高二数学期中考试试题
- 格式:doc
- 大小:510.50 KB
- 文档页数:9
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。
高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(8+i)(1−i)=( )A. 7−9iB. 9−9iC. 7−7iD. 9−7i2.已知角α的终边不在坐标轴上,且2sin 2α=sin α,则cos 2α=( )A. −78B. 78C. −78或1D. −15163.一艘轮船北偏西65∘方向上有一灯塔,此时二者之间的距离为16海里,该轮船以20海里/时的速度沿南偏西55∘的方向直线航行,行驶半小时后,轮船与灯塔之间的距离为( )A. 18海里B. 16海里C. 14海里D. 12海里4.已知某圆台的上、下底面半径分别为2和5,母线长为5,则该圆台的体积为( )A. 63πB. 39πC. 52πD. 42π5.设函数f(x)={ax−2,x⩽1ln x,x >1.若f(x)在R 上单调递增,则a 的取值范围为( )A. (0,+∞)B. (0,2]C. (−∞,2]D. (0,3]6.已知点P(2,1),Q(1,0),H 在直线x−y +1=0上,则|HP|+|HQ|的最小值为( )A. 2 3B. 11C. 10D. 37.金秋十月,某校举行运动会,甲、乙两名同学均从跳高、跳远、100米跑和200米跑这四个项目中选择两个项目参加.设事件A =“甲、乙两人所选项目恰有一个相同”,事件B =“甲、乙两人所选项目完全不同”,事件C =“甲、乙两人所选项目完全相同”,事件D =“甲、乙两人均未选择100米跑项目”,则( )A. A 与C 是对立事件B. C 与D 相互独立C. A 与D 相互独立D. B 与D 不互斥8.已知A(2,0),B(10,0),若直线tx−4y +2=0上存在点P ,使得PA ⋅PB =0,则t 的取值范围为( )A. [−3,215]B. [−215.3]C. (−∞,−215]∪[3,+∞) D. (−∞,−7]∪[95,+∞)二、多选题:本题共3小题,共18分。
2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.52.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.333.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.284.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π65.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.186.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4- B.1- C.0D.27.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12B. C.6D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+=D.3120y -+=10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB面积的最大值为1+三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则y x 的最大值为______.14.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.18.已知数列{}n a 满足:()*312232222n na a a a n n +++⋅⋅⋅+=∈N ,数列{}nb 满足5012n nb a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和nT 2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.5【答案】A 【解析】【分析】根据数列的规律及通项可得数列的项.【详解】由已知数列1,,3,……,,……,则数列的第n第257=,故选:A.2.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.33【答案】C 【解析】【分析】根据数列的前n 项和,可得数列的项,进而可得值.【详解】由已知数列{}n a 的前n 项和()22n S n =+,则75746a a a S S ++=-()()227242=+-+45=,故选:C.3.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.28【答案】B 【解析】【分析】由等差中项的性质计算即可;【详解】因为在等差数列{}n a 中,67821a a a ++=,所以678773217a a a a a ++==⇒=,所以759214a a a ==+,故选:B.4.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π6【答案】B 【解析】【分析】先由直线方程得到斜率,进而可得其倾斜角.【详解】由题意可得直线的斜率为k =设其倾斜角为α,则tan α=,又[)0,πα∈,所以π3α=,故选:B5.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.18【答案】D 【解析】【分析】易知数列前n 和求出通项公式,再由等比数列的性质化简求得结果.【详解】当1n =时,11121a S a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-,∴12n n a a -=,即数列{}n a 是首项11a =,公比2q =的等比数列,即12n n a -=,∴()()27793210121011181a q a a a a q a q ++===++故选:D.6.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4-B.1- C.0D.2【答案】D 【解析】【分析】根据点在圆外及方程表示圆求出m 的范围得解.【详解】因为点()1,2P -在圆C :220x y x y m ++++=的外部,所以22(1)2120m -+-++>,解得6m >-,又方程表示圆,则1140m +->,即12m <,所以162m -<<,结合选项可知,m 的取值一定不是2.故选:D.7.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >【答案】C 【解析】【分析】根据等差数列的通项公式,前n 项和公式,结合条件10a >,逐项进行判断即可求解.【详解】设等差数列{}n a 的公差为d ,由316=S S ,得113316120a d a d +=+,即1131170a d +=,即11090a d a +==,又10a >,所以0d <,所以110a <;故AD 错,()1191910191902a a S a +===,故B 错因为190S =,0d <,所以180S >,200S <,所以0nS <成立的n 的最小值为20.故C 正确.故选:C8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12 B.C.6D.【答案】C 【解析】【分析】先根据题意求出M 的轨迹方程为222x y +=,设()00,M x y 到直线40x y +-=的距离为d ,由此可得004x y +-=,将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值,先求圆心到直线的距离再加半径即可求解.【详解】根据已知有,圆心0,0,半径2r =,因为弦AB =,所以圆心到AB 所在直线的距离d ==又因为M 为AB 的中点,所以有OM =,所以M 的轨迹为圆心为0,0,半径为1r =的圆,M 的轨迹方程为222x y +=;令直线为40x y +-=,则()00,M x y 到直线40x y +-=的距离为d ,则d =,即004x y +-=,所以当d 最大时,004x y +-=也取得最大值,由此可将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值的2倍,设圆心0,0到直线的距离为0d ,则0d ==,所以max 0d d =+=所以004x y +-的最大值为6.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+= D.3120y -+=【答案】AD 【解析】【分析】由题意知直线l 过点()0,4,所以根据直线l 是否存在斜率进行分类讨论,结合等腰三角形等知识,即可求解.【详解】设()0,4为点A ,易知点()0,4A 40y -+=上,直线40y -+=与x轴的交点,03B ⎛⎫- ⎪ ⎪⎝⎭,当直线l 的斜率不存在时,因为直线l 过点()0,4,所以直线l 的方程为0x =,与x 轴的交点为()0,0O ;此时4OA =,3OB =,3AB =,所以AOB V 不是等腰三角形,故直线l 存在斜率;设B 关于y轴的对称点为C ⎫⎪⎭,当直线l 过A ,C 两点时,AB AC =,ABC V 是等腰三角形,同时直线ABπ3,所以ABC V 是等边三角形,所以AC BC =,此时直线l 的方程为144x y +=40y +-=,设直线l 与x 轴相交于点D,如图所示,若AB BD =,则π6ADB ∠=,所以直线AD ,即直线l的斜率为3,此时方程为343y x =+3120y -+=;所以直线l40y +-=3120y -+=故选:AD.10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>【答案】AC 【解析】【分析】利用n S 和n a 的关系即可判断A ,B 选项;利用等差数列的求和公式即可判断C 选项;通过举例即可判断D 选项.【详解】对于A ,若2n S n =,则当1n >时,121n n n a S S n -=-=-,当1n =时,111a S ==,符合21n a n =-,故21n a n =-,则{}n a 是等差数列,故A 正确;对于B ,若2nn S =,则112a S ==,2212a S S =-=,3324a S S =-=,故a a a a ≠2312,{}n a 不是等比数列,故B 错误;对于C ,若{}n a 是等差数列,则()1202520251013202520252a a S a +==,故C 正确;对于D ,若1n a =,符合{}n a 是等比数列,且0n a >,此时()()22121212141n n S S n n n -+⋅-+==-,2224n S n =,不满足221212n n n S S S -+⋅>,故D 错误.故选:AC11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB 面积的最大值为1+【答案】ABC 【解析】【分析】根据圆的一般方程确定圆心、半径,判断1212||,,O O r r 的关系判断A ,两圆方程相减求相交线方程判断B ;应用点斜式写出公共弦AB 的垂直平分线方程判断C ;数形结合判断使△PAB 面积最大时P 点的位置,进而求最大面积判断D.【详解】由题设2121)1:(x O y -+=,则1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=,则2(1,2)O -,半径2r =,所以12||1,1)O O =,两圆相交,A 对;两圆方程相减,得公共弦AB 所在直线为0x y -=,B 对;公共弦AB 的垂直平分线方程为20(1)(1)11y x x -=⋅-=----,即10x y +-=,C 对;如下图,若O 与B 重合,而1O 到0x y -=的距离d =,且||2AB ==,要使△PAB 面积最大,只需P 到AB 的距离最远为11d r +=,所以最大面积为1121)22+=,D 错.故选:ABC三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.【答案】270x y --=【解析】【分析】根据点斜式求得直线方程,并化为一般式.【详解】直线l 的方向向量为()1,2,所以直线l 的斜率为2,所以直线方程为()32224,270y x x x y +=-=---=.故答案为:270x y --=13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则0y x 的最大值为______.【答案】5【解析】【分析】设0y k x =,则直线00y kx =与圆有公共点,联立方程消元后,利用判别式即可得解.【详解】设y k x =,则00y kx =,联立0022000650y kx x y x =⎧⎨+-+=⎩,消元得()22001650k x x +-+=,由()2Δ362010k=-+≥,解得252555k -≤≤,所以00y x 的最大值为5.故答案为:514.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.【答案】①.1②.9λ<-【解析】【分析】根据等比数列的性质,结合2n n S a =-,有(2)(21)2n n a a --=-,即可求a 值,进而有12n n a -=即(1)l 2n n =-,结合5n T n λ>+对N n +∈恒成立求λ的范围即可.【详解】由等比数列的前n 项和2n n S a =-知,1q ≠,所以1(1)21n n n a q S a q-==--,所以2q =,而112a S a ==-,2q =,∴(2)(21)2n n a a --=-,即1a =,由上知:12nn a -=,则(1)l 2n n =-,∴==2−>5+,即226(3)9,N n n n n λ+<-=--∈,当3n =时,2(3)9,N n n +--∈的最小值为9-,所以9λ<-.故答案为:1;9λ<-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.【答案】(1)12m =;()1,1C .(2)()2211x y -+=【解析】【分析】(1)根据题意,求得两直线的斜率,结合121k k ×=-,求得12m =,得出直线的方程,联立方程组,求得交点坐标.(2)由(1)中的直线方程,求得()0,0A ,()2,0B ,得到ABC V 的外接圆是以AB 为直径的圆,求得圆心坐标和半径,即可求解.【小问1详解】解:显然1m ≠,可得1122k m =--,22k m =-,由12l l ⊥,可得121k k ×=-,即()12122m m ⎛⎫-⋅-=- ⎪-⎝⎭,解得12m =,所以直线1l :0x y -=,直线2l :20x y +-=,联立方程组020x y x y -=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以点()1,1C .【小问2详解】解:由直线1l :0x y -=,直线2l :20x y +-=,可得()0,0A ,()2,0B ,所以ABC V 的外接圆是以AB 为直径的圆,可得圆心1,0,半径112r AB ==,所以ABC V 的外接圆方程是()2211x y -+=.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)21n a n =-,12n n b -=;(2)221nn S n =+-.【解析】【分析】(1)设公差为d ,公比为q ()0q >,根据已知列出方程可求出2=d ,2q =,代入通项公式,即可求出结果;(2)分组求和,分别求出{}n a 和{}n b 的前n 项和,加起来即可求出结果.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ()0q >,因为111a b ==,则由3521a b +=可得,41221d q ++=,即4202q d =-,由5313a b +=可得,21413d q ++=,解得2124q d =-,则3d <.所以有()24202124q d d =-=-,整理可得2847620d d -+=,解得2=d 或3138d =>(舍去).所以2=d ,则212424q =-⨯=,解得2q =±(舍去负值),所以2q =.所以有()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)知,21n a n =-,12n n b -=,则1212n n n a b n -+=-+.()()()1122n n n S a b a b a b =++++++L 1212n n a a a b b b =+++++++ ()()112112212n n n n ⨯--=⨯++-221n n =+-.17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.【答案】(1)1x =或3430x y --=(2)1212⎡---+⎣【解析】【分析】(1)对直线l 的斜率是否存在讨论,根据直线与圆的位置关系列式运算;(2)要使圆C 上存在到点P 的距离为1的点,则圆心C 到()1,0P 的距离d 满足,11180r d r m -≤≤+⎧⎨+>⎩,运算得解.【小问1详解】因为17m =-,所以圆C 的方程为()()22221x y -+-=①当l 的斜率不存在时,l 的方程为1x =,与圆C 相切,符合题意;②当l 的斜率存在时,设l 的方程为()1y k x =-,即kx y k 0--=,圆心C 到l 的距离1d =,解得34k =,则l 的方程为()314y x =-,即3430x y --=,综上可得,l 的方程为1x =或3430x y --=.【小问2详解】由题意可得圆C :()()222218x y m -+-=+,圆心()2,2C ,半径r =,则圆心C 到()1,0P 的距离d ==要使C 上存在到P 的距离为1的点,则11180r d r m -≤≤+⎧⎨+>⎩,即11180m -≤+>⎪⎩,解得1212m ---+≤≤,所以m 的取值范围为1212⎡---+⎣.18.已知数列{}n a 满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.【答案】(1)2nn a =(2)5012(3)51992【解析】【分析】(1)根据题意,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,求得2n n a =,再由1n =,得到12a =,即可求得数列的通项公式.(2)由(1)得50122n n b =+,结合指数幂的运算法则,即可求得100n n b b -+的值;.(3)由(2)知1005012n n b b -+=,结合倒序相加法,即可求解.【小问1详解】由数列满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,可得12n n a=,所以2n n a =,当1n =,可得112a =,所以12a =,适合上式,所以数列的通项公式为2n n a =.【小问2详解】由数列满足505011222n n n b a ==++,则100100505010050502222211122222nn n nn nn b b --+++++++==⋅5050505505005022+212(2+2)(222)21+22n n n n n =+==+.【小问3详解】由(2)知1005012n n b b -+=,可得123995050129509111222222b b b b +++⋅⋅⋅+++++++=,则999899997150580510211122222b b b b +++⋅⋅⋅++++++=+ ,两式相加可得123995099(2)2b b b b +++⋅⋅=⋅+,所以1239951992b b b b +++⋅⋅⋅=+.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析;(2)证明见解析;(3)11634994n n n T -+=-⋅.【解析】【分析】(1)由递推关系得112(1)n n b b +-=-,结合等比数列定义证明;(2)由等差数列前n 项和求基本量,结合(1)结论,写出等差、等比数列通项公式、前n 项和公式,再应用作差法比较大小即可;(3)应用错位相减、等比数列前n 项和求结果.【小问1详解】由题设112112(1)n n n n b b b b ++=-⇒-=-,而112b -=,所以{}1n b -是首项、公比均为2的等比数列,得证.【小问2详解】令数列{}n a 的公差为d ,而414646101S a d d d =+=+=⇒=,所以(1)(1)22n n n n n S n -+=+=,又12nn b -=,则2111(21)()222(1)22222n n n n n n n S b n n b n S ++++++=⨯-⨯⋅⋅-⨯(21)(1)22(1)2n n n n n n =++⨯-+⨯(1)20n n =+⨯>恒成立,所以2112n n n n S b S b ++⋅>⋅,得证.【小问3详解】由上知n a n =,则()4214441nn n n n a n nc b -===-,则21231444n n n T -=++++L ,即2311231444444n n n T n n --=+++++ ,所以2311131111411444444414n n n n n T n n --=+++++-=-- ,即11634994n n n T -+=-⋅。
2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
2024年下学期期中检测试题高二数学(答案在最后)时量:120分钟分值:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 满足6786a a a ++=,则7a 等于()A.1B.2C.4D.8【答案】B 【解析】【分析】利用等差数列的性质进行求解.【详解】 6787736,2a a a a a ++==∴=故选:B2.若圆224820x y x y m +-++=的半径为2,则实数m 的值为()A.-9B.-8C.9D.8【答案】D 【解析】【分析】由圆的一般方程配方得出其标准方程,由半径为2得出答案.【详解】由224820x y x y m +-++=,得22(2)(4)202x y m -++=-,所以2r ==,解得8m =.故选:D.3.若抛物线22(0)y px p =>的焦点与椭圆22195x y +=的一个焦点重合,则该抛物线的准线方程为()A.1x =-B.1x =C.2x =D.2x =-【答案】D 【解析】【分析】先求出椭圆的焦点坐标即是抛物线的焦点坐标,即可求出准线方程.【详解】∵椭圆22195x y +=的右焦点坐标为(2,0),∴抛物线的焦点坐标为(2,0),∴抛物线的准线方程为2x =-,故选:D.4.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[)0,50、[)50,100、[)100,150、[)150,200、[)200,300和[]300,500六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是().A.这14天中有5天空气质量为“中度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量指数的中位数是214D.连续三天中空气质量指数方差最小是5日到7日【答案】B 【解析】【分析】根据折线图直接分析各选项.【详解】A 选项:这14天中空气质量为“中度污染”有4日,6日,9日,10日,共4天,A 选项错误;B 选项:从2日到5日空气质量指数逐渐降低,空气质量越来越好,B 选项正确;C 选项:这14天中空气质量指数的中位数是179214196.52+=,C 选项错误;D 选项:方差表示波动情况,根据折线图可知连续三天中波动最小的是9日到11日,所以方程最小的是9日到11日,D 选项错误;故选:B.5.已知双曲线C :22x a -22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A.220x -25y =1B.25x -220y =1C.280x -220y =1D.220x -280y =1【答案】A 【解析】【详解】由题意得,双曲线的焦距为10,即22225a b c +==,又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上,所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.6.定义22⨯行列式12142334a a a a a a a a =-,若函数22cos sin ()πcos 22x xf x x -=⎛⎫+ ⎪⎝⎭,则下列表述正确的是()A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π2x =对称C.()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 是最小正周期为π的奇函数【答案】C 【解析】【分析】由行列式运算的定义,结合三角恒等变换,求出()f x 解析式,AB 选项关于函数图象的对称性,代入检验即可判断;整体代入验证单调性判断选项C ;公式法求最小正周期,检验函数奇偶性判断选项D.【详解】由题中所给定义可知,22ππ()cos sin 2cos 222cos 223f x x x x x x x ⎛⎫⎛⎫=--+=+=- ⎪ ⎪⎝⎭⎝⎭,π(π)2cos103f ==≠,点(π,0)不是()f x 图象的对称中心,故A 错误;ππ2cos 1223f ⎛⎫=-=-≠± ⎪⎝⎭,直线π2x =不是()f x 图象的对称轴,故B 错误;π,06x ⎡⎤∈-⎢⎥⎣⎦时,π2ππ2,333x ⎡⎤⎢⎥-⎣-∈⎦-,2ππ,33⎡⎤--⎢⎥⎣⎦是余弦函数的单调递增区间,所以()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;()f x 的最小正周期2ππ2T ==,但(0)0f ≠,所以函数不是奇函数,故D 错误.故选:C7.已知ABC V 中,6AB =,4AC =,60BAC ∠=︒,D 为BC 的中点,则AD =()A.25B.19C.D.【答案】C 【解析】【分析】由题意可得:1()2AD AB AC =+,结合向量的数量积运算求模长.【详解】由题意可得:16,4,64122AB AC AB AC ==⋅=⨯⨯=uu u r uuu r uu u r uuu r ,因为D 为BC 的中点,则1()2AD AB AC =+,两边平方得,()22212194AD AB AC AB AC =++⋅=,即AD =uuu r .故选:C.8.已知椭圆:2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上一点,且2PF x ⊥轴,直线1PF 与椭圆C 的另一个交点为Q ,若11||4||PF F Q =,则椭圆C 的离心率为()A.255B.2C.155D.217【答案】D 【解析】【分析】由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,解得0x 、0y ,代入椭圆方程化简即可求解.【详解】解:由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,得032c x =-,204b y a =-,代入椭圆方程得:222291416c b a a+=,结合222a b c =+,化简上式可得:2237c a =,所以椭圆的离心率为7c e a ==,故选:D .二、多项选择题:本题共3小题,每小题6分,18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.设i 为虚数单位,下列关于复数z 的命题正确的有()A.2025i 1=-B.若1z ,2z 互为共轭复数,则12=z z C.若1z =,则z 的轨迹是以原点为圆心,半径为1的圆D.若复数1(1)i =++-z m m 为纯虚数,则1m =-【答案】BCD 【解析】【分析】A 选项,利用复数的乘方运算得到A 正确;B 选项,设1i z a b =+,2i z a b =-,则12=z z ;C 选项,由复数的几何意义得到C 正确;D 选项,根据纯虚数的定义得到方程,求出1m =-.【详解】对于A :()()1012101220252i i i 1i i =⋅=-⋅=,A 错;对于B :令1i z a b =+,2i,,R z a b a b =-∈,1z =,2z =所以12=z z ,故B 正确;对于C :1z =,故z 的轨迹是以原点为圆心,半径为1的圆,C 正确;对于D :若复数1(1)i =++-z m m 为纯虚数,则10,10m m +=-≠,即1m =-,故D 正确.故选:BCD10.如图,正方体1111ABCD A B C D -的棱长为1,E 是棱CD 上的动点(含端点).则下列结论正确的是()A.三棱锥11A B D E -的体积为定值B.11EB AD ⊥C.存在某个点E ,使直线1A E 与平面ABCD 所成角为60o D.二面角11E A B A --的平面角的大小为π4【答案】BD 【解析】【分析】A.根据等体积法的等高等底即可判断;B.结合正方体的性质,由垂影必垂斜即可判断;C.结合正方体的性质即可判断;D.根据二面角的平面角定义即可判断.【详解】对于选项A :三棱锥11E AB D -的底面积为定值,高变化,体积不为定值,故选项A 不正确;对于选项B :1,B E 两点在平面11ADD A 上的射影分别为1,A D ,即直线1B E 在平面11ADD A 上的射影为1A D ,而11A D AD ⊥,根据三垂线定理可得11EB AD ⊥.故选项B 正确;对于选项C :因为1A A ⊥平面ABCD ,直线1A E 与平面ABCD 所成角为1AEA ∠,当点E 和点D 重合时,1A E 在平面ABCD 射影最小,这时直线1A E 与平面ABCD 所成角θ最大值为π4,故选项C 不正确;对于选项D :二面角11E A B A --即二面角11D A B A --,因为111DA A B ⊥,111AA A B ⊥,1DA ⊂平面11E AB ,1AA ⊂平面11AA B ,所以1DA A ∠即为二面角11E A B A --的平面角,在正方形11ADD A 中,1π4DA A ∠=,所以二面角11E A B A --的大小为π4,故选项D 正确.故选:BD.11.数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线()32222:16C x y x y +=为四叶玫瑰线,下列结论正确的有()A.方程()()32222160x y x y xy +=<,表示的曲线在第二和第四象限;B.曲线C 上任一点到坐标原点O 的距离都不超过2;C.曲线C 构成的四叶玫瑰线面积大于4π;D.曲线C 上有5个整点(横、纵坐标均为整数的点).【答案】AB 【解析】【分析】本题首先可以根据0xy <判断出A 正确,然后根据基本不等式将()3222216x y x y +=转化为224x y +≤,即可判断出B 正确,再然后根据曲线C 构成的面积小于以O 为圆心、2为半径的圆O 的面积判断出C 错误,最后根据曲线C 上任一点到坐标原点O 的距离都不超过2以及曲线C 的对称性即可判断出D 错误.【详解】A 项:因为0xy <,所以x 、y 异号,在第二和第四象限,故A 正确;B 项:因为222x y xy +≥,当且仅当x y =时等号成立,所以222x yxy ≤+,()()22232222222161642x y x y x y x y ⎛⎫++=≤=+ ⎪⎝⎭,即224x y +≤2£,故B 正确;C 项:以O 为圆心、2为半径的圆O 的面积为4π,显然曲线C 构成的四叶玫瑰线面积小于圆O 的面积,故C 错误;D 项:可以先讨论第一象限内的图像上是否有整点,因为曲线C 上任一点到坐标原点O 的距离都不超过2,所以可将()0,0、()2,0、()1,0、()1,1、()0,1、()0,2代入曲线C 的方程中,通过验证可知,仅有点()0,0在曲线C 上,故结合曲线C 的对称性可知,曲线C 仅经过整点()0,0,故D 错误,故选:AB.【点睛】本题是创新题,考查学生从题目中获取信息的能力,考查基本不等式的应用,考查数形结合思想,体现了综合性,是中档题.三、填空题:本题共4小题,每小题5分,共20分.12.圆22250x y x +--=与圆222440x y x y ++--=的交点为A ,B ,则公共弦AB 所在的直线的方程是________.【答案】4410x y -+=【解析】【分析】两圆相减得到公共弦所在的直线的方程.【详解】由题意可知圆22250x y x +--=与圆222440x y x y ++--=相交,两圆方程相减得,2222244441025x x y x y x x y y ++=--+--+--=-,故公共弦AB 所在的直线的方程是4410x y -+=.故答案为:4410x y -+=13.若数列{}n a 满足111n nd a a +-=(*n ∈N ,d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12202220220b b b +++= ,则12022b b 的最大值是________.【答案】100【解析】【分析】根据题设易知正项数列{}n b 为等差数列,公差为d ,应用等差数列前n 项和公式得1202220b b +=,应用基本不等式求12022b b 最大值.【详解】由题意,正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,则1n n d b b +=-(d 为常数),所以正项数列{}n b 为等差数列,公差为d ,则()120221220222022202202b b b b b +++==⨯+ ,则1202220b b +=,则2212022120222010022b b b b +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭(当且仅当0122110b b ==时等号成立),所以12022b b 的最大值是100.故答案为:10014.如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为____________.【答案】643π.【解析】【分析】根据题意有=B AN MN N MN BM ≥++,动点M 恰为PD 的中点即4BP BD ==,及可求出PO =,则可求出外接球的半径,方可求出其表面积.【详解】由题意知=B AN MN N MN BM ≥++当BM PD ⊥时BM 最小,因为M 为PD 的中点,故而为PD 的中点,即=4BP BD =,2BO =PO ∴=,设外接球的半径为r ,则22)4r r =+.解得433r =.故外接球的表面积为26443r ππ=.【点睛】本题考查锥体的外接球表面积,求出其外接球的半径,即可得出答案,属于中档题.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,84a =,1122S =-.(1)求数列{}n a 的通项公式;(2)求n S 的最小值.【答案】(1)320n a n =-(2)-57【解析】【分析】根据等差数列的通项公式和前n 项和公式列方程组求出117,3,a d =-⎧⎨=⎩即可得,(2)由通项公式可求得当6n ≤时,0n a <,从而可得当6n =时,n S 取到最小值,进而可求出其最小值【小问1详解】设数列 的公差为d ,则8111174115522a a d S a d =+=⎧⎨=+=-⎩,解得1173a d =-⎧⎨=⎩,所以1(1)320n a a n d n =+-=-.【小问2详解】令3200n a n =->,解得203n >,所以当6n ≤时,0n a <.故当6n =时,n S 取到最小值,为6161557S a d =+=-.16.已知公差不为零的等差数列{}n a 的前n 项和为n S ,若10110S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若3n an n b a =+,求数列{}n b 的前n 项和.【答案】(1)2n a n=(2)199(1)8n n n +-++【解析】【分析】(1)设出公差,利用题意得到方程组,求出首项和公差,得到通项公式;(2)29nn b n =+,利用分组求和,结合等差数列和等比数列求和公式得到答案.【小问1详解】根据{}n a 为等差数列,设公差为0d ≠.10110S =,即11101045a d =+①,1a ,2a ,4a 成等比数列∴2214a a a =⋅,()()21113∴+=+a d a a d ②,由①②解得:122a d =⎧⎨=⎩,∴数列{}n a 的通项公式为2n a n =.【小问2详解】由232329n a n n n n b a n n =+=+=+,数列{}n b 的前n 项和()()122212999nn n T b b b n =++⋯+=⨯+++++++ ()1919(1)992(1)2198n n n n n n +-+-=⨯+=++-.17.在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,AD AB ⊥,侧面PAB ⊥底面ABCD ,122PA PB AD BC ====,且E ,F 分别为PC ,CD 的中点,(1)证明://DE 平面PAB ;(2)若直线PF 与平面PAB 所成的角为60︒,求平面PAB 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)取PB 中点M ,连接AM ,EM ,通过证明四边形ADEM 为平行四边形,即可证明结论;(2)由直线PF 与平面PAB 所成的角为60︒,可得,,,,GF PG AG BG AB ,建立以G 为原点的空间直角坐标系,利用向量方法可得答案.【小问1详解】取PB 中点M ,连接AM ,EM ,E 为PC 的中点,//ME BC ∴,12ME BC =,又AD //BC ,12AD BC =,//ME AD ∴,ME AD =,∴四边形ADEM 为平行四边形,//DE AM ∴,DE ⊄ 平面PAB ,AM ⊂平面PAB ,//DE ∴平面PAB ;【小问2详解】平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB BC =⊂平面ABCD ,,BC AB BC ⊥∴⊥平面PAB ,取AB 中点G ,连接FG ,则//,FG BC FG ∴⊥平面PAB ,()160,32GPF GF AD BC ∴∠=︒=+=,3tan60,PG PG∴︒=∴=2,1,2PA PB AG GB AB ==∴===,如图以G 为坐标原点,GB 为x 轴,GF 为y 轴,GP 为z轴建立空间直角坐标系,(()(),1,4,0,1,2,0P C D ∴-,(()1,4,,2,2,0PC CD ∴==-- ,设平面PCD 的一个法向量,()1,,n x y z = ,则1140220n PC x y n CD x y ⎧⋅=+-=⎪⎨⋅=--=⎪⎩ ,取1y =,则(1n =- ,平面PAB 的一个法向量可取()20,1,0n = ,设平面PAB 与平面PCD 所成锐二面角为θ,1212cos5n nn nθ⋅∴==,所以平面PAB与平面PCD 所成锐二面角的余弦值55.18.已知抛物线2:2(0)C x py p=>上一点(,6)P m到焦点F的距离为9.(1)求抛物线C的方程;(2)过点F且倾斜角为5π6的直线l与抛物线C交于A,B两点,点M为抛物线C准线上一点,且MA MB⊥,求MAB△的面积.(3)过点(2,0)Q的动直线l与抛物线相交于C,D两点,是否存在定点T,使得TC TD⋅为常数?若存在,求出点T的坐标及该常数;若不存在,说明理由.【答案】(1)212x y=(2)(3)存在定点191,93T⎛⎫⎪⎝⎭,TC TD⋅为常数37081.【解析】【分析】(1)利用抛物线的定义得02pPF y=+,计算出p得抛物线方程;(2)直线方程与抛物线方程联立方程组,求出,A B两点坐标,利用0MA MB⋅=求出M点坐标,求出M 点到直线l的距离和弦长AB,可求MAB△的面积;(3)设()00,T x y,()33,C x y,()44,D x y,过点Q的直线为(2)y k x=-,与抛物线方程联立方程组,利用韦达定理表示出TC TD⋅,求出算式的值与k无关的条件,可得TC TD⋅为定值的常数.【小问1详解】由拋物线的定义得02pPF y=+,解得692p+=,6p=.∴抛物线的方程为212x y=.【小问2详解】设()11,A x y,()22,B x y,由(1)知点(0,3)F,∴直线l的方程为0x +-=.由20,12,x x y ⎧+-=⎪⎨=⎪⎩可得21090y y -+=,则1210y y +=,129y y =,12121061622p p AB AF BF y y y y p ⎛⎫⎛⎫∴=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭,则不妨取11y =,29y =,则点A ,B的坐标分别为,(-.设点M 的坐标为(,3)t -,则,4)MA t =-uuu r,(,12)MB t =--uuu r ,则)()4120MA MB t t ⋅=--+⨯= ,解得t =-.即(3)M --,又点M 到直线l的距离d =d =,故MAB △的面积12S d AB =⋅=;【小问3详解】设()00,T x y ,()33,C x y ,()44,D x y ,过点Q 的直线为(2)y k x =-,2(2)12y k x x y =-⎧⎨=⎩联立消去y 得:212240x kx k -+=,0∆>时,3412x x k +=,3424x x k =,联立消去x 得:()22241240y k k y k +-+=,234124y y k k +=-,2344y y k =,()()()()30403040TC TD x x x x y y y y ⋅=--+-- ()()22340343403400x x x x x y y y y y x y =-++-+++()2222000024124124k x k k y k k x y =-⋅+--++()()2220000024124412x y k y k x y =-++-++要使()()2220000024124412x y k y k x y -++-++与k 无关,则00241240x y -+=且04120y -=,0199x ∴=,013y =,存在191,93T ⎛⎫ ⎪⎝⎭此时TC TD ⋅ 为定值37081.19.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学内容,例如:用一张纸片,按如下步骤折纸:步骤1:在纸上画一个圆A ,并在圆外取一定点B ;步骤2:把纸片折叠,使得点B 折叠后与圆A 上某一点重合;步骤3:把纸片展开,并得到一条折痕;步骤4:不断重复步骤2和3,得到越来越多的折痕.你会发现,当折痕足够密时,这些折痕会呈现出一个双曲线的轮廓.若取一张足够大的纸,画一个半径为2的圆A ,并在圆外取一定点,4B AB =,按照上述方法折纸,点B 折叠后与圆A 上的点T 重合,折痕与直线TA 交于点,P P 的轨迹为曲线C .(1)以AB 所在直线为x 轴建立适当的坐标系,求C 的方程;(2)设AB 的中点为O ,若存在一个定圆O ,使得当C 的弦PQ 与圆O 相切时,C 上存在异于,P Q 的点,M N 使得//PM QN ,且直线,PM QN 均与圆O 相切.(i )求证:OP OQ ⊥;(ii )求四边形PQNM 面积的取值范围.【答案】(1)2213y x -=;(2)(i )证明见解析;(ii )[)6,+∞.【解析】【分析】(1)建立平面直角坐标系,根据双曲线定义可得双曲线方程;(2)假设存在符合条件的圆,依据条件,可得四边形PQNM 为菱形,设直线,OP OQ 的斜率分别为1,k k -,将直线,OP OQ 分别与双曲线方程联立求得||,||OP OQ ,通过计算O 到直线PQ 的距离可得定圆的方程.【小问1详解】以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图所示的平面直角坐标系.则()()2,0,2,0A B -.由折纸方法可知:PB PT =,所以2PB PA PT PA TA AB -=-==<.根据双曲线的定义,C 是以A ,B 为焦点,实轴长为2的双曲线,设其方程为()222210,0,x y a b a b-=>>则1,2a c ===,所以221,3a b ==.故C 的方程为2213y x -=.【小问2详解】(i )假设存在符合条件的圆O ,如图所示:由//PM QN 可得180MPQ NQP ∠+∠=︒,根据切线的性质可知,,MPO OPQ NQO OQP ∠=∠∠=∠,所以90OPQ OQP ∠+∠=︒,即OP OQ ⊥.(ii )分别作,P Q 关于原点O 的对称点,N M '',则,N M ''均在C 上,且四边形PQN M ''为菱形,所以,PM QN ''均与O 相切,所以M '与M 重合,N '与N 重合,所以四边形PQNM 为菱形.显然,直线,OP OQ 的斜率均存在且不为0.设直线,OP OQ 的斜率分别为1,k k-,则直线OP 的方程为y kx =,直线OQ 的方程为1=-y x k .设()()1122,,,P x y Q x y ,则由22,13y kx y x =⎧⎪⎨-=⎪⎩,得()2233k x -=,所以230k ->,且21233x k =-,所以203k <<,且1||OP ==.同理可得:213k >,且||OQ =所以四边形PQNM 的面积2||||S OP OQ =⋅=.设241,43t k t =+<<,故S ==.设1=u t ,则1344u <<,所以S =因为216163y u u =-+-在11,42⎛⎫ ⎪⎝⎭单调递增,在13,24⎛⎫ ⎪⎝⎭单调递减,所以(]0,1y ∈.所以[)6,S ∈+∞.所以四边形PQNM 的面积的取值范围是[)6,+∞.。
南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.过两点()2,4-和()4,1-的直线在x 轴上的截距为( )A .145B .145-C .73D .73-2.过圆225x y +=上一点()2,1M --作圆的切线l ,则直线l 的方程为( ) A .230x y -+=B .250x y ++=C .250x y --=D .250x y +-=3.若k ∈R ,则“22k -<<”是“方程221362x y k k+=+-表示椭圆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若抛物线24y x =上的一点M 到坐标原点O M 到该抛物线焦点的距离为( ) A .5B .3C .2D .15.设直线l 的方程为()sin 10x y θθ+-=∈R ,则直线l 的倾斜角α的范围是( ) A .()0,πB .πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C .π3π,44⎡⎤⎢⎥⎣⎦D .ππ,42⎡⎫⎪⎢⎣⎭6.若直线上存在到曲线T 上一点的距离为d 的点,则称该直线为曲线T 的d 距离可相邻直线.已知直线:430l x y m +-=为圆()()22:2716C x y -++=的3距离可相邻直线,则m 的取值范围是( )A .[]48,22-B .[]18,8--C .(][),4822,-∞-+∞D .(][),188,-∞--+∞7.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,M 为双曲线右支上的一点.若M 在以12F F 为直径的圆上,且12π5π,312MF F ⎛⎫∠∈ ⎪⎝⎭,则该双曲线离心率的取值范围为( )A .(B .)+∞C .()1D .)18.已知A ,B 分别是椭圆2214x y +=的左、右顶点,P 是椭圆在第一象限内一点.若2PBA PAB ∠=∠,则PA PB的值是( )A .5BC .5D .5二.多选题9.已知椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上一点.则下列说法错误的是( )A .椭圆CB .12PF F △的周长为5C .1290F PF ∠<︒D .113PF ≤≤10.已知()0,2M ,()0,3N ,在下列方程表示的曲线上,存在点P 满足2MP NP =的有( ) A .370x -=B .4320x y +-=C .221x y +=D .2222140x y x y +-+-=11.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.已知定点()1,0F c -,()2,0F c ,动点P 满足212PF PF a ⋅=(a ,0c >且均为常数).设动点P 的轨迹为曲线E .则下列说法正确的是( ) A .曲线C 既是轴对称图形,又是中心对称图形B .12PF PF +的最小值为2aC .曲线E 与x 轴可能有三个交点D .2ca ≥时,曲线E 上存在Q 点,使得12QF QF ⊥ 三.填空题12.与双曲线2212x y -=有公共渐近线,且过点的双曲线的方程为______.13.若直线l 过抛物线24y x =的焦点.与抛物线交于A ,B 两点.且线段AB 中点的横坐标为2.则弦AB 的长为______.14.已知点()5,4P ,点F 为抛物线2:8C y x =的焦点.若以点P ,F 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为______.四.解答题15.已知直线1:220l ax y +-=与直线2:220l x ay +-=.(1)当12l l ⊥时,求a 的值;(2)当12l l ∥时,求1l 与2l 之间的距离.16.已知点()1,2A ,()1,2B --,点P 满足4PA PB ⋅=. (1)求点P 的轨迹Γ的方程;(2)过点()2,0Q -分别作直线MN ,RS ,交曲线Γ于M ,N ,R ,S 四点,且MN RS ⊥,求四边形MRNS 面积的最大值与最小值.17.已知椭圆()2222:10x y E a b a b +=>>的一个焦点坐标为()2,0,离心率为23.(1)求椭圆E 的标准方程;(2)设动圆22211:C x y t +=与椭圆E 交于A ,B ,C ,D 四点.动圆()222222212:C x y t t t +=≠与椭圆E 交于A ',B ',C ',D '四点.若矩形ABCD 与矩形A B C D ''''的面积相等,证明:2212t t +为定值.18.已知椭圆()2222:10x y C a b a b+=>>和抛物线()2:20E y px p =>.从两条曲线上各取两个点,将其坐标混合记录如下:(1P -,(22,P,)31P -,()49,3P .(1)求椭圆C 和抛物线E 的方程;(2)设m 为实数,已知点()3,0T -,直线3x my =+与抛物线E 交于A ,B 两点.记直线TA ,TB 的斜率分别为1k ,2k ,判断2121m k k +是否为定值,并说明理由. 19.设a 为实数,点()2,3在双曲线2222:12x y C a a -=+上. (1)求双曲线C 的方程; (2)过点1,12P ⎛⎫⎪⎝⎭作斜率为k 的动直线l 与双曲线右支交于不同的两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=. (ⅰ)求斜率k 的取值范围;(ⅱ)证明:点H 恒在一条定直线上.南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.【答案】A【解析】直线的斜率()415246k --==---,∴直线的方程为()5426y x -=-+,即5763y x =-+, ∴直线在x 轴上的截距为145,故选A . 2.【答案】B【解析】00525xx yy x y +=⇒--=,故选B . 3.【答案】B【解析】方程221362x y k k +=+-表示椭圆3602021362k k k k k+>⎧⎪⇒->⇒-<<-⎨⎪+≠-⎩或12k -<<,故选B . 4.【答案】C【解析】设点2,4y M y ⎛⎫⎪⎝⎭,由MO =()2220054y y ⎛⎫-+-= ⎪⎝⎭, ∴24y =或220y =-(舍去),即214y x ==, ∴M 到抛物线24y x =的准线1x =-的距离()112d =--=,根据抛物线定义得选项C .5.【答案】C【解析】当sin 0θ=时,则直线的斜率不存在,即直线的倾斜角为π2, 当sin 0θ≠时,则直线的斜率(][)1,11,sin k θ=-∈-∞-+∞,即直线倾斜角为πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦, 综上所述,直线的倾斜角的范围为π3π,44⎡⎤⎢⎥⎣⎦.故选C . 6.【答案】A【解析】圆C 的半径为4,直线l 上存在到圆C 上一点的距离为3的点, 故圆心()2,7C -到直线l 的距离7d ≤,即()423775m⨯+⨯--≤,解得[]48,22m ∈-,故选A .7.【答案】D【解析】设21MF F θ∠=,则12sin MF c θ=,22cos MF c θ=, 根据双曲线定义122sin 2cos 2MF MF c c a θθ-=-=,1π4c aθ=⎛⎫- ⎪⎝⎭,π5π,312θ⎛⎫∈ ⎪⎝⎭,故πππ,4126θ⎛⎫-∈ ⎪⎝⎭1c e a =<,故选D . 8.【答案】C【法一】由题意知()2,0A -,()2,0B ,设()00,P x y , 直线P A ,PB 的斜率分别为1k ,2k ,则1214k k =-, 由正弦定理得sin 2cos sin PA PBAPAB PB PAB∠==∠∠, 又22tan tan tan 21tan PABPBA PAB PAB∠∠=∠=-∠,则122121k k k -=-, 联立解得2119k =,即22211cos tan 9cos PAB PAB PAB -∠=∠=∠,所以cos PAB ∠=,即5PA PB =, 【法二】设()00,P x y ,则00tan 2y PAB x ∠=+,00tan 2y PBA x ∠=--, 0000200022102tan tan 221312y y x PBA PAB PBA PAB x x y x +∠=∠⇒-=∠=∠=⇒=-⎛⎫- ⎪+⎝⎭,20144169y =5PAPB==二.多选题9.【答案】AB对于选项A :由题意可知2a =,1c ===,∴离心率12c e a ==,故选项A 错误, 对于选项B :由椭圆的定义1224PF PF a +==,1222F F c ==, ∴12PF F △的周长为426+=,故选项B 错误,对于选项C :当点P 为椭圆短轴端点时,12tan23F PF c b ∠==, 又∵120902F PF ∠︒<<︒,∴12302F PF∠=︒,即1260F PF ∠=︒, ∴1290F PF ∠<︒,故选项C 正确, 对于选项D :由椭圆的几何性质可知1a c PF a c -≤≤+,∴113PF ≤≤,故选项D 正确.10.【答案】BC【解析】()2254,39P x y x y ⎛⎫⇒=+-= ⎪⎝⎭对于A ,7233d R -=>=,所以直线与圆相离,不存在点P ; 对于B ,5232553d R -==<=,所以直线与圆相交,存在点P ; 对于C ,121252133C C R R ==+=+,所以两圆外切,存在点P ;对于D ,()()22121221116433x y C C R R -++=⇒=<-=-,所以两圆内含,不存在点P . 11.【答案】ACD【解析】212a PF PF =⋅==对于A ,用x -代x 得222x y c ++=y 轴对称,用y -代y 得222x y c ++=x 轴对称,用x -代x ,y -代y 得222x y c ++=所以曲线C 既是中心对称图形,又是轴对称图形,所以A 正确;对于B ,当0a >时,122PF PF a +≥=,当0a =时,显然P 与1F 或2F 重合,此时122PF PF c +=,所以B 错误; 对于C ,根据对称性可得,曲线E 与x 轴可能有三个交点,所以C 正确; 对于D ,若存在点P ,使得12PF PF ⊥,则12PF PF ⊥,因为()1,PF c x y =---,()2,PF c x y =--,所以222x y c +=,由222x y c ++=22c =222c a ≥,所以D 正确.三.填空题12.【答案】2212x y -= 【解析】设所求双曲线方程为()2202x y λλ-=≠,将点代入双曲线方程得121λ=-=-,故方程为2212x y -=.13.【答案】6【解析】设A 、B 两点横坐标分别为1x ,2x , 线段AB 中点的横坐标为2,则1222x x +=,故12426AB x x p =++=+=. 14.【答案】57【解析】由抛物线方程得()2,0F ,准线方程为2x =-, 又点()5,4P ,则25c PF ==,在抛物线上取点H ,过H 作HG 垂直直线2x =-,交直线2x =-于点G , 过P 作PM 垂直直线1x =-,交直线1x =-于点M ,由椭圆和抛物线定义得()2527a HF HP HG HP PM =+=+≥=--=,故椭圆离心率2527c e a =≤.四.解答题15.【解析】(1)由12l l ⊥,则20a a +=,解得0a =.(2)由12l l ∥得22244a a ⎧=⎨-≠-⎩,解得1a =-,直线2l 的方程为220x y -+-=,即220x y -+=, 直线1l 的方程为220x y --=, 因此,1l 与2l 之间的距离为d ==. 16.【解析】(1)设(),P x y ,则()()41,21,2PA PB x y x y =⋅=--⋅----,故轨迹方程为229x y +=. (2)假设点O 到MN 的距离为m ,到RS 的距离为n,则12S MN RS == 因为MN RS ⊥,所以224m n +=,所以)204S m ==≤≤,所以S ⎡⎤∈⎣⎦,所以四边形MRNS 面积的最大值14,最小值17.【解析】(1) 222249253a b a b e ⎧-=⎧=⎪⎪⇒⇒⎨⎨=⎪==⎩⎪⎩椭圆22:195x y E += (2)设()33,A x y ',矩形ABCD 与矩形A B C D ''''的面积相等 ∴331144x y x y =,即22221133x y x y=∵A ,A '均在椭圆上,∴22223113515199x x x x ⎛⎫⎛⎫⨯-=⨯- ⎪ ⎪⎝⎭⎝⎭,即22139x x +=,222231135151599x x y y ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭ 故()()()()()22222222222212113313131314t t x y x y x x x x y y +=+++=+=+++=为定值. 18.【解析】(1)将四个点带入抛物线方程解得12p =-,12,2,12,故抛物线E 方程为2y x =故(1P -,)31P -为椭圆上的点22222242186141a a b b a b ⎧+=⎪⎧=⎪⎪⇒⇒⇒⎨⎨=⎪⎩⎪+=⎪⎩椭圆C 方程22184x y += (2)设()12,A x x ,()22,B x y ,则1222123303x my y y m y my y y y x =++=⎧⎧⇒--=⇒⎨⎨=-=⎩⎩()()()121222212121212666136212my my m y y m m m k k y y y y y y ++++=+=++=-为定值. 19.【解析】(1)因为点()2,3在双曲线C 上,所以22222312a a -=+,整理得42780a a +-=, 即()()22180a a -+=,解得21a =,则双曲线C 的方程为2213y x -=; (2)(ⅰ)易知直线l 的方程为112y k x ⎛⎫=-+ ⎪⎝⎭,即112y kx k =+-, 联立2211213y kx k y x ⎧=+-⎪⎪⎨⎪-=⎪⎩,消去y 并整理得()()222132404k x k k x k k ⎛⎫-+---+= ⎪⎝⎭, 设()11,M x y ,()22,N x y ,因为直线l 与双曲线的右支有两个不同的交点M ,N , 所以关于x 的方程()()222132404kxk k x k k ⎛⎫-+---+= ⎪⎝⎭有两个不同的正数根1x ,2x ,()()()()()()()()()22222222212434033416043202301303404k k k k k k k k k k k k k k k k k ⎧⎛⎫-+--+> ⎪⎪⎧-+->⎝⎭⎪⎪⎪⎪--<⇒-->⎨⎨⎪⎪-<⎛⎫⎪⎪⎩---+> ⎪⎪⎝⎭⎩,解得k ∈⎝则斜率k的取值范围为⎝; (ⅱ)设()00,H x y ,由(ⅰ)得()()12222233k k k k x x k k --+=-=--,()222122221144416443343k k k k k k x x k k k ⎛⎫--+-+ ⎪-+⎝⎭===---, 因为1112x a ≥=>,2112x a ≥=>,()()01020x x x x --<, 又P ,M ,N ,H 在同一直线l 上,所以111222112122112122x x PM x PN x x x ---===---,0120MH x x HN x x -=-, 由PM MH PN HN=得0112202121x x x x x x --=--,即()()()()1202012121x x x x x x --=--, 化简得()()()1201212214x x x x x x x +-=-+,所以()()202222241621333k k k k k k x k k k --⎛⎫-+-=- ⎪---⎝⎭, 整理得()()()2202234162k k k x k k k k --+=-+--,解得0832kx k -=-,即003821x k x -=- 又点()00,H x y 在直线112y k x ⎛⎫=-+ ⎪⎝⎭上,所以()001136911223264k k y k x k k +⎛⎫=-+=+= ⎪--⎝⎭ 即00000386921386421x x y x x -+⋅-=--⋅-,故点H 恒在定直线3260x y --=上.。
2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。
2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题一、单选题(本大题共10小题)1.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c+-r r ra b c-+r r r C .D .a b c -++ a b c-+- 2.已知点,,若直线的斜率为,则( )()1,0A (),B n m AB 21n m -=A .B .C .D .22-1212-3.已知,则( )()()1,5,1,3,2,5a b =-=-a b -= A .B .C .D .()4,3,6--()4,3,6--()4,3,6-()4,3,64.已知焦点在轴上的椭圆的焦距为6,则实数等于( )x 2213x y m +=mA .B .C .12D .3421412-5.已知正方体的棱长为1,则( )1111ABCD A B C D -A .B .C .D .11ACB D ⊥1AC BC⊥1B D BC⊥1B D AC^6.已知圆,圆,则这两圆的位置关系为( 22:(2)(4)25E x y -+-=22:(2)(2)1F x y -+-=)A .内含B .相切C .相交D .外离7.设直线的方向向量为,平面的法向量为,若,则( )l a αb0a b ⋅= A .B .C .D .或//l αl α⊂l α⊥l α⊂//l α8.与平行,则( )1:10l ax y -+=2:2410l x y +-==aA .B .C .D .21212-2-9.经过点,斜率为的直线方程为( )(3,1)12A .B .210x y --=250x y +-=C .D .250x y --=270x y +-=10.已知,则该圆的圆心坐标和半径分别为( )221:202C x y x y ++-+=A .,B .,1,12⎛⎫- ⎪⎝⎭()1,2-C .,D .,1,12⎛⎫ ⎪⎝⎭()1,2-二、多选题(本大题共2小题)11.下列结论错误的是( )A .过点,的直线的倾斜角为()1,3A ()3,1B -30︒B .若直线与直线平行,则2360x y -+=20ax y ++=23a =-C .直线与直线之间的距离是240x y +-=2410x y ++=D .已知,,点在轴上,则的最小值是5()2,3A ()1,1B -P x PA PB+12.以A (1,1),B (3,-5)两点的线段为直径的圆,则下列结论正确的是()A .圆心的坐标为(2,2)B .圆心的坐标为(2,-2)C .圆心的坐标为(-2,2)D .圆的方程是()222)210x y ++-=(E .圆的方程是22(2)(2)10x y -++=三、填空题(本大题共4小题)13.已知平面的法向量是,平面的法向量是,若,则的α()2,3,1-β()4,,2λ-//αβλ值是.14.直线与圆的位置关系是.34120x y ++=()()22119-++=x y 15.三条直线与相交于一点,则的值为.280,4310ax y x y +-=+=210x y -=a16.在空间直角坐标系中,直线的一个方向向量为,平面的一个法向l ()1,0,3m =-α量为,则直线与平面所成的角为.()2n =l α四、解答题(本大题共3小题)17.求满足下列条件的直线方程(要求把直线的方程化为一般式):(1)已知,,,求的边上的中线所在的直线方程.(1,2)A (1,4)B -(5,2)C ABC V AB (2)直线经过点,倾斜角为直线的倾斜角的2倍,求的方程.l (2,1)B --12y x=l 18.如图,在棱长为2的正方体中,分别是的中点,G 在棱CD 上,且,E F 1,DD DB ,H 是的中点.建立适当的空间直角坐标系,解决下列问题:13CG CD=1C G(1)求证:;1EF B C ⊥(2)求异面直线EF 与所成角的余弦值.1C G 19.已知圆C 经过坐标原点O 和点(4,0),且圆心在x 轴上(1)求圆C 的方程;(2)已知直线l :34110x y +-=与圆C 相交于A 、B 两点,求所得弦长的值.AB答案1.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .2.【正确答案】C【详解】若直线的斜率为,则,AB 221mn =-所以,211n m -=故选:C.3.【正确答案】C【详解】向量,则.()()1,5,1,3,2,5a b =-=- (4,3,6)a b -=- 故选:C4.【正确答案】C【详解】由题意知,,3,3m a b c >==又,所以,222a b c =+3912m =+=即实数的值为12.m 故选:C5.【正确答案】D 【详解】以为原点,为单位正交基底建立空间直角坐标系,D {}1,,DA DC DD 则,,,,,,()0,0,0D A (1,0,0)1(1,0,1)A ()1,1,0B ()11,1,1B ()0,1,0C 所以,,,.()11,1,1A C =-- ()11,1,1B D =--- ()1,0,0BC =- ()1,1,0AC =-因为,所以.111111,1,1,0AC B D AC BC BC B D AC B D ⋅=⋅==⋅=⋅ 1B D AC ^故选:D.6.【正确答案】A【详解】圆的圆心为,半径;22:(2)(4)25E x y -+-=E (2,4)15r =圆的圆心为,半径,22:(2)(2)1F x y -+-=F (2,2)11r =,故,所以两圆内含;2=12EF r r <-故选:A7.【正确答案】D【详解】∵直线的方向向量为,平面的法向量为且,即,l a αb0a b ⋅= a b ⊥ ∴或.l α⊂//l α故选:D8.【正确答案】B【详解】由与平行,得,所以.1:10l ax y -+=2:2410l x y +-=11241a -=≠-12a =-故选:B9.【正确答案】A【详解】经过点,斜率为的直线方程为,即.(3,1)1211(3)2y x -=-210x y --=故选:A.10.【正确答案】A【详解】的标准方程为,故所求分别为221:202C x y x y ++-+= ()2213124x y ⎛⎫++-= ⎪⎝⎭,1,12⎛⎫- ⎪⎝⎭故选:A.11.【正确答案】AC 【详解】对于A ,,即,故A 错误;131tan 312AB k α-===--30α≠︒对于B ,直线与直线平行,所以,解得,故B 2360x y -+=20ax y ++=123a =-23a =-正确;对于C ,直线与直线(即)之间的距离为240x y +-=2410x y ++=1202x y ++=C 错误;d 对于D ,已知,,点在轴上,如图()2,3A ()1,1B -P x取关于轴的对称点,连接交轴于点,此时()1,1B -x ()1,1B '--AB 'x P,5=所以的最小值是5,故D 正确;PA PB+故选:AC.12.【正确答案】BE 【详解】AB 的中点坐标为,则圆心的坐标为()2,2-()2,2-=r =所以圆的方程是22(2)(2)10x y -++=故选:BE13.【正确答案】6【详解】∵,∴的法向量与的法向量也互相平行.//αβαβ∴,∴.23142λ-==-6λ=故6.14.【正确答案】相交【详解】圆的圆心为,半径为,()()22119x y -++=()1,1-3因为圆心到直线,()1,1-34120x y ++=1135<所以直线与圆相交.34120x y ++=()()22119x y -++=故相交15.【正确答案】3【详解】由,即三条直线交于,431042102x y x x y y +==⎧⎧⇒⎨⎨-==-⎩⎩(4,2)-代入,有.280ax y +-=44803a a --=⇒=故316.【正确答案】π6【分析】应用向量夹角的坐标表示求线面角的正弦值,即可得其大小.【详解】设直线与平面所成的角为,l απ20θθ⎛⎫≤≤ ⎪⎝⎭则,所以.1sin cos ,2m n m n m n θ⋅====π6θ=故π617.【正确答案】(1)x +5y ﹣15=0(2)4x ﹣3y +5=0【详解】(1)因为,则的中点,(1,2),(1,4)A B -AB (0,3)D 因为的边上的中线过点,ABC V AB (5,2),(0,3)C D 所以的方程为,即,CD 233050y x --=--()5150x y +-=故的边上的中线所在的直线方程为;ABC V AB 5150x y +-=(2)设直线的倾斜角为, 则,则所求直线的倾斜角为,12y x=απ0,4α⎛⎫∈ ⎪⎝⎭2α因为,所以,1tan 2α=22tan 4tan 21tan 3ααα==-又直线经过点,故所求直线方程为,即4x ﹣3y+5=0;(2,1)B --4123y x +=+()18.【正确答案】(1)证明见解析【详解】(1)证明:如图,以D 为原点,以射线DA 、DC 、分别为x 轴、y 轴、1DD z 轴的正半轴,建立空间直角坐标系,D xyz -则,,,,,()0,0,0D E (0,0,1)()1,1,0F ()0,2,0C ()10,2,2C ,,()12,2,2B 40,,03G ⎛⎫ ⎪⎝⎭所以,,()1,1,1EF =- ()12,0,2B C =--所以,()()()()()11,1,12,0,21210120EF B C ⋅=-⋅--=⨯-+⨯+-⨯-=所以,故.1EF B C ⊥1EF B C ⊥(2)因为,所以120,,23C G ⎛⎫=-- ⎪⎝⎭1C G =因为,EF =()12241,1,10,,22333EF C G ⎛⎫⋅=-⋅--=-+=⎪⎝⎭所以.1114cos ,3EF C G EF C G EF C G ⋅=====19.【正确答案】(1)()2224x y -+=(2)【分析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为()2224x y -+=;(2)由(1)可知:圆C 半径为2r =,设圆心(2,0)到l 的距离为d ,则61115d -==,由垂径定理得:AB ==。
四川省成都市第十二中学(四川大学附属中学) 2024-2025学年高二上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.某校高二年级举行了“学宪法、讲宪法”知识竞赛,为了了解本次竞赛的学生答题情况,从中抽取了200名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,
按照[)
50,60,[)
70,80,[)
60,70,[)
90,100的分组作出频率分布直方图如图所示.
80,90,[]
(1)求频率分布直方图中x的值,并估计该200名学生成绩的中位数和平均数;
(2)若在[)
70,80的样本成绩对应的学生中按分层抽样的方法抽取7人进行访谈,60,70和[)
再从这七人中随机抽取两人进行学习跟踪,求抽取的两人都来自[)
70,80组的概率.
16.如图,四边形
A ABB是圆柱的轴截面,C是下底面圆周上一点,点D是线段BC中点
11
则圆C有且仅有3个点,,
M N P
故选:BCD.
11.ABD
【分析】将二十四等边体补形为正方体,且二十四等边体根据题意易知正方体棱长为2,
uuu r uuu
根据向量的坐标,可得2
CE=。
2017 —— 2018学年度第二学期期中考试高 二 数学试题(理科)命题人: 审题人: 考试时间120分钟 分值150分注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
第Ⅰ卷(选择题 共70分)一、选择题:(本大题共14小题,每小题5分,共70分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 点M 的直角坐标是(1,3)-,则点M 的极坐标为( ) A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 2.从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有( )种不同的走法。
A. 9种 B.10种 C. 11种 D.24种3. 若,)1(55443322105x a x a x a x a x a a x +++++=-则a 0-a 1+a 2-a 3+a 4-a 5=( ) A. 64 B. 32 C. 1 D. 04. 在某次大合唱中,要求6名演唱者站一排,且甲不站左端,乙不站右端,则不同的站法有多少种( )A. 368种B. 488种C. 486种D.504种 5.在极坐标系中,圆cos 3πρθ⎛⎫=+⎪⎝⎭的圆心的极坐标为( ) A. 1,23π⎛⎫-⎪⎝⎭ B. 1,23π⎛⎫ ⎪⎝⎭ C. 1,3π⎛⎫- ⎪⎝⎭ D. 1,3π⎛⎫⎪⎝⎭6. 从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A. 60种B. 48种C. 30种D. 10种7. 某产品的广告费用x 与销售额y 的统计数据如下表:由上表求得回归方程9.49.1y x ∧=+,当广告费用为3万元时销售额为( ) A .39万元 B .38万元 C .38.5万元 D .37.3万元 8. 已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于 A.14B.15C.16D.179. 学校将6名新毕业实习教师分派到高一3个班进行实习,每名实习教师只进入一个班级实习,每班至少1名,则不同的分派方案有( )种。
A. 630 B. 540 C. 450 D. 36010.为了解某高校学生使用手机支付和现金支付的情况,抽取了部分学生作为样本,统计其喜欢的支付方式,并制作出如下等高条形图:根据图中的信息,下列结论中不正确的是( )A .样本中的男生数量多于女生数量B .样本中多数男生喜欢手机支付 C. 样本中喜欢手机支付的数量多于现金支付的数量 D .样本中多数女生喜欢现金支付 11. 将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有( ) A. 240 B. 360 C. 480 D. 56012. 随机抽取某中学甲,乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图 ,则下列关于甲,乙两班这10名同学身高的结论正确的是 ( )A . 甲班同学身高的方差较大B . 甲班同学身高的平均值较大C . 甲班同学身高的中位数较大D . 甲班同学身高在175以上的人数较多 13. 从3,2,1,0这4个数字中选3个数字组成没有重复数字的三位数,则该三位数能被3整除的概率为( ) A .92 B .31 C. 125 D .95 14. 甲、乙、丙、丁四个人到重庆旅游,朝天门、解放碑、瓷器口三个景点,每个人只去一个景点,每个景点至少有一个人去,则甲不到瓷器口的方案有( ) A. 36种 B. 18种 C. 24种 D.16种第Ⅱ卷(非选择题,共80分)二、填空题(本大题包括6小题,每小题5分,共30分,把正确答案填在答题卡中相应的横线上) 15. 5(2)x x -的展开式中,72x 的系数是 .16. 随机变量ξ服从正态分布),50(2σN ,若3.0)40(=<ξP ,则=<<)6040(ξP .17. 将序号为1, 2, 3, 4的四张电影票全部分给3人,每人至少一张.要求分给同一人两张电影票连号,那么不同的分法种数为____ ____.(用数字作答)18.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线1:(0)C θααπ=≤<,曲线23:2sin ,:23cos .C C ρθρθ==若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.为19. 5(15)x y --的展开式中不含x 的项的系数和为 (结果化成最简形式) 20. 现有语文书一二三册,数学书一二三册,共计6本排成一排。
其中要求语文第一册不在两端,数学书恰有两本相邻的排列方案有种。
三.解答题:解答应写出文字说明,证明过程或演算步骤。
21.(本小题满分12分)某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组:[)10,20,[)20,30,…,[]50,60,并整理得到如下频率分布直方图:(Ⅰ)求a的值;(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄.22.(本小题满分12分)某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:物理及格物理不及格合计数学及格27 9 36数学不及格12 24 36合计39 33 72(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;(2)若以抽取样本的频率为概率,现在该校高二理科学生中,从数学及格的学生中随机抽取3人,记X为这3人中物理不及格的人数,从数学不及格学生中随机抽取2人,记Y为这2人中物理不及格的人数,记ξ=|X﹣Y|,求ξ的分布列及数学期望.附:x2= .P(X2≥k)0.150 0.100 0.050 0.010k 2.072 2.706 3.841 6.63523.(本小题满分14分)天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.(Ⅰ)天气预报说,在今后的四天中,每一天降雨的概率均为40%,求四天中至少有两天降雨的概率;(Ⅱ)经过数据分析,一天内降雨量的大小x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:降雨量(毫米) 12345快餐数(份)5试建立y 关于x 的回归方程(和保留一位小数),为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数(快餐份数四舍五入保留整数). 附注:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-24.(本小题满分12分)点P 是曲线()221:24C x y -+=上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90︒得到点Q ,设点Q 的轨迹方程为曲线2C .(1)求曲线1C ,2C 的极坐标方程;(2)射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,定点()2,0M ,求MAB△的面积.2017 —— 2018学年度第二学期期中考试 高 二 数学试题(理科)参考答案1-5 CCBDA 6-10 CADBD 11-14 CADC15. —40 16. 0.4 17. 1818.4 19. 1024- 20.288 21题答案:(本小题满分12分)22题答案:(本小题满分12分)【答案】(1)解:根据题意,得: = ≈12.587,∵12.587>6.635,∴有99%的把握认为“数学及格与物理及格有关”(2)解:从数学及格的学生任抽取一人,抽到物理不及格的学生的频率为 = ,从数学不及格的学生任取一人,抽到物理不及格的学生的频率为= ,X可能的取值为0,1,2,3,Y可能的取值为0,1,2,ξ的可能取值为0,1,2,3,P(ξ=0)=P(X=0)P(Y=0)+P(X=1)P(Y=1)+P(X=2)P(Y=2)= • + + = ,P(ξ=1)=P(X=0)P(Y=1)+P(X=1)P(Y=0)+P(X=1)P(Y=2)+P(X=2)P(Y=1)+P(X=3)P(Y=2)= + +• + + = ,P(ξ=2)=P(X=0)P(Y=2)+P(X=2)P(Y=0)+P(X=3)P(Y=1)= + + = ,P(ξ=3)=P(X=3)P(Y=0)= = ,∴ξ的分布列为:ξ 0 1 2 3PEξ= +3×=【考点】独立性检验的应用,离散型随机变量及其分布列【解析】【分析】(1)根据题意,求出X2= ≈12.587>6.635,从而有99%的把握认为“数学及格与物理及格有关”.(2)从数学及格的学生任抽取一人,抽到物理不及格的学生的频率为= ,从数学不及格的学生任取一人,抽到物理不及格的学生的频率为= ,X可能的取值为0,1,2,3,Y可能的取值为0,1,2,ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ. 23题答案:(本小题满分14分)答案:(Ⅰ)(Ⅱ)3x = 110y = 27.5a b == 193份解析:(Ⅰ)四天均不降雨的概率41381()5625P ==, 四天中恰有一天降雨的概率132432216()55625P C =⨯⨯=, 所以四天中至少有两天降雨的概率128121632811625625625P P P =--=--=. (Ⅱ)由题意可知1234535x ++++==,50851151401601105y ++++==,51521()()275==27.510()iii ii x x y y b x x ==--=-∑∑, ==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5yx =+. 将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈. 所以预测当降雨量为6毫米时需要准备的快餐份数为193份. 24题答案:(本小题满分12分) 答案:(Ⅰ)4cos ρθ=(Ⅱ)33S =- 解析:(Ⅰ)曲线1C 的极坐标方程为4cos ρθ=.设(),Q ρθ,则,2P πρθ⎛⎫- ⎪⎝⎭,则有4cos 4sin 2πρθθ⎛⎫=-= ⎪⎝⎭.所以,曲线2C 的极坐标方程为4sin ρθ=. (Ⅱ)M 到射线3πθ=的距离为2sin33d π==,()4sin cos 23133B A AB ππρρ⎛⎫=-=-=- ⎪⎝⎭,则1332S AB d =⨯=-.。