发射电路,双平衡抑制噪声多点接收电路(QF-9000系列):提高仪器可靠性,解决不物位不平整测量不准确的难题,并大大加强抗干扰能力,可在变电站发射塔附近稳定工作自动功率调整、增益控制、温度补偿。
先进的检测技术,丰富的软件功能适应各种复杂环境。
采用新型的波形计算技术,提高仪表的测量精度。
具有干扰回波的抑止功能保证测量数据的真实。
16位D/A转换,提高电流输出的精度和分辨率。
传感器采用四氟乙烯材料,可用于各种腐蚀性场合。
多种输出形式:可编程继电器输出、高精度4-20mA电流输出、Rs-485数字通信输出分体超声波液位探头。
磁翻板液位计使用注意事项磁翻板液位计适用于容器内液体介质的液位测量除现场显示外,可远传4~20mA电信号、配液位控制器可输出开关量信号。
磁翻板液位计在使用中会遇到很多的问题,如何解决这些问题?需要我们在日常操作中要注意以下4点,现在就为大家详细介绍一下这方面的情况:第一、磁翻板液位计是在较高压力下工作的比较简单的直接指示式物位仪表,其可靠性和经济性是其它仪表不能相比的,作为基本的液位指示仪表在比较简单液位测量场合和自动化程度很高的大型工程项目中都不可缺少。
超声波液位计测量的工作原理产品特点及应用液位计工作原理超声波液位计是一系列非接触,高牢靠、低价格、免维护的物位仪,它彻底解决了由压力变送器、电容式浮子式等测量方式带来的缠绕、泄露、接触介质、昂贵的维护等麻烦,目前,要求对于液位和物位进行无接触式测量的现场越来越多,由于超声波液位计不必接触工业介质就能够充分大多数密闭或者打开容器里的物位测量要求,并且目前的科学技术已经进展到超声波系列的物位测量仪器可以测量几厘米到几十厘米的范围,而且在恶劣条件下也表现出了非凡的本领,因些在很多对于安装环境多而杂的情况下,超声波液位计成为了紧要的选用类型。
关于超声波液位计我们需要了解的东西很多,下面对大家介绍一下超声波液位计原理、特点、应用的缺陷和不足、适应场合注意事项、使用的环境条件、选择方法、故障及解决方法。
超声波液位计原理超声波液位计安装于容器上部在电子单元的掌控下,探头向被测物体发射一束超声波脉冲。
声波被物体表面反射,部分反射回波由探头接收并转换为电信号。
从超声波发射到被重新被接收,其时间与探头至被测物体的距离成正比。
电子单元检测该时间,并依据已知的声速计算出被测距离。
通过减法运算就可得出物位值。
由于温度对声速具有影响,所以仪表应测量温度,以修正声速。
超声波液位计的特点1、高质量零件:电路设计从电源部分起就选用高质量的电源模块,元器件选择进口稳定牢靠的器件,完全可以替代同类型国外进口仪表。
2、超高精度:我公司拥有的声波智能器,使仪表的精度大大提高,液位精度达到0.25%,能够抗种干扰波。
3、专业的声波智能技术:的声波智能技术软件可进行智能化回波分析,无需任何调试及其它的特别步骤,此技术具有动态思维、动态分析的功能。
4、适应安全稳定:超声波液位计是一种非接触仪表,不跟液体直接接触,因此故障率低。
超声波液位计应用的缺陷和不足1、超声波本质是一种机械波,传播需要介质,那么超声波液位计大的应用缺陷是不能用于真空环境和传播介质变化(如强挥发性)的环境;2、超声波液位计的换能器由压电陶瓷和塑性外壳灌封而成,其不能应用于高温高压环境,一般超声波液位计的大耐受温度为80℃;3、超声波是一种机械波,在传播的过程中会存在衰减,考虑到精度和量程的冲突性,超声波液位计实际应用中量程范围较小,精度稍差,所以其不能用于大量程和高精度的场合;4、超声波液位计在实际应用中测量的时间量,结合声速,可以得出距离值(时间声速=距离),而声速随着介质和温度变化,所以超声波液位计也不能应用于温度频繁变化的场合。
超声波液位原理
超声波液位计是一种常用的液位测量仪器,它利用超声波的反射原理
来测量液位高度。
其工作原理是将超声波发射到液面上,当超声波遇
到液面时会发生反射,反射回来的超声波被接收器接收并转换成电信号,然后通过计算得出液位高度。
超声波液位计的主要组成部分包括发射器、接收器、传感器和处理器。
其中,发射器负责向液面发射超声波信号;接收器则负责接收反射回
来的超声波信号,并将其转换成电信号;传感器则将电信号传输给处
理器进行计算和处理。
在使用过程中,需要注意一些问题。
首先要选择合适的工作频率和探
头大小,以便更好地适应不同类型和密度的介质。
同时,在安装时也
需要注意避免干扰源和障碍物对测量结果产生影响。
另外,在运行过
程中还需要进行定期校准和维护以确保测量精度。
总之,超声波液位计是一种可靠、准确且易于安装和维护的液位测量
仪器,广泛应用于化工、制药、食品等行业的液体储罐、反应釜等设
备中。
超声波液位计工作原理超声波液位计是一种常用的液位检测设备,它利用超声波的传播特性来实现对液体或固体物料的非接触式测量。
超声波液位计主要由超声波发射器、接收器、信号处理器和显示器等部件组成,其工作原理如下:1. 发射超声波。
超声波液位计首先通过超声波发射器发射一束超声波信号,这个信号会以一定的频率和速度在空气和液体之间传播。
超声波的传播速度在空气和液体中会有所不同,这一点将在后续的测量中得到充分利用。
2. 超声波的传播。
当超声波信号遇到液体表面时,一部分超声波被液体表面反射回来,另一部分则穿过液体继续向下传播。
接收器接收到反射回来的超声波信号,并将其转化为电信号。
3. 计算液位。
信号处理器会根据接收到的超声波信号计算出液体表面到传感器的距离,利用超声波在空气和液体中的传播速度差异来确定液位高度。
这样,超声波液位计就能够准确地测量出液体的液位高度。
4. 显示液位。
最后,超声波液位计会将测得的液位高度信息显示在显示器上,供操作人员参考。
有些超声波液位计还可以通过输出接口将数据传输给其他设备,实现远程监控和控制。
总的来说,超声波液位计利用超声波的传播特性,通过发射、接收、处理和显示等步骤,实现了对液体或固体物料的精确测量。
它具有非接触式测量、高精度、稳定可靠等优点,广泛应用于化工、石油、食品、医药等行业的液位监测和控制中。
超声波液位计的工作原理相对简单,但在实际应用中需要注意避免干扰因素对测量结果的影响。
例如,超声波在传播过程中会受到温度、压力、气泡、波纹等因素的影响,需要根据实际情况选择合适的安装位置和工作参数,以确保测量的准确性和稳定性。
总之,超声波液位计作为一种先进的液位检测设备,其工作原理简单而有效。
通过合理的安装和使用,可以实现对液体或固体物料的准确、稳定的测量,为工业生产和安全管理提供重要的技术支持。
超声波液位计盲区原理超声波液位计是一种常用的液位测量仪器,它通过发送超声波信号并接收反射的信号来测量液体的高度,从而实现液位的准确测量。
然而,超声波液位计在测量过程中存在一个盲区,即无法准确测量液位的一段距离。
本文将从原理、影响因素以及应对措施等方面详细介绍超声波液位计的盲区问题。
超声波液位计的盲区是指在其测量范围内,由于超声波传播的特性等原因,无法测量的一段距离。
这段距离被称为盲区。
超声波液位计的工作原理是利用超声波的传播速度和反射特性来计算液位的高度。
当超声波发射器发出超声波信号后,它会沿着空气和液体的界面传播,当遇到液体时部分能量被反射回来,超声波接收器接收到这部分反射信号后,根据传播时间和声速计算出液位的高度。
然而,由于超声波在传播过程中会受到多种因素的影响,如温度、气压、液体性质等,这些因素会导致超声波的传播速度发生变化,从而影响液位计的测量精度。
在一些特定的情况下,由于液体的特性或环境的限制,超声波无法正常传播,导致测量结果不准确,形成了盲区。
超声波液位计的盲区问题主要受到以下几个因素的影响:1.液体性质:不同的液体具有不同的声阻抗和声速,这会影响超声波在液体中的传播速度。
一些特殊性质的液体,如泡沫状液体或高粘度液体,会导致超声波的能量大量散射或吸收,从而产生盲区。
2.液位计的频率:超声波液位计的频率选择也会影响盲区的大小。
一般来说,高频率的超声波波长较短,能够更好地穿透液体,但对于特定液体来说,高频率也可能会增加盲区的大小。
3.传感器布置:超声波液位计的传感器布置也会对盲区产生影响。
传感器与液体表面的距离以及传感器的尺寸都会对盲区大小产生影响。
例如,传感器与液体表面距离较近时,会形成较大的盲区。
针对超声波液位计的盲区问题,可以采取以下措施来解决:1.选择合适的超声波液位计:根据实际需求选择合适的超声波液位计,考虑到液体性质、温度等因素,选择具有较低盲区的液位计。
2.优化传感器布置:合理安装超声波液位计的传感器,确保传感器与液体表面的距离适当,避免形成较大的盲区。
超声波液位测量原理
超声波液位测量原理是通过利用高频振荡的超声波在介质中的传播和反射来确定液位高度的一种物理原理。
由于超声波的穿透性强,在介质中传播时会受到介质的反射和散射,同时也受到液位高度的影响。
超声波液位测量装置通常由超声波发射器、接收器和信号处理器组成。
超声波发射器通常是以固定的频率产生高频超声波,发射波通过液体向下传递并在液面受到反射,反射波向上穿过液体再次到达发射器,被接收器接收。
接收器接收到反射波后,将信号传递给信号处理器进行处理。
处理器首先计算发射波和反射波之间的时间差,通过速度和时间的乘积获得液位的高度。
当液位上升时,反射波的时间延迟会增加,计算得到的液位也会增大。
超声波液位测量原理的优点在于测量准确度高、响应速度快、适用范围广、维修成本低等。
因此在化工、石油、制药等各种行业中得到了广泛的应用。
在实际使用中,超声波液位测量仪的使用需要考虑环境条件和液位测量介质的物理特性,以保证测量的准确性和稳定性。
总之,超声波液位测量原理是将超声波在介质中的传播和反射来进行液位测量。
在具体使用中需要注意环境条件和液位介质的特性,以提高测量的准确性和稳定性。
超声波外侧液位计的工作原理
1、工作原理
超声波外测液位计,是一种利用声呐测距原理,“微振动分析”专利技术从容器外测量液位的智能化现场变送器式仪表,如图1所示。
超声波外测液位计仪表主机安装在被测容器附近,测量探头安装在容器外壁上,探头能产生高频声呐信号穿透容器壁在液体中形成回波,经过液面反射回来后由探头检测到回波信号。
回波信号通过先进的智能化处理后计算出时间t,系统根据公式H=v×(t/2-tg/2)×α计算出液面高度,实现测距。
式中:
H为液位高度;
v为声呐波在液体中传播的速度;
t为声呐波从发射到返回所用的时间;
tg为声呐波在罐壁中的传输时间;
α为修正系数。
计算的高度被转换成模拟信号送至SIS系统,实现系统对液位的连锁控制。
超声波外侧液位计具有专利技术,克服了声呐信号穿透容器壁的大幅衰减及液体声速改变等干扰因素。
可识别和拒绝容器壁余振、多重回波、虚假回波等干扰,智能的回波识别算法,确保液面总能得到有效的跟踪和监测。
当液体的温度、成分变化较大时,会对声呐信号在液体里的传播速度产生较大影响,带来测量误差。
超声波外侧液位计具有专利的“自校准”精度技术,通过在储罐上找出一段已知长
度作为标尺,得出当前状态下的传播速度,根据计算液位测量结果进行实时补偿修正,从而消除液体温度和成分变化对测量精度的影响。
自动校准功能,能够始终保证仪表液位测量的高精度。
超声波液位计测量原理一、引言超声波液位计是一种非接触式的液位测量仪器,它利用超声波在空气和液体介质中传播速度不同的特性来测量液位高度。
该技术广泛应用于化工、石油、食品等工业领域,具有测量范围广、精度高、稳定可靠等优点。
二、超声波液位计的基本构成和工作原理超声波液位计主要由发射器、接收器、信号处理单元和显示单元四部分组成。
其中发射器和接收器分别安装在容器壁上,通过信号处理单元将发射器发出的超声波信号转化为电信号,并经过滤波、放大等处理后送至显示单元进行显示。
超声波液位计的工作原理是利用超声波在空气和液体介质中传播速度不同的特性来测量液位高度。
当发射器向容器内部发出一束频率为f1的超声波信号时,这束信号会穿过空气层并到达液面,部分能量被反射回来并被接收器接收到。
由于在空气和液体介质中传播速度不同,因此反射回来的超声波信号会经过一定的时间延迟后才被接收器接收到。
根据声波在介质中传播的速度公式v=fλ,其中v为声速,f为频率,λ为波长,可以计算出液位高度h。
三、超声波液位计的工作原理详解1. 超声波发射器和接收器超声波发射器和接收器是超声波液位计中最基本的部分。
发射器主要由振动片、驱动电路等组成,其作用是将电信号转化为机械振动,并将振动能量传递给介质中的空气层。
接收器主要由振动片、前置放大电路等组成,其作用是将反射回来的机械振动转化为电信号,并进行放大处理。
2. 超声波在空气和液体介质中传播超声波是指频率高于20kHz的机械振动,在空气和液体介质中传播时具有不同的特性。
在空气中传播时,由于空气密度小、弹性模量小,导致声速较低;而在液体介质中传播时,则由于液体密度大、弹性模量大,导致声速较高。
因此,当超声波信号穿过空气层并到达液面时,其传播速度会发生变化。
3. 超声波在介质中的反射和衰减当超声波信号到达液面后,部分能量会被反射回来,并在空气中传回到接收器处。
由于超声波在介质中的传播存在一定的衰减现象,因此反射回来的超声波信号强度会比发射时要小。
超声波液位计原理、特点
1、原理
超声波的概念是与普通声波比较而言的,普通声波的频率是20HZ~20KHZ,而超声波的频率大于20KHZ,其每秒的振动次数(频率)甚高,超声波和普通声波在本质上是一至的,它们的共同点是都是一种机械振动,通常以纵波的方式在介质内传播,是一种能量的传播形式,其不同点是超声波频率高,波长短,在相同介质内传播的距离比普照通声波长,超声波液位计正是利用这一原理制成的,探头向被测物表面发射超声波脉冲信号,经过传导介质到达被测物表面,液位计接收从被测物表面反射回来的回波,测量出超声波脉冲从发送到接收反射回波的时间差,(超声波脉冲以声波速度传播,从发射到接收到超声波脉冲所需时间间隔与换能器到被测介质表面的距离成正比。
此距离值S与声速C和传输时间T之间的关系可以用公式表示:S=CxT/2)反射回来的信号经过改进的算法进行处理,经内部逻辑运算,将这个时间差转换成距离,并以4~20mA的电流信号输出,从而增强了有效信号,更好地摒弃了无效的干扰信号。
2、特点
1、非接触式液位测量,可用于强腐蚀性、超纯、含泡沫、有蒸汽的特殊环境,安装方便、灵活。
2、发射的超声波脉冲有一定的宽度,使得距离换能器较近的小段区域内的反射波与发射波重迭,无法识别,不能测量其距离值。
这个区域称为测量盲区。
盲区的大小与超声波的量程有关。
超声波液位计测量原理
超声波液位计是利用超声波测量液体高度、罐体高度、物料位置的监测仪表。
适合各种腐蚀性、化工类场合,精度高,远传信号输出,PLC系统监控。
工作原理
超声波液位计的工作原理是由探头(换能器)发出高频超声波脉冲遇到被测介质表面被反射回来,部分反射回波被同一换能器接收,转换成电信号,并由声波的发射和接收之间的时间来计算传感器到被测液体表面的距离。
由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。
计算公式:
此距离值S与声速C和传输时间T之间的关系可以用公式表示: S=C×T/2
其中:S为距离值
C为声速
T为发射与接收之间的时间
由于发射的超声波脉冲有一定的宽度,使得距离换能器较近的小段区域内的反射波与发射波重迭,无法识别,不能测量其距离值。
这个区域称为测量盲区。
超声波液位计的安装
超声波液位计的安装一般有法兰和螺纹两种方式。
不推荐使用吊装。
安装时需要考虑盲区的影响,为了避开盲区,用加长导管安装的
时候,必须注意探头辐射面两端与导管断面两端形成的夹角要大于换能器的锐度角。
超声波液位计的特点
1、安装方便,测量精度高价格低廉;
2、对温度、粉尘、蒸汽、压力的影响较为敏感;
3、周围有强电压,强电流,强电磁干扰,尽量避免高电压,高电流及强电磁干扰、大风和太阳直晒、强震动的情况下测量值有较大误差。
化工小鱼塘编辑。
超声波液位计原理介绍超声波液位计是一种广泛应用于工业控制领域的仪器,用于测量液体或固体物体的高度或液位。
它利用超声波在空气和液体之间的传播速度差异,通过测量超声波的往返时间来计算出液体或固体物体的距离或液位。
工作原理超声波液位计的工作原理基于超声波的发送和接收,以及超声波在介质中的传播速度。
1.发送超声波:超声波液位计中的传感器会发送一束超声波信号。
这个超声波信号的频率通常在20kHz到200kHz之间,一般为40kHz。
这个频率的超声波在空气中能够传播很远,并且不会对人体产生伤害。
2.超声波的传播:一旦超声波信号被发送出去,它会以声速传播到液体表面,并经过液体之后继续传播到目标物体的表面或者反射回来。
在液体中超声波速度的传播速度通常是在1500 m/s 至 3400 m/s 之间,这个值可以根据液体的种类和温度而有所变化。
3.接收超声波:当超声波信号到达目标物体的表面后,它将会被反射回来。
超声波液位计中的传感器会接收到这个反射回来的超声波信号。
4.计算液位:通过测量超声波的往返时间,可以得到超声波在空气中传播的时间和在液体中传播的时间。
根据超声波在液体中的传播速度和往返时间,可以计算出液体的高度或者液位。
公式如下所示:液体高度 = (超声波往返时间 × 传播速度) / 2优点超声波液位计具有以下几个优点:1.非接触式测量:超声波液位计的传感器与液体之间不需要直接接触,因此可以避免传感器的损坏和液体的污染。
2.高精度测量:超声波液位计的传感器可以提供高精度的液位测量结果,通常在毫米或厘米级别。
3.可靠性强:超声波测量不受液体的颜色、透明度和波动等因素的影响,因此可以适用于不同类型的液体。
4.安装简便:超声波液位计可以通过固定在容器或管道的外壁上进行安装,不需要涉及复杂的安装步骤。
5.应用范围广:超声波液位计可以广泛应用于各种工业领域,例如化工、制药、食品等。
适用场景超声波液位计适用于以下场景:1.液体或固体物体高度测量:例如储罐、槽和容器等。
超声波液位原理
超声波液位是一种用于检测液位变化的测量技术,它利用超声波信号在物体表面反射,来测量液位变化。
它不仅可以测量低液位,还可以测量液位变化,从而实现实时的液位监控。
二、超声波液位测量原理
超声波液位测量根据“超声波的反射原理”进行测量,即将一定时间内发射的超声波信号,在液位表面反射,再发回测量仪件来实现测量。
超声波液位测量仪器,常用的有三种类型:
1、发射式,一般采用拾音器。
发射式超声波液位仪的拾音器将发射来的超声波信号,在液位表面反射,再收集反射信号,从而实现液位测量。
2、接收式,一般采用发射器。
发射式超声波液位仪的发射器,发射出超声波信号,液位表面反射,再发回测量仪来实现测量。
3、双向测量,利用发射器和拾音器一起实现测量。
双向测量模式可以实现精确测量,并可以完全避开屏蔽源的干扰来实现安全可靠的液位测量。
三、超声波液位测量应用
超声波液位测量技术应用非常广泛,可以用于水罐测量,也可以用于油罐、池、河流等水体测量,甚至可以应用于粮食仓库等粮食储存的液体测量,以及液化气罐的测量等等。
- 1 -。
超声波液位计测距原理液位计工作原理超声波液位计测距原理超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后碰到障碍物反射回来的时间,依据发射和接收的时间差计算启程射点到障碍物的实际距离。
由此可见,超声波测距原理与雷达原理是一样的。
测距的公式表示为:L=CT式中L为测量的距离长度;C为超声波在空气中的传播速度;T 为测量距离传播的时间差(T为发射到接收时间数值的一半)。
超声波测距紧要应用于倒车提示、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。
由于超声波易于定向发射、方向性好、强度易掌控、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。
在精密的液位测量中需要达到毫米级的测量精度,但是目前国内的超声波测距专用集成电路都是只有厘米级的测量精度。
通过分析超声波测距误差产生的原因,提高测量时间差到微秒级,以及用LM92温度传感器进行声波传播速度的补偿后,我们设计的高精度超声波测距仪能达到毫米级的测量精度.超声波液位计测量原理超声波物位计的工作原理是由换能器(探头)发出高频超声波脉冲碰到被测介质表面被反射回来,部分反射回波被同一换能器接收,转换成电信号。
超声波脉冲以声波速度传播,从发射到接收到超声波脉冲所需时间间隔与换能器到被测介质表面的距离成正比。
此距离值S与声速C和传输时间T之间的关系可以用公式表示:S=CxT/2、由于发射的超声波脉冲有确定的宽度,使得距离换能器较近的小段区域内的反射波与发射波重迭,无法识别,不能测量其距离值。
这个区域称为测量盲区。
盲区的大小与超声波物位计的型号有关。
由于接受了先进的微处理器和独特的EchoDiscovery回波处理技术,超声波物位计可以应用于各种多而杂工况。
换能器内置温度传感器,可实现测量值的温度补偿。
超声波换能器接受声学匹配之技术,使其发射功率能更有效地辐射出去,提高信号强度,从而实现精准测量。
超声波液位计工作原理
超声波液位计是一种非接触式液体液位测量仪。
可用于测量各种容器或管道内液体的液位高低和流量大小,也可以用于水渠、水库、江河和湖海水位的测量中,尤其适用于污水、有腐蚀性的场合,如城市排水泵站拦污栅前后水位的测量。
由于城市污水腐蚀性强,若采用接触式压力水位计,必须将传感器探头插入污水中,这样探头很快就会腐蚀坏,影响正常的测量。
此外,超声波液位计测量精度高,安装维护简便,可以同时测量水位、水位差和流量等,并具有计算机标准RS-485接口等特点,因此得到愈来愈广泛的应用。
超声波液位计的探头安装在受测液体的上方,探头受电激励后,通过空气向其下的液体发射超声波,超声波将被液体反射,回波被探头接收和监测,并被转换为电信号。
超声波在发射和接收之间所需的时间是与探头和液体表面之间的距离成比例的。
间距D是由声波速度C和传输时间t所决定的,如公式所示:D=C·t/2正常情况下声波在空气中的传播速率为340m/s,如果传输时间为10ms,则对应的传输距离为3.4m,因此间距为1.7m。
超声波液位计实际测量的是液面变化的高度,通过预先对超声波液位计的设定,可换算成实际的液体深度。
超声波液位计的功能特点♦金属管液位计稳定性好,满度、零位长期稳定性可达0.1%FS/年。
超声波液位计在补偿温度0〜70c范围内,温度飘移低于0.1%FS,在整个允许工作温度范围内低于0.3%FSo ♦金属管液位计具有反向保护、限流保护电路,超声波流量计在安装时正负极接反不会损坏变送器,异常时送器会自动限流在35MA以内。
♦固态结构,无可动部件,高可靠性,使用寿命长。
♦超声波液位计安装方便、结构简单、经济耐用。
超声波液位计的工作原理超声波液位计的工作原理是通过一个可以发射能量波(一般为脉冲信号)的装置发射能量波,能量波遇到障碍物反射,由一个接收装置接收反射信号。
根据测量能量波运动过程的时间差来确定液(物)位变化情况。
由电子装置对微波信号进行处理,最终转化成与液位相关的电信号。
超声波液位计一次探头向被测介质表面发射超声波脉冲信号,在传输过程中遇到被测介质(障碍物)后反射,反射回来的信号通过电子模块检测,通过专用软件加以处理,分析发射回波的时间差,结合超声波的传播速度,可以精确计算出超声波传播的路程,进而可以反映出液位的情况。
公司凭借优秀的产品质量和富有竞争力的产品性价比,为终端用户和各系统集成公司带来更大的管理和经济效益。
控制型液位计是在磁翻板液位计的防腐电磁流量计基础上增加了磁控开关,在监测液位的同时磁控开关信号可用于对液位进行控制或报警;远传型是在磁翻板液位计的基础上增加了4~20mA变送传感器,在现场监测液位的同时将液位的变化通过变送传感器、线缆及仪表传到控制室,实现远程监测和控制。
关键词:液位测控,界面测控测量范围[L]:(上下法兰中心距)用户提出连接法兰规格:DN20PN1.0RF或用户提出接液材质:321或304不锈钢316L不锈钢PVC塑料不锈钢衬四氟321或304不锈钢或用户指定介质密度[g/cm3]:(由用户提出)>0.53工作温度[C]:<80C,<150C,<350C工作压力[MPa]:0~4.0MPa超声波物位计有什么特点。
超声波液位计的工作原理
超声波液位计是利用超声波传播的特性来测量液体的液位高度的一种仪器。
其工作原理基于超声波在液体和空气的界面上发生反射的特性。
具体的工作原理如下:
1. 发射超声波:液位计中的压电传感器会发射一束超声波信号,这个信号经过特殊的发射器将超声波转化成一串短脉冲信号,并通过传感器的控制电路发送至发射器。
2. 超声波传播:发射器向液体中发射的超声波信号会在液体与空气(或液体与液体)的交界面上发生反射。
一部分超声波信号被液体表面吸收,而另一部分则会继续传播。
3. 接收超声波:传感器的控制电路会接收到被液体反射回来的超声波信号,并将其转化为电信号。
4. 计算液位:接收到的电信号经过处理后,可以计算出超声波从发射到接收所经过的时间间隔。
由于超声波在空气和液体中传播速度是已知的,因此可以根据时间间隔和传播速度来计算出液体的液位高度。
需要注意的是,超声波液位计的测量精度受到多种因素的影响,例如液体的温度、压力、密度等。
因此,在使用超声波液位计进行液位测量时,需要根据实际情况进行相应的校准和修正。
超声波液位计测量原理
前言:近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。
基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为流量测量工作的首选工具。
超声波流量计是20世纪70年代随着IC(集成电路)技术迅速发展才开始得到实际应用的一种非接触式仪表,相对于传统的流量计而言,它具有下列主要特点:
(1)解决了大管径、大流量及各类明渠、暗渠测量困难的问题。
因为一般流量计随着管径的增加会带来制造和运输上的困难,不少流量计只适用于圆形管道,而且造价提高,能耗加大,安装不便,这些问题,超声波流量计都可以避免,这样就提高了流量测量仪表的性能价格比。
(2)对介质几乎无要求。
超声波流量计不仅可以测量液体、气体,甚至对双相介质(主要是应用多普勒法)的流体流量也可以测量,由于可制成非接触式的测量仪表,所以不破坏流体的流场,没有压力损失,并且可以解决其它类型流量计难以测量的强腐蚀性、非导电性、放射性的流量问题。
(3)超声波流量计的流量测量准确度几乎不受被测流体温度、压力、密度、粘度等参数的影响。
(4)超声波流量计的测量范围度宽,一般可达到20:1。
关键词:超声波流量计原理流量
一、超声波的基本性质
声波是一种传递信息的媒体,它与机械振动密切相关,可以由物体的撞击、运动所产生的机械振动以波的形式向外传播。
根据振动所产生波的频率高低分为可闻声波、次声波和超声波,高于20KHz的声波称为超声波。
超声波具有类似光线的一些物理性质:
(1)超声波的传播类似于光线,遵循几何光学的规律,具有反射、折射现象,也能聚焦,因此可以利用这些性质进行测量、定位、探伤和加工处理等。
在传播中,超声波的速度与声波相同;
(2)超声波的波长很短,与发射器、接收器的几何尺寸相当,由发射器发射出来的超声波不向四面八方发散,而成为方向性很强的波束,波长愈短方向性愈强,因此超声用于探伤、水下探测,有很高的分辨能力,能分辨出非常微小的缺陷或物体;
(3)能够产生窄的脉冲,为了提高探测精度和分辨率。
要求探测信号的脉冲极窄,但是一般脉冲宽度是波长的几倍(如要产生更窄的脉冲在技术上是有困难的),超声波波长短,因此可以作为窄脉冲的信号发生器;
(4)功率大,超声波能够产生并传递强大的能量。
声波作用于物体时,物体的分子也要随着运动,其振动频率和作用的声波频率一样,频率越高,分子运动速度越快,物体获得的能量正比于分子运动速度的平方。
超声频率高,故可以给出大的功率。
声波在真空中不能进行传播,必须通过气体、液体、固体或者三者的组合体作为介质才能传播。
通常情况下,声波在空气中的传播速度约为344m/s。
根据声源在介质中施力方向与声波传播方向的不同,声波的波形也不同,通常有以下几种:
(1)纵波。
质点的振动方向与波的传播方向一致的波。
它能在固体、液体和气体中传播;
(2)横波。
质点振动方向垂直于传播方向的波。
它只能在固体中传播;
(3)表面波。
质点的振动介于纵波与横波之间,沿表面传播。
振幅随深度增加而迅速衰减的波。
从上述分类可看出,只有纵波可以在气体中传播。
因此,目前在空气中的超声波测量系统大多依靠纵波来实现。
而实际测量用的超声波主要集中在频率为40kHz 的范围内。
其中,靠近低频段主要用于空气和液体介质中的测量系统,中频和高频段主要用于固体介质的测量。
这主要是由于介质对声波能量的吸收随声波频率的升高而增加,频率越高,声波在介质中衰减就越快。
而在固体介质中,测量的量程比较短(例如超声波探伤,测工件厚度等),在液体和气体中,测量的量程比较长(例如空气中的超声波测距,海洋中测深度等),因此,气体和液体中测量所选择的声波频率就要比固体介质中低。
二、超声波传感器的原理及应用
超声波传感器是实现声、电转换的装置,又称超声换能器或超声波探头。
这种装置能发射超声波和接收超声波回波,并转换成相应电
信号。
目前常见的超声波发射和接收器件的标称频率一般为40kHz,频率取得太低,外界杂音干扰较多,太高在传播过程中衰减较大。
按作用原理不同,超声波传感器可分为压电式、磁致伸缩式、电磁式等数种,其中压电陶瓷晶片制成的换能器最为常用。
在原理上利用压电陶瓷材料在电能与机械能之间相互转换的功能。
压电陶瓷晶片传感器一般采用双压电陶瓷晶片制成,如图1所示。
需用的压电材料较少,价格低廉且非常适用于气体和液体介质中。
在压电陶瓷片加有大小和方向不断变化的交流电压时,据压电效应,就会使压电陶瓷晶片产生机械变形,这种机械变形的大小和方向是于外加电压的大小和方向成正比的。
也就是说,在压电陶瓷晶片上加有频率为 f 的电压脉冲,晶片就会产生同频率的机械振动。
这种机械振动推动空气等媒质,便会发出超声波。
反之,如在压电陶瓷晶片上有超声波作用,将会使其产生机械变形,这种机械变形使压电陶瓷晶片产生频率与超声波相同的电信号。
当在A,B 间施加交流电压时,若上片的电场方向与极化方向相同,则下面的方向相反,因此,上下一伸一缩,形成超声波振动。
压电陶瓷晶片有一个固有的谐振频率,即中心频率F0,发射超声波时,加在其上面的交变电压频率要与它的固有谐振频率一致,接收超声波时,作用在它上面的超声机械波的频率也要与它的固有谐振频率一致。
这样,超声波传感器才有较高的灵敏度,当所用压电材料不变时,改变压电陶瓷晶片的几何尺寸,就可以非常方便地改变其固有频率。
超声波传感器由压电陶瓷晶片、锥形谐振板、底座、端子、金属
类是发射和接收分别是两种不同的分体式超声波传感器,此类传感器测距有效范围比较大,但不具备防尘、防水性能,如用于发射的CSB40T及用于接收的CSB40R。
另一类是具有双向的发射/接收功能的收发一体式超声波传感器,如TR40-16,不仅用于发射超声波,也用于接收超声波,此类超声波测距有效范围比较小,防尘、防水性能好。
根据实际工作时所处的环境的要求,本系统所选用的超声波传感器为分体式超声波传感器CSB40T,其中心频率为40kHz。
CSB40T 探头各项参数为:频率为40 kHz,阻抗500,灵敏度为103dB(min),带宽在-3dB 时为1.5K,角度最大值为(-6dB),静电容200010%PF,最大驱动电压150Vp-p(10%工作周期),回波灵敏度为-70dB(min),声压电平0dB=1uvolt/bar。
三、流量测量
1、流量的定义
在流体的流动中,具有某一定面积的截面,把流过该截面的体积或质量与时间之比称为流量。
用流体流过的体积与时间之比来表示流量时,称为体积流量(或容积流量)。
用流体流过的质量与时间之比来表示流量时,称为质量流量。
一般地说,流量的测量对象就是流过管路或沟渠的流体。
在这种情况下,我们来研究具有某个一定面积的管路或沟渠的截面,称流过该截面的流量为流过该管路或沟渠的流体流量。
2、流量测量方法
目前已投入使用的流量计超过了100种,这些流量测量仪表已成
为过程控制与检测仪表中的重要部分。
根据现代设备、现代控制及生产现场对流量检测技术的要求,流量测量方法可分为接触式与非接触式两大类。
非接触式是一种先进的流量测量方法。
非接触式流量测量是借助于超声波、射线、激光等发展起来的流量测量新技术,它通过安装在渠道两侧的检测装置之间接感知信号。
由于检测元件不与被测流体直接接触,所以克服了传统的接触法流量测量中存在的问题。
它不但可以提高测量精度(因为无节流压力损失,不破坏原来流场)及仪表寿命(因为检测元件不受流体冲击、磨蚀作用),而且可以实现用一套测量装置来测量渠道系统多个部位的流量,因而是一种具有广泛发展与应用前景的先进的流量测量方法。
四、超声流量计的特点:
超声流量计是近年来发展迅速的流量计之一,和传统的流量计,如差压流量计、转子流量计、文丘里流量计、涡街流量计等相比,超声波流量计有以下突出的优点:
(1)采用非接触式测量,换能器安装在渠道外壁而不与被测流体直接接触,基本上不干扰流场无压力损失,是一种比较理想的仪表。
(2)换能器形式多样,可适合不同场合的需要,除了用于测量水、石油等一般导声流体外,还可用来测高温、高压、高粘度、强腐蚀、非导电、易爆和放射性等导声流体。
(3)通用性好,在可测范围内,同一台流量计可测任何不同的渠道。
(4)无可动部件,无磨损,使用寿命长,重量轻。
(5)安装维修方便,不需要专门的阀门等且不必中断流体流动,不影响生产。
五、结束语
超声波流量计对流速无影响,也没有压力损失;能用于任何液体,特别是具有高黏度、强腐蚀,非导电性等性能的液体的流量测量,也能测量气体的流量;对于大口径管道的流量测量,不会因管径大而增加投资;量程比较宽,可达5:1;输出与流量之间呈线性等优点。
参考文献
[1] 梁国伟,蔡武昌,等.流量测量技术及仪表.北京:机械工业出版社,2002
[2] 陈玲.新型流量测量仪表的应用和发展.传感器与微系统,2007,26(6)
[3] 祝海林等.管道流量非接触测量—方法与技术.北京:气象出版社,1999。