容斥原理
- 格式:ppt
- 大小:2.94 MB
- 文档页数:25
容斥原理的基本应用什么是容斥原理容斥原理,又称为容错原理、排容原理,是组合数学中一种常用的计数原理。
容斥原理用于解决计数问题,特别是解决两个或多个集合的并、交、差等计数问题。
它通过将复杂的集合拆分成简单的部分,并根据不同情况逐步计算得到最终的结果。
容斥原理有助于简化计数问题的解决过程,使得问题的求解更加简洁明了。
容斥原理的应用场景容斥原理在组合数学、概率论、计算机科学等领域有广泛的应用。
它可以解决一些复杂的计数问题,包括排列组合问题、概率计算问题、鸽巢原理问题等。
容斥原理在解决这些问题时,可以极大地简化计算的复杂度,提高解题效率。
以下是容斥原理的基本应用场景:1.列表中元素的多重选择问题2.集合的并、交、差运算问题3.满足多个条件的计数问题4.重复计算问题容斥原理的基本原理容斥原理的基本原理可以通过一个简单的示例来说明。
假设有A、B两个集合,记其元素个数分别为|A|和|B|。
那么A和B的并集的元素个数可以通过以下公式计算得到:|A∪B| = |A| + |B| - |A∩B|其中,|A∩B|表示A和B集合的交集中的元素个数。
上述公式中的两次求并集都将交集的元素计算了两次,所以需要将交集的元素个数减去一次,以避免重复计算。
这就是容斥原理的基本思想。
容斥原理的基本应用举例列表中元素的多重选择问题假设有一个列表,其中有苹果、橙子、香蕉、草莓这四种水果。
现在需要从这个列表中选择1种、2种、3种甚至全部4种水果的可能性有多少种?根据容斥原理,我们可以通过以下步骤进行计算:1.计算只选择1种水果的情况,共有4种可能性。
2.计算只选择2种水果的情况,共有C(4,2) = 6种可能性。
3.计算只选择3种水果的情况,共有C(4,3) = 4种可能性。
4.计算选择全部4种水果的情况,共有1种可能性。
根据容斥原理,计算总的可能性的公式为:总可能性 = 只选择1种水果的数量 - 只选择2种水果的数量 + 只选择3种水果的数量 - 选择全部4种水果的数量带入上述计算结果,得到总可能性为4 - 6 + 4 - 1 = 1种。
容斥原理的理解及应用容斥原理是组合数学中一种常用的计数方法,用于解决一些复杂的计数问题。
它基于一个简单而实用的思想:通过减去重复计数来得到所需的计数。
容斥原理的基本思想是通过枚举每个事件的包含情况来计算事件的并集。
它主要分为两步:1. 枚举所有的事件组合。
容斥原理将事件集合划分为若干个子集合,每个子集合代表一个事件的包含情况,通过枚举这些事件的包含情况来计算事件的并集。
例如,对于一个问题,A、B、C三个事件,我们可以枚举8种情况:A、B、C以及AB、AC、BC以及ABC、空集。
这样可以保证每个事件都被包含到,并且不会重复。
2. 计算每个事件组合中的事件的并集。
容斥原理的关键在于计算每个事件组合中事件的并集。
考虑每个子集合的事件个数的奇偶性,通过加减计算得到事件的并集。
以A、B、C三个事件为例,我们可以通过计算“A或B或C”减去“AB或AC或BC”再加上“ABC”来得到所需的计数。
容斥原理主要应用于解决计数问题,特别是计算事件的并集问题。
以下是容斥原理的几个应用示例:1. 求两个集合的并集的元素个数。
假设有两个集合A和B,我们想要求并集A∪B中元素的总个数。
根据容斥原理,我们可以通过计算A和B的元素个数再减去A∩B的元素个数来得到并集的元素个数。
这是因为A∪B中的每个元素都会被计算两次,而A∩B中的元素被计算两次后又被减去了一次,所以最终得到的结果是正确的。
2. 求多个集合的并集的元素个数。
若要求多个集合的并集的元素个数,可以使用容斥原理的推广。
假设有n 个集合A1, A2, ..., An,我们可以使用容斥原理的思想,通过计算每个子集合中的元素个数再根据子集合的个数的奇偶性进行加减操作来得到并集的元素个数。
3. 求满足多个条件的数的个数。
假设有n个条件P1, P2, ..., Pn,每个条件Pi代表一个谓词,我们想要求满足所有条件的数的个数。
我们可以使用容斥原理的思想,通过计算每个子集合中满足条件的数的个数再根据子集合的个数的奇偶性来得到满足所有条件的数的个数。
一、容斥原理在计数时,要保证无一重复,无一遗漏。
为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
1.容斥原理1——两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。
如图所示:公式:A∪B=A+B-A∩B总数=两个圆内的-重合部分的【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。
A∪B=15+12-4=23,共有23人至少有一门得满分。
2.容斥原理2——三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。
如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。
即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C总数=三个圆内的-重合两次的+重合三次的【例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。
容斥原理(Inclusion–exclusion principle),是指在计数时,必须注意无一重复,无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法。
这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
公式也可表示为设S为有限集,,则两个集合的容斥关系公式:A∪B=A+B-A∩B(∩:重合的部分)三个集合的容斥关系公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C详细推理如下:1、等式右边改造={[(A+B-A∩B)+C-B∩C]-C∩A}+A∩B∩C2、文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C3、等式右边()里指的是下图的1+2+3+4+5+6六部分:那么A∪B∪C还缺部分7。
4、等式右边[]号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分,减去B∩C(即5+6两部分)后,还多加了部分4。
5、等式右边{}里减去C∩A(即4+5两部分)后,A∪B∪C又多减了部分5,则加上A∩B∩C(即5)刚好是A∪B∪C。
2严格证明对于容斥原理我们可以利用数学归纳法证明:证明:当时,等式成立()。
假设时结论成立,则当时,所以当时,结论仍成立。
因此对任意,均可使所证等式成立。
3原理1如果被计数的事物有A、B两类,那么,A类B类元素个数总和=属于A类元素个数+属于B类元素个数—既是A类又是B类的元素个数。
(A∪B=A+B-A∩B)例1一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B 类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。
容斥原理公式大全容斥原理是组合数学中常用的一种计数方法,可以用于解决涉及多个集合的计数问题。
它的基本思想是通过求解包含或排除一些元素的方式来计算所需的数量。
1. 容斥原理的基本形式:如果A₁,A₂,...,Aₙ是有限集合,并且S表示它们的并集,则有:|S| = |A₁∪A₂∪...∪Aₙ| = Σ|Aᵢ| - Σ|Aᵢ∩Aₙ| + Σ|Aᵢ∩Aₙ∩Aₙ| - ... + (-1)ⁿ⁻¹|A₁∩A₂∩...∩Aₙ|,其中|X|表示集合X中元素的个数。
2. 两个集合的容斥原理:如果A和B是两个有限集合,则有:|A∪B| = |A| + |B| - |A∩B|。
3. 三个集合的容斥原理:如果A,B和C是三个有限集合,则有:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |A∩C| - |B∩C| + |A∩B∩C|。
4. 四个集合的容斥原理:如果A,B,C和D是四个有限集合,则有:|A∪B∪C∪D| = |A| + |B| + |C| + |D| - |A∩B| - |A∩C| - |A∩D| -|B∩C| - |B∩D| - |C∩D| + |A∩B∩C| + |A∩B∩D| + |A∩C∩D| +|B∩C∩D| - |A∩B∩C∩D|。
5. n个集合的容斥原理:如果A₁,A₂,...,Aₙ是n个有限集合,则有:|A₁∪A₂∪...∪Aₙ| = Σ|Aᵢ| - Σ|Aᵢ∩Aₙ| + Σ|Aᵢ∩Aₙ∩Aₙ| - ... + (-1)ⁿ⁻¹|A₁∩A₂∩...∩Aₙ|。
容斥原理的思想可以扩展到更多个集合的情况,通过求解交集和补集的方式来计算复杂集合的数量。
它在组合数学中具有广泛的应用,特别是在计数问题中常常能够提供简洁有效的解决方案。
容斥原理的三个公式容斥原理是数学中一个挺有意思的概念,它有三个重要的公式,今天咱们就来好好聊聊这三个公式。
我先跟您说啊,这容斥原理在解决集合相关的问题时,那可真是大显身手。
就拿咱们生活中的例子来说吧,比如说学校组织活动,有参加书法比赛的同学,有参加绘画比赛的同学,还有既参加书法又参加绘画比赛的同学。
那怎么算总共有多少同学参加了这两类比赛呢?这时候容斥原理就派上用场啦!咱们先来说说容斥原理的第一个公式。
这个公式可以表述为:两个集合 A 和 B 的并集的元素个数,等于 A 的元素个数加上 B 的元素个数,再减去 A 和 B 的交集的元素个数。
简单来说就是:|A∪B| = |A| + |B| -|A∩B| 。
举个例子哈,一个班级里,喜欢语文的有 20 个同学,喜欢数学的有 30 个同学,既喜欢语文又喜欢数学的有 10 个同学。
那喜欢语文或者喜欢数学的同学一共有多少个呢?咱们就可以用这个公式来算。
|A|就是喜欢语文的 20 个同学,|B|就是喜欢数学的 30 个同学,|A∩B|就是既喜欢语文又喜欢数学的 10 个同学。
把数字带进去,那就是 |A∪B| = 20 + 30 - 10 = 40 个同学。
您瞧,是不是很清楚明了?再来说说第二个公式。
如果是三个集合 A、B、C ,那它们的并集的元素个数就是:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| +|A∩B∩C| 。
咱们还是拿例子来说事儿。
比如说在一个班级里,喜欢体育的有 25 个同学,喜欢音乐的有 15 个同学,喜欢美术的有 20 个同学,既喜欢体育又喜欢音乐的有8 个同学,既喜欢音乐又喜欢美术的有6 个同学,既喜欢体育又喜欢美术的有 9 个同学,三个都喜欢的有 3 个同学。
那喜欢体育或者音乐或者美术的同学一共有多少个呢?咱们就把数字往公式里带:|A|是 25 ,|B|是 15 ,|C|是 20 ,|A∩B|是 8 ,|B∩C|是 6 ,|C∩A|是 9 ,|A∩B∩C|是 3 。
容斥原理及其应用容斥原理是组合数学中一种重要的计数技巧,被广泛运用于排列组合、概率统计等领域。
它的核心思想是通过求出多个集合的交集和并集来计算所需的数量,从而避免重复计数,确保准确性和全面性。
本文将介绍容斥原理的基本概念、推导过程以及其在实际问题中的应用。
一、容斥原理的基本概念容斥原理是根据集合的性质和运算规则推导出的一种计数方法。
在给定一组集合时,容斥原理可以帮助我们计算这些集合的交集和并集的元素个数。
在具体运用中,我们将问题转化成求解几个集合的元素个数之和的问题。
容斥原理表达式如下:∣A1∪A2∪⋯∪An∣=∣A1∣+∣A2∣+⋯+∣An∣−∣A1∩A2∣−∣A1∩A3∣−⋯−∣An−1∩An∣+⋯+(−1)^n−1∣An−1∩An∣其中,∣A∣表示集合A的元素个数,∪表示集合的并集,∩表示集合的交集,n表示集合的数量。
二、容斥原理的推导过程容斥原理的推导过程可以通过数学归纳法来实现,下面简要介绍:首先,我们给定两个集合A和B,我们用∣A∣表示集合A的元素个数,用∣B∣表示集合B的元素个数。
如果我们要计算A和B的并集∣A∪B∣,那么可以采取如下步骤:1. 首先,我们直接将∣A∣和∣B∣相加,得到∣A∣+∣B∣。
2. 然后,我们需要减去重复计算的部分,即集合A和B的交集∣A∩B∣。
因为∣A∩B∣这部分元素已经在∣A∣和∣B∣中被计算了一次,所以需要减去∣A∩B∣。
通过以上步骤,我们得到了∣A∪B∣=∣A∣+∣B∣−∣A∩B∣。
这就是容斥原理的基本推导过程。
接下来,我们将容斥原理推广到更多集合的情况。
假设我们有三个集合A、B和C,我们想要计算它们的并集∣A∪B∪C∣,我们可以按照以下步骤进行:1. 首先,我们将∣A∣、∣B∣和∣C∣相加,得到∣A∣+∣B∣+∣C∣。
2. 然后,我们需要减去两两集合的交集部分,即∣A∩B∣、∣A∩C∣和∣B∩C∣。
这是因为这些部分元素在∣A∣、∣B∣和∣C∣中都被计算了一次,所以需要减去。
容斥原理【知识点讲解】1、原理容斥原理指把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
2、解释由图可以直接看出各部分之间的关系由Venn图可知:(A∪B=A+B-A∩B)由Venn图可知:(A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C)3、应用两类如果被计数的事物有A、B两类,那么,A类B类元素个数总和=属于A类元素个数+属于B类元素个数—既是A类又是B类的元素个数。
三类如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和=A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
4、解题导语使用容斥原理一般用于集合相关问题中,但是此类思想在数学学习中仍有巨大作用。
例如在计数原理中使用间接法等等。
因此学习此类问题对数学能力的提升是有很大帮助的,它可以帮助你换一个角度看数学题,从而找到更简单的办法。
【例题详析】例1、(2020宁夏)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,六盘水市第七中学为了解我校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则在调查的100位同学中阅读过《西游记》的学生人数为()A .80B .70C .60D .50【参考答案】B【详解】因为阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,所以《西游记》与《红楼梦》两本书中只阅读了一本的学生共有90-60=30位,因为阅读过《红楼梦》的学生共有80位,所以只阅读过《红楼梦》的学生共有80-60=20位,所以只阅读过《西游记》的学生共有30-20=10位,故阅读过《西游记》的学生人数为10+60=70位,【方法解析】由两类的容斥原理得:总人数=阅读过《西游记》+阅读过《红楼梦》-阅读过《红楼梦》和《西游记》的,由此得阅读过《西游记》的学生人数=90+60-80=70(位)例2:某中学的学生积极参加体育锻炼,其中有96名学生喜欢足球或游泳,60名学生喜欢足球,82名学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生有()名.A .62B .56C .46D .42【参考答案】C【详解】喜欢足球的学生、喜欢游泳的学生形成的集合分别记为A ,B ,依题意,集合A ,B ,A B 中元素个数分别为:()60,()82,()96n A n B n A B ==⋃=,则()()()()60829646n A B n A n B n A B ⋂=+-⋃=+-=,所以中学既喜欢足球又喜欢游泳的学生有46名.例3.某小学对小学生的课外活动进行了调查.调查结果显示:参加舞蹈课外活动的有63人,参加唱歌课外活动的有89人,参加体育课外活动的有47人,三种课外活动都参加的有24人,只选择两种课外活动参加的有46人,不参加其中任何一种课外活动的有15人.问接受调查的小学生共有多少人?()A .120B .144C .177D .192【参考答案】A 【详解】如图所示,用韦恩图表示题设中的集合关系,不妨将参加舞蹈、唱歌、体育课外活动的小学生分别用集合,,A B C 表示,则()63,()89,()47,()24card A card B card C card A B C ===⋂⋂=不妨设总人数为n ,韦恩图中三块区域的人数分别为,,x y z即()24,()24,()24card A B x card A C y card B C z ⋂=+⋂=+⋂=+46x y z ++=,由容斥原理:15()()()()()()()n card A card B card C card A B card A C card B C card A B C -=++-⋂-⋂-⋂+⋂⋂638947(24)(24)(24)24x y z =++-+-+-++解得:120n =【跟踪训练】一、单选题1.某校高三(1)班有50名学生,春季运动会上,有15名学生参加了田赛项目,有20名学生参加了径赛项目,已知田赛和径赛都参加的有8名同学,则该班学生中田赛和径赛都没有参加的人数为()A .27B .23C .15D .72.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店这三天售出的商品最少有().A.25种B.27种C.29种D.31种3.为了丰富同学们的课外生活,某班58名同学在选课外兴趣小组时,选择篮球小组的有28人,选择乒乓球小组的有36人,既没有选择篮球小组又没有选择乒乓球小组的有12人,那么选择篮球小组但没有选择乒乓球小组的人数为()A.8B.10C.18D.204.某班有50名同学,有20名同学既不选修足球课程也不选修篮球课程,有18名同学选修了足球课程,28名同学选修了篮球课程,则既选修了足球课程也选修了篮球课程的同学有()名A.10B.12C.14D.165.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生3000人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了500名学生,其中到过中共一大会址或井冈山研学旅行的共有40人,到过井冈山研学旅行的20人,到过中共一大会址并且到过井冈山研学旅行的恰有10人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A.240B.180C.120D.606.某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:等级优秀合格合计项目除草301545植树202545若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为()A.5B.10C.15D.207.高考“33 ”模式指考生总成绩由语文、数学、外语3个科目成绩和高中学业水平考试3个科目成绩组成.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物6个科目中自主选择.某中学为了解本校学生的选择情况,随机调查了100位学生的选择意向,其中选择物理或化学的学生共有40位,选择化学的学生共有30位,选择物理也选择化学的学生共有10位,则该校选择物理的学生人数与该校学生总人数比值的估计值为()A.0.1B.0.2C.0.3D.0.48.移动支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发明”的普及情况,随机调查了100位学生,共中使用过移动支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.89.某地对农户抽样调查,结果如下:电冰箱拥有率为45%,电视机拥有率为55%,洗衣机拥有率为65%,拥有上述三种电器的任意两种的占35%,三种电器齐全的为25%,那么一种电器也没有的农户所占比例是()A.20%B.10%C.15%D.12%10.某学校高三教师周一、周二、周三开车上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.5二、填空题11.学校运动会,某班所有同学都参加了羽毛球或乒乓球比赛,已知该班共有23人参加羽毛球赛,35人参加乒乓球赛,既参加羽毛球又参加乒乓球赛有6人,则该班学生数为______.12.某校高三(1)班有50名学生,春季运动会上,有15名学生参加了田赛项目,有20名学生参加了径赛项目,已知田赛和径赛都参加的有8名同学,则该班学生中田赛和径赛都没有参加的人数为__________.13.某单位共有员工85人,其中68人会骑车,62人会驾车,既会骑车也会驾车的人有57人,则既不会骑车也不会驾车的人有___________人.14.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有___.人.15.某班有学生48人,经调查发现,喜欢打羽毛球的学生有35人,喜欢打篮球的学生有20人.设既喜欢打羽毛球,又喜欢打篮球的学生的人数为x,则x的最小值是_________.16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________. 17.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________. 18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.某班有45名同学参加语文、数学、英语兴趣小组.已知仅参加一个兴趣小组的同学有20人,同时参加语文和数学兴趣小组的同学有9人,同时参加数学和英语兴趣小组的同学有15人,同时参加语文和英语兴趣小组的同学有11人,则同时参加这三个兴趣小组的同学有人___________.20.某班进行集体活动,为活跃气氛,班主任要求班上60名同学从唱歌、跳舞、讲故事三个节目中至少选择一个节目、至多选两个节目为大家表演,已知报名参加唱歌、跳舞、讲故事的人数分别为40,20,30,同时参加唱歌和讲故事的有15人,同时参加唱歌和跳舞的有10人,则同时只参加跳舞和讲故事的人数为__________.21.对班级40名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人,问对A、B都赞成的学生有________人. 22.2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,传扬中国共产党的伟大精神,为广大青年群体带来精神感召.现有《青春之歌》《建党伟业》《开国大典》三支短视频,某大学社团有50人,观看了《青春之歌》的有21人,观看了《建党伟业》的有23人,观看了《开国大典》的有26人.其中,只观看了《青春之歌》和《建党伟业》的有4人,只观看了《建党伟业》和《开国大典》的有7人,只观看了《青春之歌》和《开国大典》的有6人,三支短视频全观看了的有3人,则没有观看任何一支短视频的人数为________【参考答案】1.B【详解】设高三(1)班有50名学生组成的集合为U ,参加田赛项目的学生组成的集合为A ,参加径赛项目的学生组成的集合为B由题意集合A 有15个元素,B 有20个元素,A B 中有8个元素所以A B 有15+20827-=个元素.所以该班学生中田赛和径赛都没有参加的人数为5027=23-故选:B2.C【详解】解:因为前两天都售出的商品有3种,因此第一天售出且第二天没有售出的商品有19316-=(种);同理第三天售出的商品中有14种第二天未售出,有1种商品第一天未售出;所以三天商品种数最少时,是第三天中14种第二天未售出的商品都是第一天售出过的,此时商品总数是1416129+-=(种);分别用集合A 、B 、C 表示第一、第二和第三天售出的商品,则商品数最少时,如图所示.故选:C .3.B【详解】设既选择篮球小组又选择乒乓球小组的有x 人,则选择篮球小组但没有选择乒乓球小组的有()28x -人,选择乒乓球小组但没有选择篮球小组的有()36x -人.由题意可得()()12283658x x x +-+-+=,解得18x =,所以选择篮球小组但没有选择乒乓球小组的人数为2810x -=.【详解】设既选修了足球课程也选修了篮球课程的同学有x 名,由容斥原理得20182850x ++-=,解得16x =.故选:D.5.B【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为x ,由题意可得()102040x -+=,解的30x =,因此,该学校到过中共一大会址研学旅行的学生的人数为303000180500⨯=.6.C【详解】用集合A 表示除草优秀的学生,B 表示植树优秀的学生,全班学生用全集U 表示,则U A ð表示除草合格的学生,则U B ð表示植树合格的学生,作出Venn 图,如图,设两个项目都优秀的人数为x ,两个项目都是合格的人数为y ,由图可得203045x x x y -++-+=,5x y =+,因为max 10y =,所以max 10515x =+=.故选:C .【详解】选择物理的学生人数为40301020-+=,即该校选择物理的学生人数与该校学生总人数比值的估计值为200.2100=.故选:B8.C【详解】根据题意使用过移动支付、共享单车的人数用韦恩图表示如下图,因此,该校使用共享单车的学生人数与该校学生总数比值的估计值700.7100=,故选C.9.A【详解】解:设农户总共为100家,则有55家农户有电视机,45家农户有电冰箱,65家农户有洗衣机,有25家农户同时拥有这三种电器,另外75家只有其中两种或一种或没有电器.设只有电冰箱和电视机的农户有a 家,只有电冰箱和洗衣机的农户有b 家,只有洗衣机和电视机的农户有c 家,只有电视机、电冰箱、洗衣机的分别有d 、e 、f 家,没有任何电器的农户有x 家.那么对于拥有电冰箱的农户可得出:2545a b e +++=①那么对于拥有电视机的农户可得出:2555a c d +++=②那么对于拥有洗衣机的农户可得出:2565b c f +++=③把上面三个式子相加可得:()290a b c d e f +++++=④对于拥有上述三种电器的任意两种的占35%,得到:35a b c ++=⑤把⑤代入④可得到20d e f ++=⑥因为农户共有100家,所以25100a b c d e f x +++++++=,把⑤和⑥代入上式得到20x =,即一种电器也没有的农户所占比例为20%,10.C【详解】解:设周三,周二,周一开车上班的职工组成的集合分别为A ,B ,C ,集合A ,B ,C 中元素个数分别为n A .,n B .,n C .,则n A .14=,n B .10=,n C .8=,()20n A B C ⋃⋃=,因为()n A B C n ⋃⋃=A .n +B .n +C .()()()()n A B n A C n B C n A B C -⋂-⋂-⋂+⋂⋂,且()()n A B n A B C ⋂⋂⋂ ,()()n A C n A B C ⋂⋂⋂ ,()()n B C n A B C ⋂⋂⋂ ,所以1410820()3()n A B C n A B C ++-+⋂⋂⋂⋂ ,即1410820()62n A B C ++-⋂⋂= .故选:C .11.52【详解】解:设参加羽毛球赛为集合A ,参加乒乓球赛为集合B ,依题意可得如下韦恩图:所以该班一共有1762952++=人;故答案为:5212.23【详解】由题意,15名参加田赛的同学中有7名没有参加径赛,20名参加径赛的同学中有12名没有参加田赛,所以参加田赛和径赛的同学共有781227++=人,综上,该班学生中田赛和径赛都没有参加的人数为502723-=人.13.12【详解】设会骑车的人组合的集合为A ,会驾车的人组成的集合为B ,既会骑车也会驾车的人组成的集合为集合C ,易知A B C = ,记card()A 表示集合A 中的元素个数,则有()()()()68625773card A B card A card B card A B =+-=+-= ,所以既不会骑车也不会驾车的人为857312-=.故答案为:1214.20【详解】设该班既参加数学竞赛又参加物理竞赛的学生人数为x ,以集合U 表示该班集体,集合A 表示参加数学竞赛的学生组成的集合,集合B 表示参加物理竞赛的学生组成的集合,如下图所示:由题意可得()()322856545x x x x -++-+=-=,解得20x =.故答案为:20.15.7【详解】设既不喜欢打羽毛球,又不喜欢打篮球的学生的人数为y ,则352048x y +-+=,即7x y -=,因为0y,所以7x .因为20x ,所以720x .故答案为:7.16.710##0.7【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=.故答案为:710.17.5【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.18.28【详解】6 人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人;∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.5【详解】以集合A 、B 、C 表示分别参加语文、数学、英语兴趣小组的学生,如下图所示:设同时参加这三个兴趣小组的同学有x 人,由图可得()()()209111555245x x x x x +-+-+-+=-=,解得5x =.故答案为:5.20.5【详解】参加唱歌、跳舞、讲故事的人分别用集合,,A B C 表示,作出Venn 图,如图,图中字母表示相应区域人数,则0n =,又40a b m ++=,20b c d ++=,30d e m ++=,15m =,10b =,60a b c d e m +++++=,则()()()a b m b c d d e m b m ++++++++--2a b c d e m =+++++,∴4020301510605d =++---=,∴同时只参加跳舞和讲故事的人数为5人.故答案为:5.21.18【详解】赞成A 的人数为340245⨯=,赞成B 的人数为24327+=,设对A 、B 都赞成的学生有x ,则112724403x x x x ++-++-=,解得18x =.故答案为:18.22.3【详解】把大学社团50人形成的集合记为全集U ,观看了《青春之歌》《建党伟业》《开国大典》三支短视频的人形成的集合分别记为A,B,C,依题意,作出韦恩图,如图,观察韦恩图:因观看了《青春之歌》的有21人,则只看了《青春之歌》的有214638---=(人),因观看了《建党伟业》的有23人,则只看了《建党伟业》的有234739---=(人),因观看了《开国大典》的有26人,则只看了《开国大典》的有2667310---=(人),因此,至少看了一支短视频的有3467891047++++++=(人),-=所以没有观看任何一支短视频的人数为50473。
概率论容斥原理
容斥原理是概率论中的一条重要定理,主要用于解决集合的并集问题。
当集合可能存在交集时,它们的并集不是简单的相加或相减,而是需要通过容斥原理来计算。
具体来说,容斥原理的基本思想是先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
在概率论中,对于概率空间中的事件A1, A2, ..., An,容斥原理的公式如下:
当n=2时,公式为P(A∪B)=P(A)+P(B)-P(A∩B)
当n=3时,公式为P(A∪B∪C)=P(A)+P(B)+P(C)-P(A∩B)-P(A∩C)-
P(B∩C)+P(A∩B∩C)
对于一般的n个事件的情况,容斥原理的公式可以表示为:
P(A1∪A2∪...∪An)=∑P(Ai)-∑P(Ai∩Aj)+∑P(Ai∩Aj∩Ak)-...+(-1)^n-
1P(A1∩A2∩...∩An)
其中i,j,k等表示的是不同的下标。
容斥原理在概率论中有很多应用,例如计算多个事件的概率、计算多个事件同时发生的概率等等。
同时,容斥原理也可以用于解决组合数学中的一些问题,例如计算有限集的元素个数、计算集合的子集个数等等。
需要注意的是,容斥原理并不是万能的,它也存在一些限制和局限性。
在实际应用中,需要根据具体情况选择合适的公式和方法来解决具体问题。
容斥原理的证明方法1. 直接计算法呀!就好像你有一堆苹果和一堆橘子,你分别数出苹果有几个,橘子有几个,然后把它们加起来,这多直接呀!比如,咱班有 10 个喜欢数学的同学,8 个喜欢语文的同学,那喜欢数学或语文的同学总共不就是 10+8 嘛!2. 间接排除法呢!就如同你要找一颗特别的宝石,你不是直接找它,而是先排除掉那些不是的,剩下的不就是啦!拿咱校的社团来说,参加音乐社的有 20 人,参加绘画社的有 15 人,那既不参加音乐社也不参加绘画社的人,不就是用总人数减去这两个社团的人数嘛!3. 逐步推导法呀!可以想象成你解开一团乱麻,一点点地梳理。
比如计算集合 A 和集合 B 的并集的元素个数,咱就可以一步步来推导呀!4. 图形表示法哟!这就好比用一幅画来展示,清楚又明白!像计算几个图形覆盖的面积一样,通过画出来,不就能直观看到啦!就像那个拼图游戏,一下子就明白了!5. 分类讨论法啦!像处理不同情况一样,一种一种来。
比如咱讨论去游乐场玩不同项目的人,就得分类来计算呀!这不是很容易理解嘛!6. 举例验证法呢!举个具体的例子来验证原理呀!就说咱班选班委,选班长的有几个,选学习委员的有几个,用例子一验证不就清楚啦!7. 反证思想法呀!假设不是这样,然后推出矛盾,这不就证明对了嘛!就好像有人说地球不是圆的,咱就假设是对的,然后推出不可能的结论,证明原来的是对的呀!8. 类比推理法咧!跟其他类似的东西做比较呀!比如和分蛋糕比,怎么分更合理,这样不就能更好地理解容斥原理啦!9. 归纳总结法呀!从个别例子归纳出一般规律嘛!就像一次次尝试后,发现都符合容斥原理,然后就总结起来呀!比如统计大家的兴趣爱好,归纳出一些规律来!我觉得呀,容斥原理就像是一把万能钥匙,能帮我们解决好多问题呢!只要我们好好理解和运用,就能在很多地方派上大用场!。
容斥原理常识型公式
摘要:
1.容斥原理的定义与概念
2.容斥原理的公式表示
3.容斥原理的应用示例
4.容斥原理的扩展与深化
正文:
【1.容斥原理的定义与概念】
容斥原理,是概率论中的一个基本原理,用于解决离散事件的概率计算问题。
它是基于集合的概念,通过研究事件之间的关系,给出了求解复杂事件发生概率的一种方法。
【2.容斥原理的公式表示】
容斥原理的公式表示为:P(A∪B) = P(A) + P(B) - P(A∩B)。
其中,
P(A∪B) 表示事件A 和事件B 的并集发生的概率,P(A) 和P(B) 分别表示事件A 和事件B 发生的概率,P(A∩B) 表示事件A 和事件B 的交集发生的概率。
【3.容斥原理的应用示例】
假设有一个袋子,里面有3 个红球和2 个绿球。
从袋子中随机抽取一个球,求抽到红球的概率。
根据容斥原理,抽到红球的概率为:P(红球) = P(红球) + P(绿球) - P(红球∩绿球)。
因为绿球和红球是互斥事件,即抽到一个球后,就不能再抽到另一个
球,所以P(红球∩绿球) = 0。
所以,P(红球) = P(红球) + P(绿球) = 3/5。
【4.容斥原理的扩展与深化】
容斥原理不仅适用于离散事件,还可以扩展到连续事件的概率计算。
在连续事件的概率计算中,需要用到积分的概念,此时的容斥原理公式为:
P(A∪B) = ∫[P(A|x)dx + P(B|x)dx - P(A∩B|x)dx]。
容斥不等式
容斥原理也称为包容排斥原理,是一种用于计算多个集合合并的大小的公式。
容斥原理的一般形式为:∣A∪B∣=∣A∣+∣B∣−∣A ∩B∣,即,两个集合的并集的元素数量,等于两个集合元素的数量的和,减去两个集合交集的元素数量。
如果将容斥原理扩展到多个集合,则有:
∣A1∪A2∪⋯∪An∣=∑i=1n∣Ai∣−∑1≤i<j≤n∣Ai∩Aj∣+∑1≤i<j<k≤n∣Ai∩Aj∩Ak∣−⋯+(−1)n−1∣A1∩A2∩⋯∩An∣
这个公式可以用于计算任意多个集合的并集的大小。
其中,∣Ai∣表示集合Ai的元素数量,∣Ai∩Aj∣表示集合Ai和Aj的交集的元素数量,以此类推。
容斥原理的证明通常是通过指示函数来完成的。
指示函数是一种用于表示集合元素的函数,如果元素属于某个集合,则指示函数的值为1,否则为0。
通过使用指示函数,可以将容斥原理转化为一个关于函数值的等式,然后通过一些数学运算来证明该等式。
容斥原理的应用非常广泛,例如在概率论、组合数学、计算机科学等领域都有重要的应用。
它可以帮助我们计算多个集合的并集、交集的大小,从而解决一些实际问题。
容斥原理及其应用容斥原理是组合数学中的一种重要方法,用来计算多个事件的概率或计数。
容斥原理的核心思想是通过逐步剔除重复计数的方式得到准确的计数结果。
下面将详细介绍容斥原理及其应用。
一、容斥原理的基本概念:设集合U为一个样本空间,A₁,A₂,...,Aₙ为U的n个子集,容斥原理给出了如下关于这些集合的计数或概率的公式:```P(A₁∪A₂∪...∪Aₙ)=Σ[P(A₁)-P(A₁∩A₂)+P(A₁∩A₂∩A₃)-...+(-1)ⁿ⁻¹P(A₁∩A₂∩...∩Aₙ)]```其中P(A₁)表示事件A₁的概率,P(A₁∩A₂)表示事件A₁与A₂同时发生的概率,依此类推。
二、容斥原理的证明:容斥原理的核心思路是通过排除重复计数的方法得到准确的计数结果。
可以用一个数轴来表示样本空间U,集合A₁,A₂,...,Aₙ所对应的子集分别在数轴上画出,然后逐步排除交集的部分。
具体证明过程如下:1.先考虑只有两个集合A₁和A₂的情况,根据概率的加法原理可得:```P(A₁∪A₂)=P(A₁)+P(A₂)-P(A₁∩A₂)```这里P(A₁∩A₂)表示事件A₁和A₂同时发生的概率,由于在P(A₁)和P(A₂)中分别计算了P(A₁∩A₂),所以要减去一次P(A₁∩A₂)去除重复计数。
2.推广到三个集合A₁、A₂、A₃的情况,根据加法原理得:```P(A₁∪A₂∪A₃)=P(A₁)+P(A₂)+P(A₃)-P(A₁∩A₂)-P(A₁∩A₃)-P(A₂∩A₃)+P(A₁∩A₂∩A₃)```这里减去了P(A₁∩A₃)和P(A₂∩A₃)是因为它们在P(A₁)、P(A₂)和P(A₃)中分别计算了两次,要减去一次去除重复计数。
加上P(A₁∩A₂∩A₃)是因为它在前面的计算中被减去了两次,要加回来。
3.对于n个集合的情况,以此类推可以得到容斥原理的一般形式。
三、容斥原理的应用:容斥原理在组合数学和概率论中具有广泛的应用1.计数问题:利用容斥原理可以解决一些与集合计数相关的问题,如给定集合A₁,A₂,...,Aₙ,求它们的并集的元素个数。
容斥原理的基本原理容斥原理是组合数学中的一种计数方法,用于解决涉及集合并、交、补运算的问题。
它的基本原理是通过逐步排除重复计数的方法,最终得到不重复计数的结果。
容斥原理的核心思想是利用集合的交、并、补运算的关系,将需要计数的问题转化为计算每个集合的元素个数,再根据集合的交、并、补运算进行适当的调整,最终得到正确的计数结果。
容斥原理的推导过程为了更好地理解容斥原理的推导过程,我们先从一个简单的例子开始。
假设我们有两个集合A和B,分别表示事件A和事件B的样本空间。
我们希望计算同时发生事件A和事件B的概率。
首先,我们可以通过事件A和事件B的交集来表示同时发生事件A和事件B的样本空间,记为A∩B。
那么,根据概率的定义,同时发生事件A和事件B的概率可以表示为:P(A∩B) = |A∩B| / |S|其中,|A∩B|表示事件A和事件B的交集的元素个数,|S|表示样本空间的元素个数。
接下来,我们可以利用容斥原理来计算事件A和事件B的并集的元素个数,记为|A∪B|。
根据容斥原理的定义,我们有:|A∪B| = |A| + |B| - |A∩B|其中,|A|表示事件A的样本空间的元素个数,|B|表示事件B的样本空间的元素个数。
根据概率的定义,我们可以计算事件A和事件B的并集的概率:P(A∪B) = |A∪B| / |S| = (|A| + |B| - |A∩B|) / |S|现在,我们可以利用概率的性质来计算同时发生事件A和事件B的概率了。
根据概率的加法法则,我们有:P(A∪B) = P(A) + P(B) - P(A∩B)将上面的等式代入,我们可以得到:P(A∩B) = P(A) + P(B) - P(A∪B)这就是容斥原理的基本形式。
对于更复杂的情况,容斥原理的推导过程也是类似的。
我们可以将问题转化为计算每个事件的样本空间的元素个数,再根据容斥原理的定义进行适当的调整,最终得到正确的计数结果。
容斥原理的应用容斥原理在组合数学中有广泛的应用,特别是在计数问题中常常能够提供简洁而有效的解决方法。
容斥原理集合公式card在我们日常生活和工作中,数学原理的应用无处不在。
本文将介绍一个有趣的数学原理——容斥原理,以及与之相关的集合公式card。
通过实例演示与应用,帮助你更好地理解和运用这一原理,提升解决实际问题的能力。
一、容斥原理简介容斥原理,又称容斥公式,是一种计算两个或多个集合交集、并集、补集的方法。
它是由德国数学家卡尔·魏尔斯特拉斯(Karl Weierstrass)在19世纪提出的。
容斥原理的核心思想是:两个集合的并集减去交集,等于两个集合的并集的card(集合基数)。
用数学公式表示为:A ∪B = A + B - A ∩ B其中,A、B为两个集合。
二、容斥原理应用场景1.计算集合交集、并集、补集:通过容斥原理,我们可以方便地计算出多个集合的交集、并集、补集,无需一一求解。
2.计数问题:在计数问题时,容斥原理可以帮助我们快速求解。
例如,计算一个班级中男生和女生的总人数,已知男生人数为a,女生人数为b,班级总人数为c,我们可以用容斥原理求解:男生和女生的并集= 男生人数+ 女生人数- 男生与女生的交集3.组合问题:在组合问题中,容斥原理也有广泛应用。
例如,从n个人中选出m个人组成一个团队,不考虑顺序。
我们可以用容斥原理计算组合数:C(n, m) = ∑[C(n-1, k) * C(m, k)](k从0到m)其中,C(n, k)表示从n个人中选出k个人的组合数。
三、集合公式card介绍card表示集合的基数,即集合中元素的个数。
在日常生活中,我们经常需要计算集合的card,以便了解集合的大小。
例如,有以下三个集合:A = {1, 2, 3}B = {2, 3, 4}C = {3, 4, 5}我们可以计算出这三个集合的card:card(A) = 3card(B) = 3card(C) = 3四、实例演示与应用1.计算两个集合的交集、并集、补集。
集合A = {1, 2, 3},集合B = {2, 3, 4}根据容斥原理,我们可以计算出:A ∪B = A + B - A ∩ B = {1, 2, 3, 4}A ∩B = {2, 3}2.计算组合数。
容斥原理在计数时,必须注意无一重复,无一遗漏。
为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理1:如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A 类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。
容斥原理2:如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
解决牛吃草问题常用到四个基本公式,分别是︰1) 设定一头牛一天吃草量为“1”1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3)吃的天数=原有草量÷(牛头数-草的生长速度);4)牛头数=原有草量÷吃的天数+草的生长速度。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
时钟问题研究钟面上时针和分针关系的问题。
容斥原理是一种常见的统计原理,它主要应用于多个集合的交集和并集的计算。
在高中数学中,容斥原理的应用非常广泛,尤其是在解决组合问题、排列问题、计数问题等方面。
下面我将从定义、应用和注意事项三个方面,详细介绍高中数学中的容斥原理。
一、容斥原理的定义容斥原理的基本思想是,当两个集合不重叠时,它们的并集的数量可以看作是两个集合数量的和,减去重叠数量的两倍。
具体来说,假设我们有两个集合A和B,它们的并集数量为N,重叠数量为K,那么A中元素属于B或B中元素属于A的数量为N-K。
同时,我们需要减去A和B完全重叠的元素数量,即K。
这个原理可以用公式表示为:(A∪B)个案数= A个案数+ B个案数- (A∩B)个案数。
二、容斥原理的应用1. 组合问题:在解决组合问题时,常常需要考虑多个事件同时发生的情况。
例如,从n个人中选出m个组成一个小组,需要考虑到每个人是否被选中。
这时,我们可以用容斥原理来计算选出小组的总人数和被选中的人数。
2. 排列问题:在解决排列问题时,也常常需要考虑多个事件同时发生的情况。
例如,将n 个元素按照一定的顺序排列,需要考虑元素之间的顺序关系。
这时,我们可以用容斥原理来计算所有可能的排列数和满足某种条件的排列数。
3. 计数问题:在解决计数问题时,需要考虑到一些条件对计数的影响。
例如,计算从n个元素中取出k个元素的方案数时,需要考虑k的取值范围和元素之间的相关性。
这时,我们可以用容斥原理来计算总的方案数和满足条件的方案数。
三、注意事项1. 容斥原理的前提条件是两个集合之间没有重叠。
如果两个集合之间有重叠,那么需要使用其他的方法来计算它们的并集数量和重叠数量。
2. 在使用容斥原理时,需要正确理解公式中的各个量所代表的含义,并且需要仔细考虑问题中的条件和限制。
3. 容斥原理的应用范围比较广泛,需要灵活运用公式和方法来解决不同类型的问题。
总之,容斥原理是高中数学中一个非常重要的统计原理,它可以帮助我们更好地理解和解决组合、排列、计数等问题。
容斥原理公式什么是容斥原理容斥原理是概率论与组合数学中的重要理论之一,它是一种计算交集的概率或数量的方法。
容斥原理可以用于解决包含多个事件或集合的情况下的数学问题。
容斥原理的思想是通过减去重叠部分来计算交集的数量。
它提供了一种有效的计算包含多个集合的交集的方法,允许我们回答类似于“同时满足A和B的概率是多少?”或“在给定的条件下,同时满足A、B和C的数量是多少?”等问题。
容斥原理公式容斥原理可以通过一个简单的公式来表示。
给定n个集合A1,A2,…,An,那么这些集合的交集的数量可以通过以下公式计算:|A1 ∩ A2 ∩ ... ∩ An| = |A1| + |A2| + ... + |An| - |A1 ∪ A2| - |A1 ∪ A3| - ... - |An-1 ∪ An| + |A1 ∪ A2 ∪ A3| + ... + (-1)^(n-1) |A1 ∪ A2 ∪ ... ∪ An|其中,|A|表示集合A的元素数量,∩表示交集,∪表示并集,(-1)^(n-1)表示(-1)的n-1次幂。
如何使用容斥原理容斥原理可以用于解决各种问题,包括组合数学和概率论中涉及多个集合的问题。
以一个简单的例子来说明如何使用容斥原理。
假设有三个集合A,B和C,我们希望计算同时属于A、B和C的元素数量。
首先,我们可以计算各自集合的元素数量,即|A|、|B|和|C|。
然后,我们计算每两个集合的并集的元素数量,即|A ∪ B|、|A ∪ C|和|B ∪ C|。
接下来,我们计算同时属于三个集合的元素数量,即|A ∩ B ∩ C|。
根据容斥原理公式,我们可以通过减去重叠部分来计算交集的数量:|A ∩ B ∩ C| = |A| + |B| + |C| - |A ∪ B| - |A ∪ C| - |B ∪ C| + |A ∪ B ∪ C|这样,我们就可以得到同时属于A、B和C的元素数量。
容斥原理的推广容斥原理不仅适用于多个集合的情况,还可以推广到更复杂的情况。