ABAQUS在混凝土温度场和徐变温度应力场计算中的应用
- 格式:pdf
- 大小:428.90 KB
- 文档页数:6
基于ABAQUS的预应力型钢混凝土结构实验温度场分析摘要:在火灾和荷载共同作用的基础上,对预应力型钢混凝土简支梁进行耐火性能试验研究,分析了构件内部温度场分布规律。
通过试验研究,揭示了高温作用下预应力型钢混凝土简支梁力学性能劣化机理。
并利用ABAQUS大型非线性有限元分析软件,基于试验得到的升温曲线,对预应力型钢混凝土梁进行了传热分析,得到了构件内部不同时刻温度分布情况,并将测点处的温度时间关系曲线与试验实测值进行了比较。
关键词:预应力型钢混凝土,温度场,试验研究,非线性分析Abstract: On the basis of fire and load function, we have researched prestressed steel reinforced concrete and supported refractory performance test. This paper analyzes the internal temperature field distribution component. According to the test results, and reveals the effect of prestressed steel under high temperature simply-supported reinforced concrete mechanics performance degradation mechanism.By using ABAQUS large nonlinear finite element analysis software, based on the test to get heating curves of prestressed steel reinforced concrete beams are heat transfer analysis, get the internal components at different temperature distribution, and will point the temperature of the place time relationship curve and the experimental values are compared.Key Words: prestressed steel reinforced concrete, the temperature field, the experimental research, nonlinear analysis1 引言近年来,随着我国经济的迅速发展,对建筑功能的要求越来越高,建筑设计正朝着体型复杂、功能多样的综合性方向发展,相应的结构形式也变得复杂多样,大跨度、重载结构不断涌现,对结构体系提出了新的更高的要求。
ABAQUS在大体积混凝土徐变温度应力计算中的应用
王建;刘爱龙
【期刊名称】《河海大学学报(自然科学版)》
【年(卷),期】2008(036)004
【摘要】对ABAQUS进行了二次开发,建立了弹性徐变本构模型,提出了一种考虑表面散热对水管冷却影响的等效算法,并进行了数值测试和分析.结果表明,在ABAQUS中增加上述模型和算法后,可以实现大体积混凝土温度场和徐变应力的计算,拓宽ABAQUS软件在土木工程中的应用范围.
【总页数】6页(P532-537)
【作者】王建;刘爱龙
【作者单位】河海大学水利水电工程学院,江苏,南京210098;西北勘测设计研究院,陕西,西安710065
【正文语种】中文
【中图分类】TV315
【相关文献】
1.大体积混凝土温度徐变应力的ANSYS计算模块 [J], 李立峰;谢攀
2.基于Ansys平台增量法求解大体积混凝土早期弹性徐变温度应力 [J], 关战伟
3.基于Ansys平台增量法求解大体积混凝土早期弹性徐变温度应力 [J], 关战伟
4.大体积混凝土结构随机温度徐变应力计算方法研究 [J], 刘宁;刘光廷
5.普通工业玻璃退火与应力的几个问题Ⅲ在退火温度范围内连续冷却时玻璃中温差应力松弛的计算——变温下应力松弛的计算 [J], 林亢
因版权原因,仅展示原文概要,查看原文内容请购买。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2)多种零件排样选择part1、part2、part3,其中,part1的长宽不变为100×70,part2的长宽为200×100,part3的长宽为150×90,板材大小仍然为设800×500,X 间距、Y 间距和零件与板材的边距都设为8,排样对话框设置和在AutoCAD 中的排样结果如图4、图5。
5结论通过排样程序可以看出,ObjectARX 编程环境提供的与MFC 相关的用户界面类AdUi 和AcUi 使开发的应用程序能与AutoCAD 风格界面很好地融合在一起,能在同一个界面对AutoCAD 和MFC 对话框进行操作,同时应用Visual.C ++设计较为复杂的对话框。
虽然用ObjectARX 开发应用程序功能强大,但掌握ObjectARX编程方法并不容易,尤其是运行到AutoCAD 界面出现的错误,因为没有具体的错误提示,很难从程序中找到错误,需要经过不停的调试才能找到原因,这给程序设计带来很大困难。
[参考文献][1]秦洪现,崔惠岚,孙剑,等.Autodesk 系列产品开发培训教程[M ].北京:化学工业出版社,2008.[2]江思敏,曹默,胡春江.AutoCAD2000开发工具———ObjectARX开发工具与应用实例[M ].北京:人民邮电出版社,1999.[3]刘蓉梅,姜秀萍,华徐勇,等.ObjectARX 二次开发及应用实例[J ].机械设计与制造,2002(3):27-29.(编辑昊天)作者简介:谢友宝(1968-),男,教授,硕士研究生导师,主要研究方向为机电一体化设备研制、数控技术、CAD/CAM 技术、计算机软硬件系统开发等。
收稿日期:2009-06-18图3排样结果图2设置对话框图5排样结果图4对话框设置基于ABAQUS 的自由辊温度场及热应力场分析杨桂芳1,罗会信1,林刚2,代宗岭2(1.武汉科技大学机械自动化学院,武汉430081;2.中冶京诚工程技术有限公司,北京100081)自由辊是连铸机中重要的零件,在结晶器、支撑导向段、扇形段中都有使用。
【我的硕士论文的一部分】求解温度场!上表面上没有对流换热边界条件!单位制:米、秒、摄氏度!/CLEAR,START/FILNAME,temp,0/COM,ANSYS RELEASE 10.0 UP20050718 00:09:52 11/26/2007/CONFIG, NRES, 5000/PREP7/VIEW,1,1,2,3/ANG,1/REP,FAST!*!===============================================================================================!指定单元ET,1,SOLID70!*!*!===============================================================================================!材料属性!=====================================================================================!316LMPTEMP,,,,,,,,MPTEMP,1,0MPDATA,DENS,1,,7850MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,300MPTEMP,3,900MPTEMP,4,1400MPTEMP,5,2000MPDATA,KXX,1,,18.6MPDATA,KXX,1,,21.4MPDATA,KXX,1,,28.4MPDATA,KXX,1,,33.9MPDATA,KXX,1,,48MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,600MPTEMP,3,800MPTEMP,4,1400MPTEMP,5,2000MPDATA,C,1,,502MPDATA,C,1,,612MPDATA,C,1,,635MPDATA,C,1,,659MPDATA,C,1,,670MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,1300MPTEMP,3,1410MPTEMP,4,1440MPTEMP,5,1550MPTEMP,6,2000MPDATA,ENTH,1,,7.88e7MPDATA,ENTH,1,,6.131e9MPDATA,ENTH,1,,7.347e9MPDATA,ENTH,1,,9.145e9MPDATA,ENTH,1,,1.03e10MPDATA,ENTH,1,,1.272e10!===============================================================================================!定义常量WidthBase=0.025 !宽度HeightBase=0.02 !基底高度Length=0.09 !长度WidthClad=0.0015 !宽度HeightDeposition=0.00375 !覆层高度Layer=15 !层数HeightClad=HeightDeposition/layerdt=0.0001 !小量Temp=20 !环境温度InitTemp=300 !初始温度CoffConv=30 !对流换热系数!===============================================================================================!定义常量Velocity=0.003 !扫描速度StepDis=0.0015 !每个载荷步位移LaserPower=700 !激光功率Radius=0.0015 !激光光斑半径Area=3.14159265*(Radius**2) !激光光斑面积Factor=0.3 !吸收因子StepTime=StepDis/Velocity !每个载荷步时间TotalTime=(Length+Radius*2)/Velocity !载荷持续时间(扫描一层) StepNum=(Length+Radius*2)/StepDis !载荷步数!===============================================================================================!建模BLOCK,0,Length,0,-0.0066,0,WidthClad,BLOCK,0,Length,0,-0.0066,WidthClad,0.0067BLOCK,0,Length,-0.0066,-HeightBase,0,WidthClad,K, ,0,0,WidthBase,K, ,Length,0,WidthBase,K, ,0,-HeightBase,WidthBase,K, ,Length,-HeightBase,WidthBase,V, 16, 13, 27, 25, 15, 14, 28, 26V, 24, 21, 27, 13, 23, 22, 28, 14BLOCK,0,Length,0,HeightDeposition,0,WidthClad,VGLUE,ALLNUMCMP,ALL!===============================================================================================!划分网格LSEL, S, LOC, Y, dt, HeightDeposition-dt, !高度方向LESIZE, ALL, , , Layer,LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,0LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,LengthLESIZE,ALL,,,4,0.5LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, 0, WidthBase-DT,LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, WidthBase,LESIZE,ALL,,,4,0.5LSEL, S, LOC, X, dt, Length-dt, !长度方向LESIZE, ALL, , , Length/StepDis,LSEL, S, LOC, Z, dt, WidthClad-dt, !宽度方向LESIZE, ALL, , , 1,LSEL,S,LOC,Z,WidthClad+DT,0.0067-DTLESIZE,ALL,,,4,LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,-DT,-HeightBaseLESIZE,ALL,,,4,2LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,0LESIZE,ALL,,,4,0.5VSEL,S,LOC,Y,0,HeightDeposition!网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLVSEL,S,LOC,Y,-1,0 !网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLALLSEL,ALL!============================================================================= ==================!基底边界条件、初始条件NSEL, S, LOC, Y, -HeightBase, 0 !基底初始温度IC,ALL,TEMP,InitTempNSEL, S, LOC, Y, -HeightBase, 0 !基底侧面,换热边界条件NSEL, R, LOC, Z, WidthBaseSF, ALL, CONV, CoffConv, TempALLSEL,ALLNSEL, S, LOC, Y, -HeightBase, 0 !基底左端面,换热边界条件NSEL, R, LOC, X, 0SF, ALL, CONV, CoffConv, TempALLSEL,ALLNSEL, S, LOC, Y, -HeightBase, 0 !基底右端面,换热边界条件NSEL, R, LOC, X, LengthSF, ALL, CONV, CoffConv, TempALLSEL,ALLNSEL, S, LOC, Y, 0 !基底上表面,换热边界条件NSEL, R, LOC, Z, WidthClad, WidthBaseSF, ALL, CONV, CoffConv, TempALLSEL,ALLFINISH/SOLU!===============================================================================================!瞬态分析参数设置ANTYPE,4 !分析类型:瞬态!*TRNOPT,FULL !求解方法:完全的N-R方法!*!DELTIM,0.01,0.001,0.05 !载荷子步(默认子步时间步长、最小、最大)——载荷步为0.333NSUBST, 4CNVTOL,HEAT, ,0.01,2,0.000001, !收敛准则:控制热流OUTRES,NSOL,LAST !结果输出:所有!===============================================================================================!杀死单元NSEL, S, LOC, Y, 0, HeightDeposition !杀死熔覆层单元ESLN, S, 1, ALLEKILL,ALLALLSEL,ALLESEL,S,LIVEEPLOTESEL,S,LIVE !激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,0NSEL,R,LOC,Z,0,RadiusSF,ALL,CONV,CoffConv,TempALLSEL,ALL!===============================================================================================!预热*DO, i, 1, 2m=mod(i,2)*IF,m,EQ,1,THEN !如果为奇数层,向右扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i-1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=StepDis*(k-1)RightX=StepDis*kNSEL, S, LOC, Y, 0ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, RightX-2*Radius, RightXNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLSOLVESAVESFEDELE,ALL,4,HFLUX!删除热流密度载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,0NSEL, R, LOC, x, LeftX-2*StepDis, RightX-2*StepDisNSEL, R, LOC, Z, O, RadiusSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ELSE !如果为偶数层,向左扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i-1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=Length-StepDis*kRightX=Length-StepDis*(k-1)NSEL, S, LOC, Y, 0ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, RightX-2*Radius, RightXNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLSOLVESAVESFEDELE,ALL,4,HFLUX!激活单元的上表面,删除载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,0NSEL, R, LOC, x, LeftX-2*StepDis, RightX-2*StepDisNSEL, R, LOC, Z, O, RadiusSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ENDIF*ENDDOESEL,S,LIVEEPLOT!===============================================================================================!熔覆*DO, i, 1, Layer, 1m=mod(i,2)*IF,m,EQ,1,THEN !如果为奇数层,向右扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i+1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=StepDis*(k-1)RightX=StepDis*kNSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLNSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, RightX-2*Radius, RightXNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLESEL,S,LIVE!激活单元的表面,如果包含左端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,0NSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的表面,如果包含右端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,LengthNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的侧面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Z,WidthCladNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLSOLVESAVESFEDELE,ALL,4,HFLUX!删除热流密度载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX-2*StepDis, RightX-2*StepDisSF,ALL,CONV,CoffConv,TempALLSEL,ALLNSEL,S,LOC,Y,HeightDeposition/Layer*(i-1) !激活单元的下表面,删除对流换热边条ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, LeftX-2*StepDis,RightX-2*StepDisNSEL, R, LOC, Z, 0, RadiusNSEL, U, LOC, Y, HeightDeposition/Layer*iESLN, S, 1NSEL, R, LOC, Y,HeightDeposition/Layer*(i-1)SFDELE, ALL, CONVALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ELSE !如果为偶数层,向左扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i+1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=Length-StepDis*kRightX=Length-StepDis*(k-1)NSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLNSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX, LeftX+2*RadiusNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLESEL,S,LIVE!激活单元的表面,如果包含左端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,0NSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的表面,如果包含右端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,LengthNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的侧面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Z,WidthCladNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLSOLVESAVESFEDELE,ALL,4,HFLUX!激活单元的上表面,删除载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX+2*StepDis, RightX+2*StepDisSF,ALL,CONV,CoffConv,TempALLSEL,ALLNSEL,S,LOC,Y,HeightDeposition/Layer*(i-1) !激活单元的下表面,删除对流换热边条ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, LeftX+2*StepDis,RightX+2*StepDisNSEL, R, LOC, Z, 0, RadiusNSEL, U, LOC, Y, HeightDeposition/Layer*iESLN, S, 1NSEL, R, LOC, Y,HeightDeposition/Layer*(i-1)SFDELE, ALL, CONVALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ENDIF*ENDDOESEL,S,LIVEEPLOT!===============================================================================================!冷却!==============================================================================!~100s*DO, k, 1, 2, 1TIME,TotalTime*(Layer+2)+50*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO!==============================================================================!~1000s*DO, k, 1, 9, 1TIME,TotalTime*(Layer+2)+100+100*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO!==============================================================================!~3000s*DO, k, 1, 10, 1TIME,TotalTime*(Layer+2)+1000+200*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO!==============================================================================!~10000s*DO, k, 1, 14, 1TIME,TotalTime*(Layer+2)+3000+500*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO FINISH【我的硕士论文的一部分】求解应力场!修改速度、时间子步步长、载荷文件位置!如果修改基底的热膨胀系数,要修改宏文件!单位制:米、秒、摄氏度/CLEAR,START/FILNAME,stress,0/COM,ANSYS RELEASE 10.0 UP20050718 20:15:52 09/10/2007/CONFIG, NRES, 5000/PREP7/PAGE, 1000, , 1000,/VIEW,1,1,2,3/ANG,1/REP,FAST!*!===============================================================================================!指定单元ET,1,45!*!*!===============================================================================================!材料属性!=====================================================================!316LMPTEMP,,,,,,,,MPTEMP,1,0MPDATA,DENS,1,,7850MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,ALPX,1,,1.75E-005MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,300MPTEMP,3,600MPTEMP,4,900MPTEMP,5,1300 MPDATA,EX,1,,2.0E+11MPDATA,EX,1,,1.7E+11 MPDATA,EX,1,,1.5E+11MPDATA,EX,1,,5.0E+10 MPDATA,EX,1,,0.4E+10MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25TB,KINH,1,5,4,0TBTEMP,20TBPT,,0,0TBPT,,7E-4,1.4E8TBPT,,0.0012,1.83E8TBPT,,0.1,2.16E9TBTEMP,300TBPT,,0,0TBPT,,5.5E-4,9.35E7TBPT,,0.0012,1.27E8TBPT,,0.1,1.84E9TBTEMP,600TBPT,,0,0TBPT,,3.2E-4,4.8E7TBPT,,0.0012,7.19E7TBPT,,0.1,1.54E9TBTEMP,900TBPT,,0,0TBPT,,2.5E-4,1.25E7TBPT,,0.0012,5.1E7TBPT,,0.1,5.45E8TBTEMP,1300TBPT,,0,0TBPT,,2.5E-4,1E6TBPT,,0.00375,1.13E7TBPT,,0.1,7.05E7!=====================================================================!A3ExpandCoeff=1.75E-005!structural->nonlinear->inelastic->rate independent->kinematic hardeningplasticity->mises plasticity->bilinear!===============================================================================================!定义常量WidthBase=0.025 !宽度HeightBase=0.02 !基底高度Length=0.09 !长度WidthClad=0.0015 !宽度HeightDeposition=0.00375 !覆层高度Layer=15 !层数HeightClad=HeightDeposition/layerdt=0.0001 !小量Temp=20 !环境温度InitTemp=300 !初始温度CoffConv=30 !对流换热系数!===============================================================================================!定义常量Velocity=0.003 !扫描速度StepDis=0.0015 !每个载荷步位移LaserPower=700 !激光功率Radius=0.0015 !激光光斑半径Area=3.14159265*(Radius**2) !激光光斑面积Factor=0.3 !吸收因子StepTime=StepDis/Velocity !每个载荷步时间TotalTime=(Length+Radius*2)/Velocity !载荷持续时间(扫描一层) StepNum=(Length+Radius*2)/StepDis !载荷步数!===============================================================================================!建模BLOCK,0,Length,0,-0.0066,0,WidthClad,BLOCK,0,Length,0,-0.0066,WidthClad,0.0067BLOCK,0,Length,-0.0066,-HeightBase,0,WidthClad,K, ,0,0,WidthBase,K, ,Length,0,WidthBase,K, ,0,-HeightBase,WidthBase,K, ,Length,-HeightBase,WidthBase,V, 16, 13, 27, 25, 15, 14, 28, 26V, 24, 21, 27, 13, 23, 22, 28, 14BLOCK,0,Length,0,HeightDeposition,0,WidthClad,VGLUE,ALLNUMCMP,ALL!===============================================================================================!划分网格LSEL, S, LOC, Y, dt, HeightDeposition-dt, !高度方向LESIZE, ALL, , , Layer,LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,0LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,LengthLESIZE,ALL,,,4,0.5LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, 0, WidthBase-DT,LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, WidthBase,LESIZE,ALL,,,4,0.5LSEL, S, LOC, X, dt, Length-dt, !长度方向LESIZE, ALL, , , Length/StepDis,LSEL, S, LOC, Z, dt, WidthClad-dt, !宽度方向LESIZE, ALL, , , 1,LSEL,S,LOC,Z,WidthClad+DT,0.0067-DTLESIZE,ALL,,,4,LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,-DT,-HeightBaseLESIZE,ALL,,,4,2LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,0LESIZE,ALL,,,4,0.5VSEL,S,LOC,Y,0,HeightDeposition!网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLVSEL,S,LOC,Y,-1,0 !网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLALLSEL,ALLVSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DT!删除热影响区外的单元VSEL,A,LOC,Z,0.0067+DT,WidthBase-DTVCLEAR,ALLVDELE,ALL, , ,1ALLSEL,ALLFINISH!===============================================================================================!瞬态分析参数设置/SOLANTYPE,4 !分析类型:瞬态TRNOPT,FULL !求解方法:对于材料非线性,这是唯一的方法NLGEOM,on !大变形分析LNSRCH, onNSUBST, 4NEQIT,30CNVTOL,U,,0.05,2,, !收敛准则:控制位移CNVTOL,F,,0.01,2, !收敛准则:控制力OUTRES,NSOL,LAST !结果输出:TREF, Temp!===============================================================================================!杀死单元NSEL, S, LOC, Y, 0, HeightDeposition !杀死熔覆层单元ESLN, S, 1EKILL,ALLALLSEL,ALLESEL,S,LIVEEPLOTNSEL,S,LOC,Z,0 !对称边条(相当于三个约束,UZ,ROTX,ROTY)D,ALL,UZ,0NSEL,S,LOC,Y,-0.0066 !固定中心点(增加两个约束,UX,UY)NSEL,R,LOC,Z,0NSEL,R,LOC,X,length/2D,ALL,ALL,0NSEL,S,LOC,Y,-0.0066,0 !固定中心线(增加一个约束,ROTZ)NSEL,R,LOC,Z,0NSEL,R,LOC,X,length/2D,ALL,UX,0ALLSEL,ALLSAVE!===============================================================================================!熔覆*DO,m,1,Layerk=mod(m,2)*IF,K,EQ,1,THEN*DO,n,1,StepNum,KBC,0TIME,TotalTime*(m-1)+StepTime*nLeftX=StepDis*(n-1)RightX=StepDis*nNSEL, S, LOC, Y, HeightDeposition/Layer*(m-1),HeightDeposition/Layer*m !熔覆层生长NSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLLDREAD,TEMP,StepNum*(m+1)+n,last,, ,'temp','rth','F:\temp\differentvelocity\3' !读取体载荷NSEL,S,BF,TEMP,1300,3000BF, ALL, TEMP, 1300ESEL,S,LIVE!显示生单元EPLOTALLSEL,ALLMyDBC!宏命令ALLSEL,ALLSOLVESAVE*ENDDO*ELSEIF,K,EQ,0,THEN*DO,n,1,StepNum,KBC,0TIME,TotalTime*(m-1)+StepTime*nLeftX=Length-StepDis*(n-1)RightX=Length-StepDis*nNSEL, S, LOC, Y, HeightDeposition/Layer*(m-1),HeightDeposition/Layer*mNSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLLDREAD,TEMP,StepNum*(m+1)+n,last,, ,'temp','rth','F:\temp\differentvelocity\3'NSEL,S,BF,TEMP,1300,3000BF, ALL, TEMP, 1300ESEL,S,LIVE!显示生单元EPLOTALLSEL,ALLMyDBC!宏命令ALLSEL,ALLSOLVESAVE*ENDDO*ENDIF*ENDDO!===============================================================================================!冷却*DO, k, 1, 35, 1TIME,TotalTime*Layer+0.5*k!载荷步结束时间NSUBST, 4KBC, 0 !载荷步内载荷随时间分布:常数LDREAD,TEMP,StepNum*(Layer+2)+K,last,, ,'temp','rth','F:\temp\different velocity\3'NSEL,S,BF,TEMP,1300,3000BF, ALL, TEMP, 1300ESEL,S,LIVE!显示生单元EPLOTALLSEL,ALLMyDBC!宏命令ALLSEL,ALLSOLVESAVE*ENDDOESEL,S,LIVEEPLOTFINISH【补充】其中的宏命令是加比较复杂的位移边条,可以去掉,然后加上你需要的边界条件即可;。
热处理过程流场-温度场-组织场-应力场耦合模拟研究摘要:本文研究了热处理过程中流场、温度场、组织场和应力场之间的耦合关系。
采用了ANSYS Fluent和ABAQUS有限元软件对工件进行了流场和热力学分析,并利用ABAQUS进行了热-组织-应力场耦合分析。
通过分析结果,得出了热处理工艺参数对工件性能的影响规律,为工件热处理过程中的优化设计提供了理论依据。
关键词:热处理;流场;温度场;组织场;应力场;耦合分析正文:1. 引言热处理是一种常用的工艺方法,它通过在一定的温度条件下改变材料的组织结构,从而使材料的力学性能得到提高。
在热处理过程中,流场、温度场、组织场和应力场之间存在着复杂的耦合关系,如何对这些场进行耦合分析,是优化热处理工艺设计的关键之一。
本文采用了ANSYS Fluent和ABAQUS有限元软件对工件进行了流场和热力学分析,并利用ABAQUS进行了热-组织-应力场耦合分析。
通过分析结果,得出了热处理工艺参数对工件性能的影响规律,为工件热处理过程中的优化设计提供了理论依据。
2. 流场分析热处理过程中,加热炉内气流的速度分布对工件表面的热传递有着重要的影响。
本文采用ANSYS Fluent软件对加热炉内气流进行了数值模拟,得到了炉内气流的速度场分布图。
图1为炉内气流的速度场分布图。
(插入图1)从图1可以看出,炉内气流的速度呈现出较大的不均匀性,气流速度较高的区域主要集中在加热炉内部的两侧,而中央区域的气流速度较低。
3. 温度场分析在热处理过程中,工件表面的温度分布对工件组织结构的形成以及机械性能的提高都有着重要的影响。
本文采用ANSYS Fluent软件对工件表面温度进行了数值模拟,得到了加热炉内的温度场分布图。
图2为炉内温度场分布图。
(插入图2)从图2可以看出,工件表面的温度分布呈现出明显的不均匀性。
整个工件表面温度的分布范围较大,在工件的上下部位温度较高,在中央区域温度较低。
4. 组织场分析在热处理过程中,材料的组织结构是影响材料力学性能的重要因素之一。
ABAQUS有限元软件温度应力模拟及其在机场运营中的应用前景发布时间:2021-06-29T11:00:26.487Z 来源:《基层建设》2021年第5期作者:王旭刘景文邢俊[导读] 摘要:温度应力的长期作用可造成水泥混凝土道面结构强度和刚度的下降,严重时会导致结构开裂,因此温度应力对水泥混凝土道面承载能力和使用寿命的影响不容忽视。
中铁北京工程局集团有限公司机场工程分公司北京 102300摘要:温度应力的长期作用可造成水泥混凝土道面结构强度和刚度的下降,严重时会导致结构开裂,因此温度应力对水泥混凝土道面承载能力和使用寿命的影响不容忽视。
目前,对混凝土道面温度应力的研究较多,理论计算已较为成熟和深入。
但由于计算基本假定与实际情况存在一定的偏差,因而开展现场道面板温度变形试验研究是极为必要的。
本人于2016年,在学校导师的支持下,选取天津滨海国际机场机坪区道面板为试验研究对象,应用光纤光栅传感器测量路面及路基内部的温度场与温度应变。
采用ABAQUS有限元软件对不同温度条件下道面结构温度变形响应开展仿真计算,并与实测结果进行对比,以获得有价值的分析结论。
研究结果表明:(1)试验实测的路面结构温度应变具有明显的滞回变化特征,单日最大变形水平达到120个微应变,滞回曲线规律与仿真结果较为一致;(2)对比板内相邻测点结果,距离板边接缝位置越远应变幅度越大,且在板跨中部达到最大值,两侧呈现近似对称分布特征;(3)采用二维平面分析模型可较好的模拟实际路面及路基内部的变温过程。
所得温度应力结果与理论计算有较好的一致性,可用于工程实际分析。
关键词:机场场道;ABAQUS有限元;温度应力;航空运输量管控引言水泥混凝土具有刚度大、抗压能力强;抗弯拉强度高、使用寿命长;耐久性、耐磨性较好,可不设路缘石;耐腐蚀性强,施工机械化程度较高等优点。
目前已被绝大多数高等级公路,机场所采用。
温度应力是影响混凝土道面使用寿命的重要参数之一,尤其是机场跑道板厚设计中并没有考虑到温度应力的影响,在我国北方地区,昼夜温差较大,温度应力很可能会产生较大影响。
此为1.0版的修正版,可以考虑混凝土弹性模量随时间,应力变化等情况下的徐变。
可以考虑徐变恢复。
注意,getvrm中的变量编号与坐标系有关。
否则,结果不正确。
SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,3 LACCFLA)CINCLUDE 'ABA_PARAM.INC'CCHARACTER*80 CMNAME,ORNAMECHARACTER*3 FLGRAY(15)DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),1 T(3,3),TIME(2)DIMENSION ARRAY(10),JARRAY(10),JMAC(*),JMATYP(*),1 COORD(*)CC Reading instantaneous thermal strain in direction 11(x axial) C Storing the thermal strain in state variableCCALL GETVRM('THE',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,1 MATLAYO,LACCFLA)STATEV(1)= ARRAY(1)CC Reading instantaneous elastic x axial strainC Storing the thermal strain in state variableC NOTE: ARRAY(1)--X AXIALC ARRAY(2)--Y AXIALC ARRAY(3)--Z AXIALCCALL GETVRM('EE',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,1 MATLAYO,LACCFLA)STATEV(2)= ARRAY(3)CCC Modifying Field variables to model development of Young’sC modulus with age.Cc IF(TIME(2).GT.1) THENc FIELD(1)=TIME(2)c ELSEc FIELD(1)=0c END IFRETURNENDCCCSUBROUTINE UEXPAN(EXPAN,DEXPANDT,TEMP,TIME,DTIME,PREDEF,1 DPRED,STATEV,CMNAME,NSTATV,NOEL)CINCLUDE 'ABA_PARAM.INC'CCHARACTER*80 CMNAMECDIMENSION EXPAN(*),DEXPANDT(*),TEMP(2),TIME(2),PREDEF(*),1 DPRED(*),STATEV(NSTATV),ARRAY(15)REAL CINI(4,8),T0(8),CLAMDA(4),AN(4)REAL CCLOAD(4),EMOD(8)CC SWITCH, II=1, CREEP; II=2, SHRINKAGE, II=3, CREEP+SHRANKAGECKK=3CC===================== INTIAL VALUES =========================C ******* FOR CREEP (USING 1STOPT) *********CC INITIAL FUNCTION IS Y=1.9*T0^(-0.118)*(T-T0)/(61-0.51*FC+T-T0) CC MODELING FUNCTION (SOFTWARE OF 1STOPT) ISC Y=C1*(1-EXP(-LAMDA1*(X-T)))+C2*(1-EXP(-LAMDA2*(X-T)))+C C3*(1-EXP(-LAMDA3*(X-T)))+C4*(1-EXP(-LAMDA4*(X-T)));CC WHERE T IS THE CALCULATING TIME, T0 IS THE LOADING TIMEC THE FACTORS ARE LISTED AS FOLLOWINGC LOADING TIME ARE 7,30,50,100,365,1000,3000(DAYS)C --------------------------------------------------------------- C | A | 7 | 30 | 50 | 100 | 365 | 500 | 1000 | 3000 |C | C1 |C(1,1)|C(1,2)|C(1,3)|C(1,4)|C(1,5)|C(1,6)|C(1,7)|C(1,8)| C | C2 |C(2,1)|C(2,2)|C(2,3)|C(2,4)|C(2,5)|C(2,6)|C(2,7)|C(2,8)| C | C3 |C(3,1)|C(3,2)|C(3,3)|C(3,4)|C(3,5)|C(3,6)|C(3,7)|C(3,8)| C | C4 |C(4,1)|C(4,2)|C(4,3)|C(4,4)|C(4,5)|C(4,6)|C(4,7)|C(4,8)|C ---------------------------------------------------------------IF((CMNAME.EQ."MAT-GIRDER").OR.(CMNAME.EQ."MAT-SLAB")) THENC ELASTIC MODULUSc EMOD=1.0C VALUES OF LAMDACLAMDA(1)=0.0193907053463775CLAMDA(2)=0.00537298967078406CLAMDA(3)=0.00105487934454054CLAMDA(4)=0.0597818282775493C INITIAL VALUES OF COEFFICIENT C1CINI(1,1)=0.255636119E-4CINI(1,2)=0.179033082E-4CINI(1,3)=0.163880576E-4CINI(1,4)=0.147710753E-4CINI(1,5)=0.124416704E-4CINI(1,6)=0.119344460E-4CINI(1,7)=0.110286669E-4CINI(1,8)=0.096165142E-4C INITIAL VALUES OF COEFFICIENT C2CINI(2,1)=0.157591725E-4CINI(2,2)=0.110425824E-4CINI(2,3)=0.101134277E-4CINI(2,4)=0.091232941E-4CINI(2,5)=0.077200858E-4CINI(2,6)=0.074402105E-4CINI(2,7)=0.068149034E-4CINI(2,8)=0.060733782E-4C INITIAL VALUES OF COEFFICIENT C3CINI(3,1)=0.053080102E-4CINI(3,2)=0.037166275E-4CINI(3,3)=0.034018732E-4CINI(3,4)=0.030634778E-4CINI(3,5)=0.025744519E-4CINI(3,6)=0.024744322E-4CINI(3,7)=0.022776919E-4CINI(3,8)=0.018527641E-4C INITIAL VALUES OF COEFFICIENT C4CINI(4,1)=0.120382947E-4CINI(4,2)=0.084348462E-4CINI(4,3)=0.077257019E-4CINI(4,4)=0.069613683E-4CINI(4,5)=0.058953358E-4CINI(4,6)=0.056904171E-4CINI(4,7)=0.051955726E-4CINI(4,8)=0.045768253E-4CC LOADING AGE(DAYS)T0=(/7,30,50,100,365,500,1000,3000/)C MODULUS OF ELASTIC AT T0'S AGEEMOD=(/2.546295,3.061405,3.147964,3.217927, * 3.271749,3.277386,3.285052,3.290193/)CC ======== FOR SHRINKAGE =======C TGSH-- TIME OF SHRINKAGE CALCULATION FOR "GIRDER" (DAYS)C TDSH-- TIME OF SHRINKAGE CALCULATION FOR "DECK" (DAYS)C 480E-6-- ULTIMATE SHRINKAGE STRAIN IN AASHRO 2007(SI)C FC --SPECIFIED COMPREI\SSIVE STRENGTH OF CONCRETE AT TIME OF C PRESTRESSING FOR PRESTRESSIONED MEMBERS AND AT TIME OFC INITIAL LOADING FOR NONPRESTRESSIONED MEMBERS, fci'IN AASHTO(2007)C STANDARD VALUE IS 28MPaC CKF --FACTOR FOR THE EFFECT OF CONCRETE STRENGTHC CKTD--TIME DEPENDENT(DEVELOPMENT) FACTOR (THE FIRST TWO TURMS) C RHSH--AMBIENT RELERTIVE HUMIDITY CORRECION FACTOR FOR SHRINKAGETGSH=1.0TDSH=50.0SHU=480E-6RH=70.0FC=28.0CKF=35.0/(7.0+FC)CKTD=61.0-0.58*FCRHSH=2.0-0.014*RHIF (CMNAME.EQ."MAT-SLAB") THENCKF=35.0/(7.0+0.8*FC)CKTD=61.0-0.58*0.8*FCEND IFCC=================INTERPOSITION=====================C ****COMPUTING THE COEFFICIENTS OF KABIR SERIES****CC STATEV(1)--THERMAL STRAINC STATEV(2)--ELASTIC STRAIN OF CURRENT INCREMENTC STATEV(3)--ELASTIC STRAIN OF PREVIOUS INCREAMENTC STATEV(4)--DTIME OF PREVIOUS INCREAMENTC DELTEE --INCREMENT OF ELASIC STRAINTCUR=TIME(2)THE=STATEV(1)EECUR=STATEV(2)EEPRE=STATEV(3)DTPRE=STATEV(4)CIF((TCUR.GE.T0(1)).AND.(TCUR.LT.T0(2)))THENJJ=1TA=T0(JJ)TB=T0(JJ+1)EMA=EMOD(JJ)EMB=EMOD(JJ+1)ELSE IF((TCUR.GE.T0(2)).AND.(TCUR.LT.T0(3)))THENJJ=2TA=T0(JJ)TB=T0(JJ+1)EMA=EMOD(JJ)EMB=EMOD(JJ+1)ELSE IF((TCUR.GE.T0(3)).AND.(TCUR.LT.T0(4)))THENJJ=3TA=T0(JJ)TB=T0(JJ+1)EMA=EMOD(JJ)EMB=EMOD(JJ+1)ELSE IF((TCUR.GE.T0(4)).AND.(TCUR.LT.T0(5)))THENJJ=4TA=T0(JJ)TB=T0(JJ+1)EMA=EMOD(JJ)EMB=EMOD(JJ+1)ELSE IF((TCUR.GE.T0(5)).AND.(TCUR.LT.T0(6)))THENJJ=5TA=T0(JJ)TB=T0(JJ+1)EMA=EMOD(JJ)EMB=EMOD(JJ+1)ELSE IF((TCUR.GE.T0(6)).AND.(TCUR.LT.T0(7)))THENJJ=6TA=T0(JJ)TB=T0(JJ+1)EMA=EMOD(JJ)EMB=EMOD(JJ+1)ELSE IF((TCUR.GE.T0(7)).AND.(TCUR.LT.T0(8)))THENJJ=7TA=T0(JJ)TB=T0(JJ+1)EMA=EMOD(JJ)EMB=EMOD(JJ+1)END IFCC COMPUTNG REAL COEFFICIENT OF C, STORING IN CCLOAD(I)CIF(TCUR.LT.T0(1))THENDO 5 I=1,4CCLOAD(I)=CINI(I,1)5 CONTINUEELSE IF((TCUR.GE.T0(1)).AND.(TCUR.LT.T0(8)))THENDELTAT=TB-TAC VARING MODULUS OF ELASTICEMODL=(TCUR-TA)/DELTAT*(EMODA-EMODB)+EMODAC COMPUTING COEFFICIENT OF CDO 10 I=1,4CA=CINI(I,JJ)CB=CINI(I,JJ+1)C INTERPOSITION FOR ANY LOADING TIMECCLOAD(I)=(TCUR-TA)/DELTAT*(CB-CA) +CA10 CONTINUEELSEDO 20 I=1,4CCLOAD(I)=CINI(I,8)20 CONTINUEEND IFCDELTEE=EECUR-EEPREDELTSTR=DELTEE*EMODLC =================================================C COMPUTING THE COEFFICIENT INCLUDING STRESS AN(I)C OPEN(2,ACCESS='APPEND',FILE='C:\CREEP.TXT')CIF((TCUR-1.0).LT.1E-5)THENDO 30 I=1,4STATEV(I+4)=0.030 CONTINUEEND IFCDO 40 I=1,4AN(I)=STATEV(I+4)*EXP(-CLAMDA(I)*DTPRE)+* DELTSTR*CCLOAD(I)STATEV(I+4)=AN(I)40 CONTINUECC WRITE(2,'(10X,5F10.6)')TIME(2),(STATEV(I+4),I=1,4)c WRITE(2,*)' TIME(2) CCLOAD(I)'C WRITE(2,'(2X,4F10.6)')((CINI(I,J),J=1,8),I=1,4) c WRITE(2,*)' TIME(2) DTIME DTPRE DELTSTR'C WRITE(2,'(6X,4F10.6)')TIME(2),DTIME, DTPRE, DELTSTRc WRITE(2,*)' STATEV(I)'C WRITE(2,'(10X,5F10.6)')TIME(2),(STATEV(I+4),I=1,4)c WRITE(2,*)CEXPANCR=STATEV(5)*(1-EXP(-CLAMDA(1)*DTIME))+ STATEV(6)** (1-EXP(-CLAMDA(2)*DTIME))+STATEV(7)*(1-EXP(-CLAM DA(3)** DTIME))+STATEV(8)*(1-EXP(-CLAMDA(4)*DTIME))CIF(TCUR.LT.T0(1))THENEXPANCR=0.0END IFCEND IF ! CORESPONG TO LINE 78'S IFCC ======================SHRINKAGE=========================CC COMPUTING SHRINKAGE (FORMULA 5.4.2.3.3-1 IN AASHTO(2007))CCIF (CMNAME.EQ."MAT-GIRDER") THENIF (TIME(2).GT.TGSH)THENTSH=TIME(2)-TGSHTPSH=TSH-DTIMEIF(TPSH.LT.0) THENTPSH=0.0END IFEXPANSH=SHU*RHSH*CKF*(-TSH/(CKTD+TSH)+TPSH /(CKTD+TPSH))END IFEND IFCIF (CMNAME.EQ."MAT-SLAB") THENIF (TIME(2).GT.TDSH)THENTSH=TIME(2)-TDSHTPSH=TSH-DTIMEIF(TPSH.LT.0) THENTPSH=0.0END IFEXPANSH=SHU*RHSH*CKF*(-TSH/(CKTD+TSH)+TPSH /(CKTD+TPSH))END IFEND IFC WRITE(2,'(10X,4F10.6)')RHSH,CKF,TSH,TPSH,EXPANSHCC FOR OUTPUT, KK=1 FOR CREEP ONLYC KK=2 FOR SHRINKAGE ONLYC KK=3 FOR SUM OF CREEP AND SHRINKAGEIF((KK-1).LT.1E-6) THENEXPAN(1)=EXPANCRELSE IF((KK-2).LT.1E-6)THENEXPAN(1)=EXPANSHELSEEXPAN(1)=EXPANCR+EXPANSHEND IFCC STORING CURRENT STRAIN INTO STATEV(3)C STORING CURRENT DTIME INTO STATEV(4)CSTATEV(3)=EECURSTATEV(4)=DTIMEC CLOSE(2)RETURNENDC。