沉井设计详解、验算详解
- 格式:ppt
- 大小:804.00 KB
- 文档页数:59
深圳市城市轨道交通4号线工程主体工程4302标段二工区(沉井)结构计算书计算:校核: 审定:中铁二局工程有限公司深圳市轨道交通4号线4302标二工区项目部2016年10月1目录1目录 (2)1.1顶管概况 (3)1.2顶管工作井、接收井尺寸 (3)1.31200mm管顶力计算 (3)1.3.1推力计算 (3)1.3.2壁板后土抗力计算: (4)1.3.3后背土体的稳定计算: (4)1.4工作井(沉井)下沉及结构计算 (4)1.4.1基础资料: (4)1.4.2下沉计算: (5)1.4.3下沉稳定计算: (5)1.4.4刃脚计算: (5)1.4.5沉井竖向计算: (6)1.4.6井壁内力计算:(理正结构工具箱计算) (7)1.4.7底板内力计算:(理正结构工具箱计算) (12)1.5接收井(沉井)下沉及结构计算 (13)1.5.1基础资料: (13)1.5.2下沉计算: (14)1.5.3下沉稳定计算: (14)1.5.4抗浮稳定计算(沉井下沉到设计标高浇注底板后): (14)1.5.5刃脚计算: (14)1.5.6沉井竖向计算 (15)1.5.7井壁内力计算:(理正结构工具箱计算) (16)1.1顶管概况(1)钢筋Ф—HRB335级钢筋强度设计值fy=fy′=300N/ mm2(2)圆管砼:采用C50,沉井采用C30。
(3)所顶土层为黏土,r=17KN/ m3本计算除井壁、底板外未采用专业计算软件。
1.2顶管工作井、接收井尺寸1、工作井尺寸的设计、核算由检查井的设计要求及顶管操作技术要求决定。
(1)、工作井的宽度计算公式B =D+2b+2c 式中:B——工作井宽度;D——顶进管节的外径尺寸;b——工作井内安好管节后两侧的工作空间,本工程采用每侧0.8m;c——护壁厚度,本工程采用0.4m;本工程的顶管直径为D1000,壁厚200。
工作井的宽度尺寸为 B=8.7mm;(2)工作井底的长度计算公式:L=L1+L2+L3+2L4+L5式中:L——工作井底部开挖长度;L1——管节长度取2m ;L2——顶镐机长度取1.1m ;L3——出土工作长度,取1.1m;;L4——后背墙的厚度,取0.4m;;L5——已顶进的管节留在导轨上的最小长度,取0.3m。
沉井工程计算方案概述沉井是最常用的桥墩基础形式之一,其结构简单、工期短、施工方便,已广泛应用于公路、铁路、桥梁、码头等基础工程领域。
而沉井的设计计算是沉井工程的核心,本篇文档将介绍沉井工程的计算方法和方案。
沉井的设计参数沉井的设计参数主要包括井身直径、井身深度、板厚、颈缩长度、颈缩直径、溢流口直径、溢流口位置、压力表距离等。
其基本设计参数如下表所示:设计参数物理意义D 井身直径H 井身深度t 板厚L 颈缩长度d 颈缩直径d1 溢流口直径Pmax 最大承载力l 压力表距离沉井的计算方法最大承载力的计算最大承载力是沉井设计中最为重要的参数,其计算方法主要有解析法、数值分析法和现场试载法三种。
解析法最大承载力解析法主要基于经验公式,提供了一种简单、快捷的计算方案。
一般采用比例系数法得到最大承载力如下式所示:Pmax = k1 × k2 × k3 × k4 × k5 × q其中,q为单位面积承载力;k1为处理土质和水位因素的系数;k2为处理施工过程的系数;k3为处理土方因素的系数;k4为处理整体效应的系数;k5为处理现场检测方法和土层整体特性的系数。
数值分析法数值分析法主要应用于具有复杂地质体结构的沉井设计。
通过有限元分析或边界元分析计算,可以得到更为精确的沉井设计参数。
但是数值分析法的计算过程复杂,需要进行大量计算,同时需要进行模型验证和参数修正。
因此,在工程实践中,数值分析法主要应用于特殊情况下的沉井设计。
现场试载法现场试载法是一种直接测定沉井承载力的方法,它不需要知道地质资料和土层特性,具有现地实际情况的真实性和可靠性,但它比较复杂,需要专业的试验设备和技术人员。
井身板厚计算井身板厚是沉井工程中另一关键参数,其计算按照承载力和稳定性进行设计,一般应满足以下要求:•承载力方面:井壁承载力应不小于扣压荷载;•稳定性方面:井壁应满足安全系数要求。
溢流口位置的计算溢流口位置的计算需要根据沉井承载力、水面标高、最高水位、跨径等因素进行综合分析,其计算方法分为简化法和细化法。
(1)竖向挠曲计算(第一节沉井抽垫木时)
2、井壁计算不排水挖土下沉排水挖土下沉
能很好地控制支承点,为了使
井壁挠曲应力尽可能小,支点
位置可设在最有利位置(使支
点和跨中点的弯矩大致相等)。
很难控制支承点,第一节沉井下沉过程可能会出现最不利的支承情况。
(竖向挠曲应力、竖向拉力、水平内力)
将沉井视为承受自重的梁来计算竖向挠曲应力,以此验算井壁的弯曲抗拉强度。
验算时取的支承点位置和施工方法有关:
τh
G
(3)井壁水平内力计算(井壁水平钢筋验算)
作为闭合的水平框架进行计算(方法同刃脚框架),但所取的位置不同。
最不利工况是:下沉至设计标高,刃脚下土已挖空而尚未封底。
此时在刃脚根部c-c 断面以上截取一段高度等于该处井壁厚度的井壁作为水平框架。
框架上的水平荷载除了该段井壁范围内的水土压力外,还有刃脚作为悬臂作用传到刃脚根部的水平剪力(其值等于刃脚向内挠曲时的水平外力乘以分配系数
)平面图
剖面图。
沉井施工工法及验算关键信息项:1、沉井施工的具体工法步骤2、施工过程中的质量控制标准3、验算的方法和参数4、安全保障措施5、责任划分与争议解决方式11 沉井施工工法概述沉井是在地面上先制作井筒(井壁),然后在井筒内挖土,依靠井筒自身重量或外加辅助措施克服井壁与土之间的摩阻力及刃脚下方的阻力,逐步下沉至设计标高,最后封底、浇筑内部结构的一种施工方法。
111 施工准备在进行沉井施工前,应做好以下准备工作:1111 地质勘察:详细了解施工区域的地质条件,包括土层分布、地下水位等。
1112 设计方案:根据工程要求和地质条件,制定合理的沉井设计方案。
1113 材料准备:准备好所需的钢材、混凝土等材料,并确保其质量符合要求。
112 井筒制作井筒的制作通常采用现浇混凝土或预制拼装的方式。
1121 现浇混凝土井筒:应保证模板的牢固性和密封性,混凝土浇筑应连续、均匀,振捣密实。
1122 预制拼装井筒:构件的预制质量应严格控制,拼装时要保证连接牢固。
12 沉井下沉沉井下沉是施工的关键环节,可采用排水下沉或不排水下沉的方法。
121 排水下沉在地质条件允许的情况下,可采用排水下沉。
通过在井内抽水,降低地下水位,使井壁与土之间的摩擦力减小,从而实现下沉。
122 不排水下沉当土层稳定性较差或地下水位较高时,采用不排水下沉。
此时需向井内注水,保持井内外水位平衡,以防止涌砂和坍方。
123 下沉控制在下沉过程中,应密切监测沉井的垂直度、水平位移和下沉速度,及时调整挖土量和方法,确保沉井平稳下沉。
13 封底与浇筑当沉井下沉至设计标高后,进行封底处理。
131 封底混凝土应具有足够的强度和抗渗性能。
132 封底完成后,进行内部结构的浇筑。
21 沉井施工质量控制标准211 井筒的尺寸、垂直度和平整度应符合设计要求。
212 混凝土强度应达到设计标准。
213 沉井下沉过程中的偏差应在允许范围内。
22 质量检验方法221 定期进行测量,检查井筒的位置和垂直度。
沉井下沉稳定性验算计算书依据《建筑施工计算手册》(江正荣编著)以及市政相关规范等。
一. 参数信息沉井在软弱土层中下沉时,需要对沉井下沉进行稳定性验算。
沉井相关计算参数如下:沉井外径为 20.00m,壁厚为 1.00m,井深为 16.50m,混凝土密度为 24.00kN/m^3,沉井井身混凝土量为 470.00m^3,地基承载力设计值为 130.00kN/m^2,隔墙和底梁总支撑面积为 0.00m^2.采用排水下沉方式,不考虑地下水浮力的作用。
刃脚尺寸数据(如图所示):h=1.45m,h1=1.25m,C=0.20m,C1=0.70m,C2=0.20m,a=0.10m.二. 沉井计算沉井的下沉稳定性以下沉稳定系数 K 表示,可按下式验算:其中K -沉井下沉稳定系数,应小于1;G -沉井的自重力;B -地下水浮力,排水下沉,B=0,不排水下沉时总浮力的70%;-沉井外壁有效摩擦力总和.Rf-刃脚踏面及斜面下土的支撑力.R1-沉井的平均直径.DC -刃脚踏面宽度;n -刃脚斜面与井内土体接触面的水平投影宽度;R-沉井内部隔墙和底梁下土的支撑力;2-隔墙和底梁的总支撑面积;A1-土的极限承载力。
fu所以有,沉井的自重力为:G = 470.00×24.00=11280.00kN采用排水下沉,不需要考虑地下水的浮力:B = 0沉井外壁摩擦力总和为:Rf = 3.14×20.00×16.50×22.60 = 23430.00kN因沉井刃脚斜面土被掏空,不考虑斜面土的支承力,刃脚踏面支承力为:R1 = 3.14×19.90×1.45×130.00 = 11784.59kN沉井隔墙和底梁支承力为:R2 = 0.00×130.00 = 0.00kN则下沉稳定系数为:K = (11280.00-0.00) / (23430.00+11784.59+0.00) = 0.32 下沉稳定系数 K < 1.0,沉井在自重下能够稳定。
沉井或气压沉箱的计算与验算方法一、一般规定(一)沉井施工前应对垫层厚度、下沉系数、接高稳定性、封底混凝土等内容进行计算与验算,计算和验算时所取的作用力均采用标准值。
(二)气压沉箱施工计算应符合下列规定:1、在下沉阻力计算中,除箱壁侧摩阻力、刃脚反力外,尚应包括气压浮托力;2、工作室顶板的计算荷载应根据不同工况确定,应取配重、自重、地基反力、水浮力和气压浮托力的最不利工况,且不应计入封底混凝土的作用。
3、水域沉井与沉箱在溜放、拖运以及沉放施工时,应对沉井与沉箱的倾斜稳定性进行验算;水域沉井与沉箱的前后两面水平作用不均衡时,尚应验算抗滑移及抗倾覆稳定性。
4、钢筋混凝土沉井与气压沉箱在分节制作时,每节井(箱)壁上端水平钢筋应加强。
5、沉井与气压沉箱首节制作时的基底压力不应大于下卧层地基承载力特征值,以后各节接高制作时应符合地基极限承载力的要求。
6、沉井与气压沉箱地基承载力及软弱下卧层验算应按现行国家标准《建筑地基基础设计规范》GB 50007的规定执行。
二、混凝土垫层及砂垫层(一)开挖工作坑遇有暗塘、暗沟、旧河道等不良地质时应进行加固处理,工作坑的开挖应符合现行行业标准《建筑基坑支护技术规程》JGJ120的规定。
(二)砂垫层的厚度应根据沉井与气压沉箱的重量和地基土的承载力按下列公式计算确定,且不宜小于600mm。
p=G0/(2*hs*tanα+BL)+γs*hsp≤fa式中:p——基底压力标准值(kN/m2);hs——砂垫层厚度(m);G0——沉井与气压沉箱第一节沿井壁单位长度重量(kN/m);γs——砂的天然重度(kN/m3),可取15kN/m3;BL——素混凝土垫层的宽度(m),BL=B+2bl,计算时取bl=hc;b1——素混凝土外挑宽度(m),可取b1≥hc(hc为素混凝土垫层厚度);α——砂垫层的压力扩散角(°),可取30°;fa——修正后的地基承载力特征值(kPa);b——刃脚踏面宽度(m);B——刃脚宽度(m)。
钢筋混凝土圆形沉井结构设计计算的分析范本1:1. 引言本文档旨在详细分析钢筋混凝土圆形沉井结构的设计计算。
主要包括以下内容:2. 结构概述2.1 结构基本参数2.2 结构受力形式2.3 结构设计要求3. 周边环境分析3.1 地质条件分析3.2 土压力计算4. 材料力学性能4.1 混凝土性能4.2 钢筋性能5. 结构计算过程5.1 地基承载能力计算5.2 地基沉陷计算5.3 结构稳定性计算6. 结构设计方案6.1 结构几何参数确定6.2 材料选择6.3 钢筋配筋计算6.4 混凝土配合比计算6.5 结构施工工艺7. 结构验算7.1 结构受力分析7.2 结构整体稳定性验算7.3 结构局部细部验算8. 结构施工及监控8.1 施工工序8.2 施工质量控制8.3 结构监测9. 结论结构设计计算的结果满足设计要求,验证了结构的安全性和稳定性。
附件:1. 周边地质条件报告2. 结构设计图纸法律名词及注释:1. 土木工程法:指规范土木工程建设管理的法律法规,保障土木工程的安全性和质量。
2. 水利法:指规范水利工程建设管理的法律法规,保障水利工程的安全性和稳定性。
范本2:1. 引言本文档旨在详细阐述钢筋混凝土圆形沉井结构的设计计算。
主要包括以下内容:2. 结构概述2.1 结构基本参数分析2.2 结构受力分析2.3 结构设计要求3. 结构材料选择与性能分析3.1 混凝土材料性能分析3.2 钢筋材料性能分析4. 结构计算过程4.1 地基承载力计算4.2 土压力计算4.3 结构稳定性计算5. 结构设计方案与施工工艺5.1 结构几何参数确定5.2 材料选择与配比设计5.3 钢筋配筋设计5.4 结构施工工艺确定6. 结构验算与监控6.1 结构受力分析与验算6.2 结构整体稳定性验算6.3 结构细部验算6.4 结构监控安排7. 结论本文所进行的钢筋混凝土圆形沉井结构设计计算满足设计要求,保证了结构的安全性和稳定性。
附件:1. 地质勘察报告2. 结构设计图纸法律名词及注释:1. 建筑法:规范建筑工程建设管理的法律法规,维护建筑工程的安全和品质。
钢筋混凝土沉井计算在建筑和土木工程领域,钢筋混凝土沉井是一种常见且重要的结构形式。
它被广泛应用于桥梁基础、地下泵房、污水检查井等工程中。
要确保沉井结构的安全可靠,精确的计算是至关重要的。
接下来,让我们深入了解一下钢筋混凝土沉井的计算方法和要点。
首先,我们需要明确钢筋混凝土沉井的结构组成。
它主要包括井壁、刃脚、封底和顶板等部分。
井壁承受着周围土体和地下水的压力,刃脚则有助于沉井的下沉,封底用于封闭井底,顶板则提供上部的承载能力。
在进行计算时,第一步是确定作用在沉井上的荷载。
这些荷载包括土压力、水压力、自重以及可能存在的上部结构传来的荷载等。
土压力的计算通常采用库仑土压力理论或朗肯土压力理论。
水压力则根据地下水位的高低和水的流动情况来确定。
沉井的自重计算相对较为简单,将各个组成部分的体积乘以相应材料的重度即可。
但需要注意的是,在计算过程中要考虑钢筋的重量。
接下来是井壁的内力计算。
由于井壁在不同深度所受到的土压力和水压力不同,因此需要分段进行计算。
一般采用的方法有悬臂梁法和环形框架法。
悬臂梁法适用于较浅的沉井,而环形框架法适用于较深且直径较大的沉井。
对于刃脚部分的计算,需要考虑其在下沉过程中的受力情况。
刃脚通常被视为悬臂梁,承受着土的阻力、水的浮力以及刃脚自重等。
在计算时,要确定刃脚的悬臂长度、截面尺寸以及所受的弯矩和剪力。
封底的计算主要是确定其厚度和配筋。
封底需要承受地下水的向上浮力以及封底自重等,通常按照板的受力情况进行计算。
在进行钢筋配置时,根据计算得到的内力,按照混凝土结构设计规范的要求,确定钢筋的直径、间距和数量。
同时,要满足最小配筋率等构造要求,以保证结构的安全性和耐久性。
此外,还需要考虑沉井下沉过程中的稳定性。
在下沉过程中,要确保沉井不会发生倾斜、突沉等问题。
这需要对下沉系数、抗滑移系数等进行计算和分析。
为了更准确地进行计算,还需要考虑一些实际因素的影响。
例如,土体的物理力学性质可能存在差异,地下水位的变化,以及施工过程中的不确定因素等。
矩形沉井设计实例沉井的下沉方式包括排水下沉、不排水下沉;井壁顶部约束包括自由、简支、固定;井壁底部约束包括简支、固定;底板边缘约束包括简支、固定。
本文档为某个单格矩形沉井设计实例,依靠自重下沉,四边简支。
设计条件(地质资料、沉井材料、工程概况)具体如下:需进行沉井基础井壁、底板、刃脚的荷载统计、内力和配筋计算,下沉验算,抗浮验算和地基承载力验算等,利用软件实操,同时根据手册计算公式计算全过程,针对电算结果与手册公式计算结果的差异进行分析。
软件操作利用理正CAD云进行:首先根据沉井类型,选择矩形沉井模块。
点击进入后,根据设计条件进行参数设置,设置沉井各节高度和壁厚等设置土层信息时需注意:手册在计算土压系数时考虑了黏聚力,软件目前不能交互黏聚力,可通过提高内摩擦角来考虑黏聚力的影响,用等效内摩擦角代替。
获取计算结果后,进行下沉验算、井壁竖向弯曲、刃脚向内弯曲、底板内力的检查,与手册计算结果对比,分析数据差异:(一)下沉验算【沉井下沉验算手册计算结果】【沉井计算软件电算结果】【差异分析】井壁自重:手册是按照井壁内侧所围图形计算的周长,即2(L10-t+L20-t),软件是按照井壁中心线所围图形计算的周长,即2(L10+L20)。
刃脚阻力:手册是按照整个井壁考虑,图 (a)所示);软件按刃脚斜面部分按三角形分布考虑,图(b)所示(依据《公路地基规范》7.3.2条)。
(二)井壁竖向弯曲【沉井井壁竖向弯曲手册计算结果】【沉井计算软件电算结果】计算跨度(主要原因):手册按井壁中心线取的跨度,即L01、L02;软件《沉井结构规程》(CECS 137-2015)是按井壁外侧线取的跨度,即L1、L2,(依据:第6.3.1条。
软件计算结果偏保守一些,更安全。
(三)刃脚向内弯曲【沉井刃脚向内弯曲手册计算结果】【用理正沉井计算软件电算结果】手册结果和软件结果结果基本一致(四)井壁水平框架内力【沉井井壁水平框架内力手册计算结果】【用理正沉井计算软件电算结果】【差异分析】(五)底板内力【沉井底板内力手册计算结果】【用理正沉井计算软件电算结果】【差异分析】计算跨度:手册按井壁中心线取的跨度,软件按井壁外侧线取的跨度。
沉井的设计与计算沉井的设计与计算2010-04-19 22:18沉井既是结构物的基础,又是施工过程中挡土、挡水的结构物,因此其设计计算需包括沉井作为整体深基础的计算和在施工过程中的计算两大部分。
在设计沉井计算之前必须掌握如下有关资料:①上部结构尺寸要求,沉井基础设计荷载;②水文和地质资料(如设计水位、施工水位、冲刷线或地下水位标高,土的物理力学性质,沉井通过的土层有无障碍物等);③拟采用的施工方法(排水或不排水下沉,筑岛或防水围堰的标高等)。
5-3-1沉井作为整体深基础的计算沉井作为整体深基础设计,主要是根据上部结构特点、荷载大小及水文和地质情况,结合沉井的构造要求及施工方法,拟定出沉井埋深、高度和分节及平面形状和尺寸,井孔大小及布置,井壁厚度和尺寸,封底混凝土和顶板厚度等,然后进行沉井基础的计算。
根据沉井基础的埋置深度不同有两种计算方法。
当沉井埋深在最大冲刷线以下较浅仅数米时,可不考虑基础侧面土的横向抗力影响,按浅基础设计计算;当埋深较大时,沉井周围土体对沉井的约束作用不可忽视,此时在验算地基应力、变形及沉井的稳定性时,应考虑基础侧面土体弹性抗力的影响,按刚性桩(αh 2.5)计算内力和土抗力。
一般要求沉井基础下沉到坚实的土层或岩层上,其作为地下结构物,荷载较小,地基的强度和变形通常不会存在问题。
一般要求地基强度应满足:表5-1土与井壁摩阻力经验值土的名称土与井壁的摩阻力q(kPa)砂卵石砂砾石砂土流塑粘性土、粉土软塑及可塑粘性土、粉土硬塑粘性土、粉土泥浆套18~30 15~20 12~25 10~12 12~25 25~50 3~5注:本表适用于深度不超过30m的沉井。
图5-14井侧摩阻力分布假定F+G≤Rj+Rf(5-1)式中F──沉井顶面处作用的荷载,kN;G──沉井的自重,kN;Rj──沉井底部地基土的总反力,kN;Rf──沉井侧面的总摩阻力,kN。
沉井底部地基土的总反力Rj等于该处土的承载力设计值f与支承面积A的乘积,即Rj=f A(5-2)可假定井侧摩阻力沿深度呈梯形分布,距地面5m范围内按三角形分布,5m 以下为常数,如图(5-14)所示,故总摩阻力为:Rf=U(h-2.5)q(5-3)式中U──沉井的周长,m;h──沉井的入土深度,m;q──单位面积摩阻力加权平均值,q=Σqi hi/Σhi,kPa;hi──各土层厚度,m;qi──i土层井壁单位面积摩阻力,根据实际资料或查表5-1选用。
沉井或气压沉箱的计算与验算方法沉井或气压沉箱是一种常用的地下开挖工程辅助施工技术,广泛应用于深基坑开挖、管道铺设、桥梁基础施工等工程中。
正确的计算与验算方法对保障工程施工质量和安全具有重要意义。
下面将详细介绍沉井或气压沉箱的计算与验算方法。
1.计算方法(1)沉井计算方法:沉井开挖通常采用土钻、连续墙护壁或钢板护壁等方式进行支护。
计算沉井抗浮力,可按照以下公式进行:F=γw*H其中,F为沉井抗浮力,γw为水的单位重量,取10kN/m³,H为地下水位以上的开挖高度。
计算沉井侧面稳定性时,可通过计算土壁的稳定性来评估。
根据土力学原理,稳定性主要考虑土壁的抗滑稳定性和抗倾覆稳定性。
根据具体施工条件和土壤性质选择相应的计算方法,常用的方法有平衡法、极限平衡法和有限元法等。
(2)气压沉箱计算方法:气压沉箱是在地下施工时由于开挖土体抗不住水压而引起坍塌的问题,采用压力来抵消水压差,以有效地保障施工安全。
对于气压沉箱的计算,主要包括以下几个方面:a.确认开挖地层的性质和室内外压力差。
b.计算所需的压力。
假设沉箱所处地层的土体饱和,根据悬浮力和水压对开挖土体的作用力进行计算。
c.计算所需厚度。
假设沉箱具有一定的最低厚度约束,根据所需的压力和相关参数计算所需的最小厚度。
2.验算方法(1)沉井验算方法:沉井支护结构的验算主要涉及抗浮力和侧面抗滑稳定等方面。
a.沉井抗浮力的验算需要核对计算结果和实际情况是否一致,保证沉井在施工过程中不会浮升或发生其他异常情况。
b.侧面抗滑稳定的验算可以通过现场观察和监测等方式来进行。
施工中应定期检查土壁的变形情况,如有异常情况应及时采取相应的处理措施。
(2)气压沉箱验算方法:气压沉箱的验算主要包括判断沉箱的稳定性和对积水的控制等方面。
a.沉箱的稳定性通过监测沉箱周围土体的变形情况,并根据施工过程中的实际情况进行评估。
b.对积水的控制要保证沉箱内部的水压小于外部水压,避免沉箱进入过高的水压状态。
市政工程中沉井的设计与发布时间:2022-12-04T14:45:39.485Z 来源:《工程建设标准化》2022年第15期第8月作者:梁俊玮[导读] 沉井可以用作顶管工作井梁俊玮上海市政工程设计研究总院集团有限公司摘要:沉井可以用作顶管工作井、进水泵房等构筑物的主体结构,沉井较适合在软土地区使用。
本文通过对沉井设计过程与实例分析,疏理了沉井的计算过程,也为类似工程的设计提供一些借鉴和参考。
关键词:顶管;沉井;计算;实例1.沉井的设计计算总结沉井是一种在地面上制作、通过挖除井内土体的方法使之沉到地下某一深度的井体结构。
换言之,沉井是一种手段,沉井的作用是用来建造各种类型或用途的地下工程构筑物。
市政结构设计中,常用沉井常用于顶管工程中的工作井及泵房。
沉井的优点有:(1)经济。
由于井体侧墙结构即支护结构,沉井无需另外做基坑支护,节省基坑支护费用,节省工期。
另外沉井取土时不要求井体内降水,可节省降水措施费。
(2)安全。
由于沉井是在地面制作下沉,整体性好、刚度大,作为顶管井等临时工程时,比逆作法更安全。
逆作法深度不宜大于10m,而沉井无限制。
沉井的使用范围也有一些限制:(1)沉井主要依靠自重下沉,在硬土层、岩层中较难下沉,需要用到辅助下沉措施。
(2)沉井一般用于小型的地下构筑物。
原因:沉井需要均匀下沉,尺寸越大,均匀下沉越困难;沉井下沉时是水平框架受力,如尺寸大,则下沉时受力情况复杂,且需设置多道水平或竖向框架,对使用功能造成了限制。
沉井计算要点:(1)下沉系数其中Gik为沉井自重标准值,Fw,k为下沉过程中水浮托力标准值,Ffk为井壁总摩阻力标准值。
一般在设计中下沉系数宜大一些,下沉系数太小容易出现下沉过慢的问题。
(2)下沉稳定系数=0.8~0.9[1]。
其中F’fw,k为验算状态下水的浮托力标准值,F’fw为验算状态下井壁部摩阻力标准值,Rb为沉井刃脚、隔墙和底梁下地基土极限承载力之和。
一般下沉系数太时或下沉可能遇到软土时,需验算下沉稳定系数,即保证下沉到预定标高后沉井不再下沉,防止沉井超沉。