图乘法公式推导注意点两个弯矩图中
- 格式:ppt
- 大小:8.15 MB
- 文档页数:97
关于图乘法的一种特殊情况作者:赵盛琳来源:《科学大众·教师版》2019年第12期摘要:本文讨论了用图乘法计算结构位移的一种特殊情况,有一个弯矩图是反对称,另一个弯矩图是线性图线的时候,计算中容易出现的错误,从公式推导指出正确的处理方法。
关键词:图乘法; 形心坐标; 计算公式中图分类号:?U442; ; ; ; ; ;文献标识码:A; ; ; ;文章编号:1006-3315(2019)12-141-001在材料力学或者结构力学一般用能量法来计算结构位移,使用比较多的是单位载荷法,在满足一些特殊条件下(轴线为直线,等截面梁或者刚架而且抗弯刚度为常量,两个弯矩图中至少有一个为线性函数),计算莫尔积分可以用图乘法,在大部分有图乘法介绍的教材里,图乘法公式的推导所用的示意图都是所考虑的区间里有一个弯矩图是全部在轴线一侧的一条曲线,另一个弯矩图是线性图线,推导过程中用到了平面图形的形心坐标计算公式,而且计算结果有正负号的问题,两个弯矩图在轴线同侧的时候,结果取正值,两个弯矩图在轴线异侧的时候,结果取负值。
因此图乘法给人的感觉就是计算中弯矩图面积是带正负号的。
然而在遇到以下情况的时候很容易犯错。
有的时候我们会遇到有一个弯矩图在考虑的区间内是反对称的,而另一个弯矩图是线性图线,教材里没有硬性规定弯矩图必须在轴线同侧才能用图乘法,只要满足使用图乘法的三个条件(轴线为直线,等截面梁或者刚架而且抗弯刚度为常量,M(x)及[M](x)中至少有一个为关于x的线性函数),就算M(x)有正有负(即弯矩图分布在轴线两侧),图乘法的公式依然能用。
图乘法计算积分的公式[l]M(x)[M](x)dx=[ω][M]c,其中[ω]代表M(x)图的面积,[Mc]是[M](x)图中与M(x)图的形心对应的纵坐标。
当M(x)图反对称,则其图形的形心显然在轴线中点处,但弯矩图面积[ω]因为考虑反对称图形的正负号,加起来为零,所以不管[M]c是多少,最后结果就是零,但这显然是错误的。
§4-6 图乘法我们已经知道,计算荷载作用下结构的弹性位移时,需要求下列形式的积分⎰ds EI M M Ki 的数值。
这里,i M 、K M 是两个弯矩函数的乘积。
对于直杆或直杆的一段,若EI 是常量,且积分号内的两个弯矩图形中有一个是直线图形,则可用图乘法计算积分,极为方便。
下面说明图乘法的内容和应用图4-20所示为直杆AB 的两个弯矩图,其中图为一i M 直线。
如果该杆截面抗弯刚度E I 为一常数,则⎰⎰=dx M MEIdx EI M M K iK i 1(a)以O 为原点,以α表示图i M 直线的倾角,则图上任一i M 点标距(纵坐标)可表示为α⋅=tan x M i因此, ⎰⎰α=BAK BAK i dx xM dx M M tan (b )式中,dx M K 可看作图的K M 微分面积(图4-20中画阴影线的部分);dx M x K ⋅是这个微分面积对y 轴的面积矩。
于是就是图⎰BA K dx xM K M 的面积ω对y 轴的面积矩。
以表示图的0x K M 形心C 到y 轴的距离,则0x dx xM BAK ω=⎰将上式代人式(b ),得到00tan y x dx M M BAK i ω=ω⋅α=⎰(c)其中,0y 是在图形心K M C 对应处的i M 图标距。
利用式(c ),式(a )可写成01y EIdx EI M M BA K i ω=⎰ (4- 29) 这就是图乘法所使用的公式。
它将式(a )形式的积分运算问题简化为求图形的面积、形心和标距的问题。
应用图乘法计算时要注意两点:(1)应用条件:杆件应是等截面直杆,两个图形中应有一个是直线,标距应取自0y 直线图中。
(2)正负号规则:面积ω与标距在杆的同0y 一边时,乘积取正号0y ω;ω与在杆的0y 不同边时取负号。
第二章结构的几何组成分析1.几何不变体系是指________的体系。
形状和位置不变2.能用作结构的体系是________的体系。
几何不变3.一个点有_____个自由度,一根链杆有______个自由度。
2,34.连接5个刚片的复铰相当于______个单铰_____个约束。
45.三个刚片用_____个约束组成一个几何不变体系。
3刚片用3单铰,1单铰2约束,共6约束。
6.静定结构是_________的结构,几何特征是_______。
A.由平衡方程能求出所有内力和约束的结构B. 无多余约束的几何不变体系。
7.瞬变体系是__________的体系。
初始位置可变,微小运动后不变。
8.瞬变体系不能做结构的原因是_______。
小的外力会造成大的内力。
一、几何组成分析步骤1.去掉支座分析:a.体系与基础用一杆一铰相连(杆不通过铰)b.体系与基础用三杆相连(三杆不平行也不交于一点)2.连支座一起分析:将基础视作一刚片(除上述之外)3.找出并去掉二元体:(不变与可变体系去掉二元体都不影响原体系)二、判断规则1.三刚片规则(三角形规则):2.两刚片规则(三链杆规则):本质同两刚片,两链杆等同于单铰三链杆交于一点:瞬变体系三链杆平行,高度不等:瞬变体系三链杆平行且高度相等:常变体系4链杆就有多余约束。
3.二元体规则(附加二元体):第三章静定梁与静定钢架1.求支座反力:1.取分离体,2.画受力图,3.作平衡方程∑F∑y F∑A Mx2.求截面内力:A.求截面轴力=∑F(截面一侧,所有外力沿轴线方向的代数和)拉力为正xB.求截面剪力=∑y F(截面一侧,所有外力沿截面方向的代数和)剪力使杆段顺时针转为正C.求截面弯矩=∑A M(截面一侧,所有外力对截面型心力矩的代数和)弯矩使杆段下侧受拉为正3.做内力图:一、基本方法:a.用截面法写内力方程 b.依内力方程画内力图二、简洁方法:(1)杆中间(2)杆自由端A.杆自由端无力偶,端截面弯矩=0B.杆自由端无集中力,端截面剪力=0均布荷载在全杆--集中力在杆中间在杆端(中间无荷载)力偶在杆中间无集中力在自由端端剪力=0无力偶在自由端端弯矩=0三、弯矩图--叠加法四、弯矩图--分段叠加法:杆段两端弯矩已知,即可取出作为简支梁,用叠加法作弯矩图。
图1两种状态下弯矩图均为直线图形图乘法的计算黄飞彪黄健(山东水利职业学院,山东日照276826)摘要:用图乘法计算结构位移,常遇到两种状态下弯矩图均为直线图形的情况,用常规方法计算所得的结果整理后,便得到既简单又便于记忆的公式。
该公式均适用于弯矩图为任意形式的直线图形的计算。
关键词:图乘法;两种状态下弯矩图;结构位移用图乘法计算结构位移时,常遇见两种状态下其弯矩图均是直线图形的情况,而直线图形可分为好几种形式。
如果两种图形均是三角形,或其中一个是矩形,则计算比较简单;但若其中一个或两个图形为梯形(图1),或图形是含两种符号的三角形(如图2),计算就相对繁琐,尤其对初学者更容易出错。
如图1、图2所示的图形l ,设杆长为EI ,刚度为,两端弯矩大小如图示,按常规进行图乘并整理后,便得到简单、便于记忆的结果:对于图1,Δ=1EI [12a ×l (23×c +13×d )+12b ×l (23×d +13×c )]=1EI [12al (2c +d 3)+12bl (2d +c 3)]=l 6EI[2(ac+bd )+(ad+bc )]对于图2,Δ=1EI [12a ×l (23×c -13×d )-12b ×l (23×d -13×c )]=l 6EI[2(ac-bd )+(-ad+bc )]图2即其结果是,除某几项乘积的正负号不同外,Δ均等于两个弯矩图中同端弯矩乘积之和的2倍与异端弯矩乘积之和的总和与系数l6EI的乘积。
同理,对各种图形图乘结果如下表:从以上结果知:(1)两图同端弯矩乘积之和乘以2,异端弯矩乘从以上结果知:(1)两图同端弯矩乘积之和乘以2,异端弯矩乘积之和乘以1;(2)当两图中的杆端弯矩在基线同一侧时,各乘积取正,在两侧时取负;(3)如果弯矩图中有一个是三角形,则该图其中的一端弯矩等于零;(4)不论是哪一种,系数(16EI)不变,但如果杆的长度、刚度不是l、EI,则系数(16EI)中的l、EI应改为相应的数值。