化学专业英语之有机金属化合物——金属配合物
- 格式:docx
- 大小:25.01 KB
- 文档页数:6
高分子材料与工程专业词汇大全(包含:一高分子化学二高分子反应三高分子物理四高分子加工技术和应用四大部分的全部词汇~~)一高分子化学新序码汉文名英文名注释1高分子macromolecule, polymer又称“大分子”。
2超高分子supra polymer3天然高分子natural polymer4无机高分子inorganic polymer5有机高分子organic polymer6无机-有机高分子inorganic organic polymer7金属有机聚合物organometallic polymer8元素高分子element polymer9高聚物high polymer10聚合物Polymer11低聚物Oligomer曾用名“齐聚物”。
12二聚体Dimer13三聚体Trimer14调聚物telomer15预聚物prepolymer16均聚物homopolymer17无规聚合物random polymer18无规卷曲聚合物random coiling polymer19头-头聚合物head-to-head polymer20头-尾聚合物head-to-tail polymer21尾-尾聚合物tail-to-tail polymer22反式有规聚合物transtactic polymer23顺式有规聚合物cistactic polymer24规整聚合物regular polymer25非规整聚合物irregular polymer26无规立构聚合物atactic polymer27全同立构聚合物isotactic polymer又称“等规聚合物”。
28间同立构聚合物syndiotactic polymer又称“间规聚合物”。
29杂同立构聚合物heterotactic polymer又称“异规聚合物”。
30有规立构聚合物stereoregular polymer, tactic polymer 又称“有规聚合物”。
金属有机化合物(Metal-Organic Compounds)1.什么是金属有机化合物?金属有机化合物是指含有金属原子与有机基团结合的化合物。
它们具有独特的结构和性质,广泛应用于材料科学、金属催化、药物、电子器件等领域。
2.金属有机化合物的合成方法金属有机化合物的合成方法多种多样,主要包括以下几种:a.直接合成法:将金属与有机配体在适当的条件下反应,生成金属有机化合物。
b.双相法:利用有机溶剂与水或气体形成两相体系,使金属与有机配体在界面上反应生成金属有机化合物。
c.气相法:通过将金属蒸气和有机物蒸气混合,使其在适当的条件下反应生成金属有机化合物。
3.金属有机化合物的性质与应用金属有机化合物具有多样的性质和应用,以下是其中几个重要的知识点:a.具有催化活性:金属有机化合物常用于金属催化反应,如烯烃的氢化、氢气的加氢等。
通过调节金属有机化合物的配体结构和金属中心的性质,可以调控催化反应的活性和选择性。
b.具有光电性能:金属有机化合物在光电器件中具有广泛的应用,如有机光电转换器件、有机发光二极管等。
通过调整有机配体结构和金属中心的性质,可以调节金属有机化合物的光谱性质和电荷转移能力。
c.具有药物活性:金属有机化合物在药物领域中具有重要的应用潜力。
例如,铂类化合物是一类重要的抗癌药物,可与DNA结合形成DNA加成物,从而抑制癌细胞的分裂和生长。
4.金属有机化合物的前景和挑战金属有机化合物的研究在过去几十年取得了很大的进展,但仍面临着一些挑战。
其中一些包括:a.金属有机化合物的合成方法仍然复杂和低效,需要更高效的合成策略。
b.部分金属有机化合物对空气和水敏感,需要找到更稳定的结构和材料。
c.对金属有机化合物的性质和反应机理理解仍不完全,需要进一步的研究和探索。
总结:金属有机化合物是一类具有独特结构和性质的化合物,具有广泛的应用前景。
通过不同合成方法得到的金属有机化合物具有催化、光电和药物活性等重要性质。
化学专业英语一、无机化学1. periodic table 元素周期表element 元素metal 金属nonmetal 非金属transition metal 过渡金属group / family 族alkali metal 碱金属alkaline earth metal 碱土金属chalcogen 氮族元素halogen 卤素noble gas 稀有气体period 周期lanthanide 镧系元素actinide 锕系元素block 区s-block s区(H、He、碱金属、碱土金属)p-block p区(IIIA~VIIA族、稀有气体(He除外))d-block d区(过渡金属)f-block f区(镧系元素、锕系元素)2. electron configuration 电子排布,电子构型electron shell 电子层shell (电子)层subshell (电子)亚层atomic orbital 原子轨道structure 结构molecule 分子molecular 分子的atom 原子atomic nucleus 原子核electron 电子electron cloud 电子云ion 离子anion /ˈæn.aɪ.ən/ 阴离子cation /ˈkæt.aɪ.ən/ 阳离子3. quantum number 量子数principal quantum number 主量子数(n)1≤nazimuthal quantum number 角量子数(ℓ)0≤ℓ≤n-1magnetic quantum number 磁量子数(m)- ℓ≤m ≤ℓspin quantum number 自旋量子数(s或m s)±1/2Pauli exclusion principle(泡利不相容原理):Two electrons cannot occupy the same quantum state within a quantum system simultaneously.Hund’s principle / Hund’s rule(洪特规则):If two orbitals of equal energy are available, electrons will occupy them singly before filling them in pairs.4. chemical bond 化学键ionic bond 离子键ionization energy 电离能electron affinity 电子亲和能ionic polarization 离子极化dipole 偶极covalent bond 共价键metallic bond 金属键(=metallic bonding)intermolecular force 分子间作用力van der Waals force 范德华力5. Lewis structure 路易斯结构lone pairs 孤电子对,孤对电子valence electron 价电子single bond 单键multiple bond 多重键(double bond 双键,triple bond 三键)6. chemical reaction 化学反应四种基本反应类型(four basic types):combination reaction 化合反应 C + O2= C O2decomposition reaction 分解反应Cu(OH)2 = CuO + H2Odisplacement reaction (single displacement reaction) 置换反应Fe + CuSO4 = FeSO4 + Cumetathesis reaction (double displacement reaction) 复分解反应AgNO3 + NH4I = NH4NO3+ AgI↓precipitation 沉淀(作用)precipitate 沉淀物其它反应:reduction-oxidation reaction (=redox reaction) 氧化还原反应oxidation 氧化reduction 还原combustion 燃烧(=burning)stoichiometry /ˌstɔɪkiˈɒmɪtri/ 化学计量stoichiometric ration 化学计量比reactivity series of metals / activity series of metals 金属活动性顺序standard electrode potential 标准电极电势(符号Eθ)chemical stability 化学稳定性acid-base reaction 酸碱(中和)反应conjugated acid 共轭酸conjugated base 共轭碱Lewis acid 路易斯酸Lewis base 路易斯碱Brønsted acid Brønsted酸Brønsted base Brønsted碱7. solution 溶液solute 溶质solvent 溶剂concentration 浓度concentrated 浓的dilute 稀的molality 质量摩尔浓度(mol溶质/kg溶剂) mole fraction 摩尔分数mass fraction 质量分数mass concentration 质量浓度(kg/m3)osmotic pressure 渗透压molar concentration 摩尔浓度(mol/L)solubility 溶解度solubility product 溶度积(K sp)soluble 可溶的slightly soluble 微溶的insoluble 难溶的,不溶的solvation 溶剂化作用solvate 溶剂合物(如CaCl2·C2H5OH)hydration 水合作用hydrate 水合物(如CuSO4·5H2O)hemihydrate 半水合物monohydrate 一水合物dihydrate 二水合物(tri- 3, tetra- 4, penta- 5, hexa- 6, hepta- 7, octa- 8, nona- 9, deca- 10, undeca- 11, dodeca- 12)8. compound (=chemical compound) 化合物inorganic compound 无机化合物organic compound 有机化合物nomenclature /nəˈmenklətʃə(r)/ 命名法chemical formula 化学式empirical formula 实验式,简式structural formula 结构式molecular formula 分子式macromolecule 高分子polymer 聚合物coordination complex 配合物,络合物元素名以ium(或um)结尾的,去掉后缀,某化物加ide,如硫化钠sodium sulfide。
高分子专业英语词汇英汉对照关键词:英语高分子词汇英汉对照序号中文英文1 高分子 macromolecule, polymer 又称"大分子"。
2 超高分子 supra polymer3 天然高分子 natural polymer4 无机高分子 inorganic polymer5 有机高分子 organic polymer6 无机-有机高分子 inorganic organic polymer7 金属有机聚合物 organometallic polymer8 元素高分子 element polymer9 高聚物 high polymer10 聚合物 polymer11 低聚物 oligomer 曾用名"齐聚物"。
12 二聚体 dimer13 三聚体 trimer14 调聚物 telomer15 预聚物 prepolymer16 均聚物 homopolymer17 无规聚合物 random polymer18 无规卷曲聚合物 random coiling polymer19 头-头聚合物 head-to-head polymer20 头-尾聚合物 head-to-tail polymer21 尾-尾聚合物 tail-to-tail polymer22 反式有规聚合物 transtactic polymer23 顺式有规聚合物 cistactic polymer24 规整聚合物 regular polymer25 非规整聚合物 irregular polymer26 无规立构聚合物 atactic polymer27 全同立构聚合物 isotactic polymer 又称"等规聚合物"。
28 间同立构聚合物 syndiotactic polymer 又称"间规聚合物"。
29 杂同立构聚合物 heterotactic polymer 又称"异规聚合物"。
金属有机配合物和mof 关系金属有机配合物(Metal-Organic Frameworks,MOFs)是一类由金属离子与有机配体组成的晶态材料。
其独特的结构和性质使其在多个领域具有广泛的应用前景。
本文将探讨金属有机配合物与MOFs 之间的关系,以及它们在材料科学和催化领域的应用。
金属有机配合物是由金属离子与有机配体通过配位键结合而成。
金属离子可以是过渡金属、稀土金属等,而有机配体则通常是含有氮、氧、硫等原子的有机化合物。
这种配位作用使得金属离子与有机配体形成稳定的结构,形成了多孔的晶体结构。
MOFs是一种由金属离子与有机配体组成的晶态材料。
由于金属离子与有机配体之间的配位作用,MOFs具有高度有序的孔道结构和大比表面积。
这使得MOFs在气体吸附、储能、分离等方面具有独特的性能。
同时,MOFs还具有可调控的孔道大小和功能化的特点,使其在催化反应中具有重要的应用价值。
金属有机配合物和MOFs之间存在着密切的关系。
金属有机配合物可以作为MOFs的前体,通过合适的合成方法转化为MOFs。
同时,金属有机配合物的结构和性质也为MOFs的设计和合成提供了重要的参考。
通过合理选择金属离子和有机配体的种类和比例,可以调控MOFs的结构和性能,实现对其物理和化学性质的精确控制。
金属有机配合物和MOFs在材料科学和催化领域具有广泛的应用前景。
MOFs的高度有序的孔道结构和大比表面积使其在气体吸附和储能材料中具有潜在的应用价值。
同时,MOFs还可以作为催化剂的载体,通过调控其结构和功能化,实现对催化反应的高效控制。
此外,金属有机配合物和MOFs还可以应用于分子传感、药物释放等领域。
金属有机配合物和MOFs之间存在着密切的关系,它们在材料科学和催化领域具有广泛的应用前景。
通过合理设计和合成金属有机配合物和MOFs,可以实现对其结构和性能的精确控制,从而实现对材料和催化反应的高效调控。
随着对金属有机配合物和MOFs的深入研究,相信它们将为我们带来更多的惊喜和应用价值。
金属有机配合物M0Fs一般都是用溶剂热法合成的,有研究表明,合成的方法不同得到的MOFs的性能有可能不一样。
O.M.Yaghi等采用分步合成和一次性合成制备MOF-500([(Fe304)一(SO4)(BPDC)6(BPE)6]8-[NH2(CH3)2+13H2O·8DMF],BP—DC为4,4二苯二甲酸,BPE为顺式一1,2-二一4一乙烷吡啶)时发现合成的最终产物在吸氢性能上有所差异,这是因为分步合成的中间产物IRMOP-51([(Fe3O4)(SO4)(BPDC)6(PY)12] 8-[NH2一(CH3) 13H2O·8DMF),py为嘧啶]不溶,从而阻碍了MOF- 500的合成。
进一步的研究还发现,制备过程中MOFs暴露在空气或水中的程度不同,其储氢性能也不同。
J.Perles等用溶剂热法合成Sc(BDC)3时用有机酸及其钠盐的混合液为有机配体,并加入O-Phen(邻菲罗啉)来调整溶液的pH值,最后得到了单一相的产物,这可以用来指导我们合成高纯度的MOFs。
目前,已有许多研究者在金属离子调节MOFs孔结构方面做了系统的研究,如日本 Myoudaiji大学分子科学学院的Kumagai等人用2一氨基苯甲酸(2一abaH)分别与MCl2·nH2 0(M=Ca、Sr、Ba)桥联生成配位聚合物[Ca(2-aba)2 (H2O)3]、[{Sr(2-aba)2(H 2O)2}·H2O]和[Ba(2-aba)2(H20)]。
Rogan等人以2,2’-联吡啶 (dipya)作为有机配体。
在对苯二甲酸钠(Na2BDC)溶液中分别与Co(II)、Ni(II)、Cu(Ⅱ)络合,生成立方体的红色晶体Co(BDC)(dipya)·5H2 0、棱镜状的浅蓝色晶体Ni(BDC) (dipya)·5H2O和八面体的绿色晶体Cu(BDC)(dipya)·H2 O。
化学专业英语之有机金属化合物——金属配合物ORGANOMETALLICS—METAL π COMPLEXESMetal π complexes are characterized by a type of direct carbon-to-metal bonding that is not a classical ionic, σ, or πbond . Numerous molecules and ions, e.g., mono- and diolefins, polyenes, arenes, cyclopentadienyl ions, tropylium ions, andπ-allylic ions, can form metal πcomplexes with transition-metal atoms or ions. These are classified as organ metallic complexes, because of their direct carbon-metal bond, and as coordination complexes, because the nature and characteristics of the TT ligands are similar to those in coordination complexes. In 1827, Zeise reported thatethylene reacts with platinum (II ) chloride to form a salt K (C2H4)PtCl3(l),but it was not until after the elucidation of the structure of ferrocene (2) in 1953 that attention was redirected to Ziese's salt, which was the first reported metal π complex.Generally, metal TT complexes can be classified into three main groups; olefin-, cyclopentadienyl-, and arene-metal π complexes; mixed complexes are categorized according to structural or chemical analogies within these groups. Allyl π complexes are designated as olefin πcomplexes in this review. Study of metal πcomplexes has contributed to the elucidation of the mechanisms of Ziegler-Natta polymerization, the oxo reaction, and catalytic hydrogenation, and to the development of the Wacker process which is used for the oxidation of olefins1.The following nomenclature for metal it complexes is used:(1) Organic πligands precede the metal atom. (2)Organic πligands precede inorganic 7t ligands. (3)Inorganic π ligands, e.g., carbonyl or nitrosyls, generally follow the metal atom; halides also follow the metal but precede carbonyls or nitrosyls. (4)A prefix, e.g., di, is preferred rather than bis in describing sandwich-typeπ complexes, e.g., dibenzenechromium.(5) The symbol π can be used preceding a ligand in order to distinguish π-complex bonding from a, ionic, or other bonding. The symbol η(eta or hapto)precedes a ligand and indicates the number of C—M bonds in the ligand.Monoolefins , dienes, polyolefins, and acetylenes serve as ligands to transition metals and form olefin πcomplexes. Typical examples of olefin πcomplexes are monoolefin ligands, e.g., potassium η2-ethyleneplatinum trichloride (1); and cyclopentadienylium. –η3-cycloheptatrienylium molybdenum dicarbonyl (3); diene ligands, eg, η4-butadieneiron tricarbonyl(4 ).Certain of the delocalized π-electron ring systems of aromaticmolecules overlap with dxy and dy3metal orbitals as do the π electronsof alkenes with metal d orbitals2. The following aromatic rings can form π complexes;The C5H5- ,C6H6,and C8HSarenes are the most common in arene K complexesthat are characterized by π-bonded rings alone or π-bonded rings that are associated with one ring and other ligands, eg, halogens, CO, RNC, and R3P. Typical examples are the di-η5-cyclopentadienyl complexes , ie, metallocenes , eg , di-η5-cyclopentadienyliron (2 ). Indi-η4-5-cyclopentadienyliron ,ie, ferrocene, the 6-π-electron system ofthe C5H5- ion is bonded to the metal. Other aromatic ring systems aremono-η5-cyclopentadienylmetal nitrosyl and carbonyl complexes.PropertiesThe π-Complex Bond.Metal πcomplexes are among those that are least satisfactorily described by crystal-field theory (CFT) or valence-bond theory (VBT). The nature of the bonding can be treated more completely and quantitatively by molecular-orbital theory (MOT) or ligand-field theory (LFT). The ligand-field theory originally was advanced as a corrected CFT. The LFT relies on the use of molecular orbitals and often is used interchangeably with the MOT. The usual approach is to use the linear combination of atomic orbitals (LCAO) method. It is assumed that when an electron in a molecule is near a particular nucleus, the molecular wave function is approximately an atomic orbital that is centered at the nucleus. The molecular orbitals are formed by adding or subtracting the appropriate atomic orbitals. For transition metals .the "3d, 4s, and 4p orbitals are the atomic orbitals of interest. The ligands may have σ-and π-valence orbitals. Once the appropriate atomic orbitals have been selected for the metal and ligands, the proper linear combination of valence atomic orbitals is determined for the molecular orbitals. The determination of orbital overlaps that are possible, ie, meet inherent symmetry requirements, is done by application of the principles of group theory. At this point, the procedure becomes arbitrary in that approximate wave functions must be selected for use in the calculations of the overlap integrals and coulomb integrals3. Finally, an arbitrary charge distribution is chosen and the orbital energies and interaction energies are calculated, and a solution of the secular equation for the energies and coefficients of the atomic wave functions can be determined. A new initial charge distribution is repeated until consistent values are obtained.ReactionsMetal πcomplexes react with a wide range of chemical reagents. However, the reactions of the π-olefin-, π-cyclopentadienyl-, andit-arene-metal complexes are distinctly characteristic of each group, πCyclopentadienyl complexes, ie, metallocenes ,exhibit a high degree of aromaticity and undergo many typical aromatic substitution reactions. However, the π arene complexes do not exhibit a discernible degree of aromaticity.Although most physical properties, particularly the structure of metal TT complexes, are interpreted by use of the basic principles of coordination chemistry, these established principles do not explain suitably some reaction anomalies of the different groups of metal π complexes.Olefin πComplexes. Reactions involving olefin x. complexes similarly are characteristic of uncomplexed and complexed olefinic functions. Generally, reactions involving the former are not very different from those observed for free olefins. However, reactions of the latter are altered significantly by π-complex formation. Among the reactions of interest are addition, elimination, and substitution.Cyclopentadienyl πComplexes. The most significant feature of the reactions of π-cyclopentadienyl complexes in general and ferrocene in particular involves their aromatic nature. The resonance stabilization energy for ferrocene is 210 kj/mol(50 kcal/mol). Ferrocene undergoes a large number of typical ionic aromatic substitution reactions, eg, Friedel-Crafts acylation, alkylation, metalation, sulfonation, and aminomethylation.Friedel-Crafts Acylation. The acylation of metallocenes proceeds easily. The equimolar reaction of ferrocene and acetyl chloride in the presence of aluminum chloride yields monoacetylferrocene almostexclusively. When an excess of acetyl chloride and aluminum chloride is used, a mixture of two isomeric diacetylferrocenes is produced. The heteroannular disubstituted derivative 1,1'-diacetylferrocene and the homoannular isomer 1,2-diacetylferrocene are obtained in a ratio of 60:1. The first acetyl group deactivates the π-cyclopentadienyl ligand toward further electrophilic substitution. Thus, the second acetyl group enters the other ring.Sulfonation. Ferrocene can be sulfonated readily by sulfuric acid or cholrosulfonic acid in acetic anhydride to form ferrocenesulfonic acid and heteroannular disulfonic acid, π-Cyclopentadienylrhenium tricarbonyl can be sulfonated with concentrated sulfuric acid in acetic anhydride; the product is isolated as the p-toluidine salt. Formylation. Ferrocene is formylated with N-methylformanilide in the presence of phosphorus oxychloride. This reaction also is characteristic of highly reactive aromatic rings.Arylation. The most significant radical substitution reaction of ferrocene is its reaction with aryl diazonium salts giving an arylation product.Arene-Metal πComplexes.Generally, arene πcomplexes do not undergo the reactions that are characteristic of benzene and its derivatives. However, arene π complexes do undergo a limited number of substitution .addition .expansion, and condensation reactions.UsesCatalysis Involving Metal 7t-Complex Intermediates. Manymetal-catalyzed reactions proceed by way of a substrate metal π-complex intermediate. Commercially, the most-significant of these include the polymerization of ethylene,the hydroformylation of olefins yieldingaldehydes , ie , the oxo process (qv ), and the air oxidation of ethylene-producing acetaldehyde(qv) ,ie ,the Wacker process. Polymerization of Olefins. Ziegler-Natta Process. During the 1950s, ethylene was polymerized using a Ziegler-Natta catalyst, ie, a mixture of transition metal halides, eg, titanium halides, and trialkylaluminum (triethylaluminum commonly is used). The use of trialkylaluminum stimulated research into the use of organ metallic compounds in general. It has been determined that the Ziegler-Natta process involves a metal π-complex intermediate. A plausible mechanism for the polymerization can be formulated by applying typical organometallic and coordination reactions.Oxidation of Olefins. Wacker Process. The oxidation of ethylene exclusively to ace-taldehyde and of other straight-chain olefins to ketones is achieved by the catalytic reaction of ethylene in an aqueous solution by palladium (II) or by oxygen in the presence of palladium( II ) chloride, copper (II)chloride,or iron(III)chloride. Generally, the oxidation of olefins by other metal ions ,eg ,Hg(II) ,Th(III) ,andPb( IV ) ,yields glycol derivatives as well as carbonyl products. The mechanism for the oxidation is postulated to include n-o rearrangements. Addition of Carbon Monoxide. Oxo Reaction. The oxo process has been developed extensively to produce primary alcohols by the reduction of the aldehydes which are formed in the process.Health and Safety FactorsSome metal π complexes are air-sensitive and, therefore, their preparation requires an air-free reaction system. Their toxicity usually is based on the metal; however, organometallic compounds generally exhibit greater toxicities than their corresponding inorganic salts. The alkyl derivatives tend to be more toxic than the aryl complexes, which exhibit toxicities similar to those of the corresponding inorganic compounds.。