【核医学】正电子显像
- 格式:ppt
- 大小:11.43 MB
- 文档页数:55
肿瘤核医学名词解释
肿瘤核医学是一种利用放射性药物和核技术检测和治疗肿瘤的医学技术。
以下是一些常见的肿瘤核医学名词解释:
1. PET扫描:正电子发射断层扫描,是一种通过注射放射性药物来检测肿瘤的影像学技术。
2. SPECT扫描:单光子发射计算机断层扫描,是一种利用放射性药物来检测肿瘤的影像学技术。
3. 放射性同位素治疗:一种利用放射性同位素来杀死肿瘤细胞的治疗方法。
4. 核医学显像:一种利用放射性药物来显像肿瘤的影像学技术。
5. 活体生物体外荧光成像(IVIS):一种利用荧光标记的细胞来检测肿瘤的影像学技术。
6. 闪烁计数器:一种用于测量放射性药物的计数器。
7. 放射性同位素标记:一种将放射性同位素与药物结合在一起以便
于检测的技术。
8. 核医学治疗:一种利用放射性药物来杀死肿瘤细胞的治疗方法。
9. 放射性药物:一种含有放射性同位素的药物,用于检测和治疗肿瘤。
10. 放射性同位素扫描:一种利用放射性药物来检测肿瘤的影像学技术。
这些术语是肿瘤核医学中常见的术语,通过了解它们的含义,可以更好地理解和应用肿瘤核医学技术。
核医学名词解释(每小题2分,共10分)1.单光子显像:是使用探测单光子的显像仪器(如伽马照相机、SPECT)对显像剂中放射性核素发射的单光子进行的显像。
2.正电子显像:是使用探测正电子的显像仪器(如PET、符合线路SPECT)对显像剂中放射性核素发射的正电子进行的显像技术。
3.有效半衰期:由于物理衰变和机体生物活动共同作用而使体内放射性核素减少一半所需的的时间。
4.物理半衰期:放射性核素的数量因衰变减少一半所需要的时间,用T1/2表示。
5.核医学:核医学是研究核科学技术在疾病诊治及生物医学研究的一门学科。
它是利用核素示踪技术实现分子功能显像诊断和靶向治疗的特色专业学科,并利用核素示踪进行生物医学基础理论的研究。
6.放射免疫分析:是以放射性核素作为示踪剂的标记免疫分析方法,它是建立在放射性分析高度灵敏性与免疫反应高度特异性基础之上的超微量分析技术。
7.核素:质子数、中子数均相同,并且原子核处于相同能级的原子,称为一种核素。
8.放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋向于稳定的核素称为放射性核素。
9.肿瘤前哨淋巴结:从局部肿瘤引流的第一站淋巴结。
10.心机可逆性缺损:负荷心肌显像呈现为放射性缺损或稀疏,静息或延迟显像填充或“再分布”,见于心肌缺血。
11.心机固定缺损:负荷心肌显像呈现为放射性缺损,静息影像显示该部位仍为放射性缺损,见于心肌梗死、心肌瘢痕和“冬眠心肌”。
(冬眠心肌”:是指由于冠状动脉血流长时间减少,造成心肌细胞功能受损但仍保持代谢活动,其细胞膜完整,心肌并未坏死,恢复血流灌注后心功能可以改善或恢复正常。
)12.标准化摄取值:是PET显像时半定量评价病变组织代谢率的指标,即局部感兴趣区平均放射性活度(MBq/ml)/注入放射性活度(MBq)/体重(g).13.T/NT:靶/非靶比值:是指放射性药物在靶器官或靶组织中的浓聚量,与非靶器官或组织特别是与相邻的非靶器官或组织中的浓聚量之比。
影像核医学总论自测题一、名词解释1.核医学6.阳性显像2.临床核医学7.单光子显像3.放射性药物8.4.9.5.10.三、1.2.3.4.99Yc m5.6.7.有:、、、、和等。
8.、、、、、、和。
9.10.11.12.(一)A1.A.α2.放射性核素显像最主要利用哪种射线A.α射线B.γ射线C.射线D.X射线E.俄歇电子3.以下哪一项不是放射性核素显像的特点A.较高特异性的功能显像B.动态定量显示脏器、组织和病变的血流和功能信息C.提供脏器病变的代谢信息D.精确显示脏器、组织、病变和细微结构E.本显像为无创性检查4.下面哪一项描述是正确的A.γ闪烁探测器由锗酸铋(BGO)晶体、光电倍增管和前置放大器组成B.γ照相机不可进行动态和全身显像C.SPECT是我国三级甲等医院必配的设备D.PET仪器性能不如SPECTE.液体闪烁计数器主要测量发射γ射线的放射性核素5.指出下面不正确的描述A.Roentgen发现X射线B.Becqueral发现铀盐的放射性C.Curie夫妇成功提取放射性钋和镭D.Joliot和Curie首次成功获得人工放射性核素E.Yalow和Berson开创了化学发光体外分析技术6.有关PET的描述下面哪一项不正确A.PET是正电子发射型计算机断层显像仪的英文缩写B.它是核医学显像最先进的仪器设备C.临床上主要用于肿瘤显像D.显像原理是核素发射的正电子与体内负电子作用后产生湮灭辐射发出一对能量相等方向相反的511keVγ光子经符合探测技术而被多排探测器探测到,数据经计算机处理和图像重建后获得不同断面的断层影像E.常用放射性核素99Tc m及其标记化合物作为正电子药物7.在SPECT脏器显像中,最理想最常用的放射性核素为A.131IB.678.A.B.C.D.E.9.A.B.C.D.E.10.11.RIA12.A.我国B.我国C.我国D.我国E.我国13.A.14.核医学的定义是A.研究放射性核素的性质B.研究核素在脏器或组织中的分布C.研究核技术在疾病诊断中的应用及理论D.研究核技术在医学的应用及理论E.研究核仪器在医学的应用15.最适宜γ照相机显像的γ射线能量为A.100~300keVB.60~80keVC.511keVD.364keVE.300~400keV16.图像融合技术的主要目的是A.提高病灶的阳性率B.了解病灶区解剖密度的变化C.了解病灶区解剖形态的变化D.了解病灶区解剖定位及其代谢活性与血流的变化E.判断病灶的大小17.脏器功能测定、脏器显像以及体外放射分析技术的共同原理是A.放射性测量B.反稀释法原理C.免疫反应D.示踪技术的原理E.运动学模型18.通过药物、运动或生理刺激干预以后,再进行的显像称为A.静态显像B.平面显像C.介入显像D.阴性显像E.阳性显像19.在注射放射性药物之前,应询问病人A.月经周期B.是否有小孩C.婚否D.是否怀孕或哺乳期E.性别20.一般认为,早期显像是指显像剂引入体内后多少时间以内的显像A.30minB.2hC.4hD.6hE.8h(二)B型题(1~3A.γ1.2.3.(4~8A.99Tc mB.4.5.6.纯?–7.8.发射?(9~12A.E.9.10.11.12.(13~A.13.14.15.检查心脑脏器的储备功能应行(16~20题共用备选答案)A.99Tc m–ECDB.99Tc m–MIBIC.99Tc m–MAAD.99Tc m-MDPE.99Tc m-DTPA16.进行肾动态显像使用的显像剂为17.进行脑血流灌注显像使用的显像剂为18.进行骨显像使用的显像剂为19.进行肺灌注显像使用的显像剂为20.进行心肌灌注显像使用的显像剂为(21~24题共用备选答案)A.发明回旋加速器B.分别开始用131I治疗甲亢和甲状腺癌C.核反应堆投产D.99Mo-99Tc m发生器问世E.获得了放射性核素99Tc m和131I21.1957年22.1946年23.1941年和1946年24.1931年(三)X型题1.以下哪些是核医学显像仪器A.γ照相机B.SPECTC.PETD.SPECT/PETE.CT2.以下哪些放射性核素可用于诊断A.99Tc mB.18FC.131ID.32PE.201TI3.以下哪些放射性核素的标记物可用于骨转移癌的缓解疼痛治疗A.188ReB.4.A.γC.5.A.D.6.A.γ7.RIAA.1.2.3.简述γ4.5.1.2.成。
核医学影像设备的几个英汉互译概念的总结核医学影像设备是目前医院内兴起的检查设备。
在英汉互译中有些误用的情况,现在做一下总结。
核医学影像设备包括很多种。
国家标准分类如下:编码代号6835医用核素设备分类编号6833-02.2管理类别Ⅱ类品名举例骨密度仪、伽玛照相机、肾功能仪、甲状腺功能测定仪、核素听诊器、心功能仪、闪烁分层摄影仪、放射性核素透视机、γ射线探测仪分类名称放射性核素诊断设备编码代号6834医用核素设备分类编号6833-02.1管理类别Ⅲ类品名举例ECT、正电子发射断层扫描装置(PECT)、单光子发射断层扫描装置(SPECT)、放射性核素扫描仪分类名称放射性核素诊断设备在这里我们看到,ECT和单光子发射断层扫描装置不是一个含义!但是在369百科检索中,我们看到一个异常!“发射单光子计算机断层扫描仪Emission Computed Tomography,”即ECT!Emission,翻译是“emission [i'miʃən]n.散发,发射,射出,发出;尤指(光、热、声音、液体、气味等的)发出,射出,散发(无线电波的)发射【电子学】(电子的)放射,辐射,发射【医学、生物学】排出,遗泄,泄出;尤指遗精发出物,发射物,射出物,散发物排泄物,身体内射出(或排出)的液体电子流可见,这个概念里并不是专指“单光子发射”单光子发射计算机断层成像术(Single-Photon Emission Computed Tomography,SPECT)Single-Photon来源:德国MaxPlanckInstituteofQuantumOptics的物理学家们研制出了仅仅生成一个原子制成的单光子(Single-Photon)生成器,他们把极冷的铷原子放在一个真空室并在一侧放置了激光脉冲仪,由此形成光子源,产生质量好的光子。
PET呢?正电子发射断层显像(Positron Emission Tomography)。
核医学:核医学是利用核素及其标记化合物用于诊断和治疗疾病的临床医学学科,包括诊断核医学和治疗核医学。
核素:指质子数,中子数均相同,且原子核处于相同能级状态的原子。
半衰期:指放射性核素的数量因衰变减少一半所需要的时间,又称物理半衰期。
(T1/2=0.693/λ)湮灭辐射:β+衰变产生的正电子具有一定的动能,能在介质中运行一定的距离,当其能量耗尽时可与物质中的自由电子相结合,转化为两个方向相反,能量各为0.511MeV的γ光子消失,这叫湮灭辐射,是符合正电子显像的基础。
晶体(闪烁体):用于放射性测量的闪烁晶体是在放射线或原子核粒子作⽤下发生闪烁现象的晶体材料,其作用是将射线的辑射能转变为光能,因此又被称为闪烁体。
光电倍倍增管(PMT):是基于光电效应和二次电子发射效应的真空电子器件,其作用是将微弱的光信号转换成可测量的电信号,因此它也是一种光电转换放大器件。
符合探测:利用湮灭辐射的特点和两个相对探测器输出脉冲的符合来确定闪烁事件位置的方法称为电子准直,这种探测方式则称为符合探测。
甲功仪:主要用于甲状腺功能的测定和诊断,它是以甲状腺组织对放射性碘摄取率来衡量甲状腺的功能故而又称为甲状腺吸碘率测定仪。
动态显像:是显像剂引⼊体内后迅速以设定的显像速度采集脏器的多帧连续影像。
静态显像:是指当显像剂在脏器内或病变处的浓度处于稳定状态时进行的显像。
阳性显像:指显像剂主要被病变组织摄取,而正常组织⼀般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高而呈“热区”改变。
如心肌梗死灶显像等。
阴性显像:指显像剂主要被有功能的正常组织摄取,而病变组织基本上不摄取,在静态影像上表现为正常组织器官的形态,病变部位呈放射性分布稀疏或缺损。
如心肌灌注显像,甲状腺显像等。
负荷显像:是受检者在药物或生理性活动干预下所进行的显像。
有利于发现在静息显像下不易观察到的病变从而提高显像诊断的灵敏度。
正电子显像:是用于探测正电⼦的显像仪器通过显像剂中放射性核素发射的正电子进行的显像技术,称为正电子显像。
核医学影像设备的几个英汉互译概念的总结核医学影像设备是目前医院内兴起的检查设备。
在英汉互译中有些误用的情况,现在做一下总结。
核医学影像设备包括很多种。
国家标准分类如下:编码代号6835医用核素设备分类编号6833-02.2管理类别Ⅱ类品名举例骨密度仪、伽玛照相机、肾功能仪、甲状腺功能测定仪、核素听诊器、心功能仪、闪烁分层摄影仪、放射性核素透视机、γ射线探测仪分类名称放射性核素诊断设备编码代号6834医用核素设备分类编号6833-02.1管理类别Ⅲ类品名举例ECT、正电子发射断层扫描装置(PECT)、单光子发射断层扫描装置(SPECT)、放射性核素扫描仪分类名称放射性核素诊断设备在这里我们看到,ECT和单光子发射断层扫描装置不是一个含义!但是在369百科检索中,我们看到一个异常!“发射单光子计算机断层扫描仪Emission Computed Tomography,”即ECT!Emission,翻译是“emission [i'miʃən]n.散发,发射,射出,发出;尤指(光、热、声音、液体、气味等的)发出,射出,散发(无线电波的)发射【电子学】(电子的)放射,辐射,发射【医学、生物学】排出,遗泄,泄出;尤指遗精发出物,发射物,射出物,散发物排泄物,身体内射出(或排出)的液体电子流可见,这个概念里并不是专指“单光子发射”单光子发射计算机断层成像术(Single-Photon Emission Computed Tomography,SPECT)Single-Photon来源:德国MaxPlanckInstituteofQuantumOptics的物理学家们研制出了仅仅生成一个原子制成的单光子(Single-Photon)生成器,他们把极冷的铷原子放在一个真空室并在一侧放置了激光脉冲仪,由此形成光子源,产生质量好的光子。
PET呢?正电子发射断层显像(Positron Emission Tomography)。
核医学名词解释题库100题1.核医学:是利用放射性核素诊断、治疗疾病和进行医学研究的学科。
它涉及放射性药物的应用、核素成像技术(如SPECT、PET)以及放射性核素治疗等多个领域,例如通过PET - CT检查肿瘤。
2.放射性核素:是指质子数相同但中子数不同的一类原子,其中不稳定的核素能够自发地放出射线(α、β、γ射线等),并转变为另一种核素,像碘- 131就属于放射性核素。
3.放射性药物:是指含有放射性核素的用于医学诊断和治疗的一类特殊药物。
这些药物可以被特定的器官或组织摄取,通过检测其放射性来获取相关信息,例如锝[99mTc]标记的药物用于脏器显像。
4.核素显像:是利用放射性核素标记的显像剂在体内的分布情况,通过显像仪器(如γ相机、SPECT、PET)获取体内脏器或组织功能、代谢和结构信息的一种检查方法,比如用SPECT观察心肌血流灌注情况。
5.γ相机:是一种核医学成像设备,它可以对体内放射性药物发出的γ射线进行探测,将射线的能量和位置信息转换为电信号,进而形成二维图像,用于甲状腺、骨骼等部位的显像。
6.单光子发射计算机断层成像(SPECT):是在γ相机基础上发展起来的断层成像技术,它可以围绕人体旋转采集信息,通过计算机重建得到三维的断层图像,能够更准确地定位病变位置和范围,对脏器功能的评估很有帮助。
7.正电子发射断层显像(PET):利用正电子发射核素标记的显像剂,在体内发生湮灭辐射产生一对方向相反的γ光子,探测器探测这些光子后经计算机处理重建出断层图像,主要用于肿瘤、神经系统和心血管系统疾病的诊断。
8.PET-CT:将PET和CT两种成像技术有机结合在一起的设备,它既能显示组织的功能代谢信息(PET部分),又能显示解剖结构信息(CT部分),使图像融合,提高了诊断的准确性,如在肿瘤分期中的应用。
9.放射性核素治疗:是利用放射性核素在衰变过程中发射出来的射线(如β射线),对病变组织进行照射,以达到治疗疾病的目的,像碘- 131治疗甲亢就是典型的放射性核素治疗。
临床医学中的放射诊断与治疗新技术放射诊断和治疗是临床医学中重要的技术手段,随着科技的不断进步,新的放射诊断与治疗技术不断涌现。
这些新技术的应用,极大地改善了疾病的诊断和治疗效果,为患者带来了新的希望和福音。
一、放射诊断新技术1. 计算机断层显像(CT)计算机断层显像技术是一种基于X射线的医学成像技术,通过计算机的组合和重建,可生成高分辨率的身体断层图像。
相较于传统X线技术,CT能够提供更为详细和清晰的图像,帮助医生准确地进行疾病的诊断。
此外,CT还可以通过增强剂的注射,实现血管造影和肿瘤标记物的检测,提高诊断的准确性。
2. 磁共振成像(MRI)磁共振成像技术是利用核磁共振的原理,通过对人体内的氢原子进行成像,获得身体组织的详细信息。
相比于其他成像技术,MRI不使用X射线,对人体无辐射,更加安全。
它能够提供高分辨率、多平面的图像,对骨骼、器官和血管的检测有着独特的优势,尤其适用于脑部和脊柱的诊断。
3. 正电子发射断层显像(PET)正电子发射断层显像技术是一种核医学成像技术,通过正电子放射性同位素的注射,测量放射性同位素的分布,进而获得代谢和功能信息。
PET对于癌症、心血管疾病、神经系统疾病等的早期检测和定量评估具有重要价值,可以提供病变的代谢情况和功能状态的信息。
二、放射治疗新技术1. 电子线放疗电子线放疗技术是一种使用高能电子束治疗肿瘤的方法。
与传统的X线放疗相比,电子线能量更容易局限在肿瘤组织内,减少对健康组织的损伤。
电子线放疗主要应用于肤癌、早期乳腺癌等浅表肿瘤的治疗,具有较好的疗效,且患者耐受性较高。
2. 螺旋调强放射治疗(IMRT)螺旋调强放疗技术是一种基于计算机控制的放射治疗技术,通过调节放疗机输出的射束强度和射束方向,实现对肿瘤的高剂量照射和对周围正常组织的低剂量照射。
IMRT技术能够更好地保护正常组织,减少副作用,提高治疗的安全性和疗效,尤其适用于复杂的肿瘤形态。
3. 肿瘤标记物引导下的放疗(IGRT)肿瘤标记物引导下的放疗技术是一种通过实时监测肿瘤的位置和形态变化,调整放疗计划和射束方向的方法。
放射医学的核医学显像技术放射医学的核医学显像技术是一种利用放射性同位素进行影像诊断的方法。
通过核医学显像技术,医生可以获取患者体内器官和组织的代谢、功能以及病变情况,从而辅助诊断疾病、制定治疗方案。
核医学显像技术在肿瘤学、心血管疾病、神经系统疾病等多个领域有着重要的应用。
本文将介绍核医学显像技术的原理、常见的技术和其在临床中的应用。
一、核医学显像技术的原理核医学显像技术主要利用放射性同位素发出的γ射线进行成像。
患者在进行核医学检查时,会通过口服或静脉注射的方式摄入含放射性同位素的示踪剂。
这些放射性同位素会在体内特定器官或组织中富集,发出γ射线并被显像设备捕获。
根据γ射线的分布情况,医生可以观察到患者内部器官或组织的代谢状态和异常情况。
二、核医学显像技术的常见技术核医学显像技术包括单光子发射计算机体层摄影(SPECT)和正电子发射体层摄影(PET)两种主要技术。
1. 单光子发射计算机体层摄影(SPECT)SPECT是核医学常用的一种成像技术,其原理是通过探测器捕获γ射线并转化为数字信号,再通过计算机重建成三维影像。
SPECT在心脏、肿瘤、骨骼等疾病的诊断和评估中有着广泛的应用。
2. 正电子发射体层摄影(PET)PET技术是一种高灵敏度、高分辨率的核医学成像技术,通过检测正电子放射性同位素与电子相遇产生的γ射线来实现成像。
PET在肿瘤筛查、神经系统疾病和心血管疾病的诊断中具有重要作用。
三、核医学显像技术在临床中的应用1. 肿瘤学核医学显像技术在肿瘤学中有着广泛的应用,可以进行肿瘤的早期筛查、定位、分期和评估治疗效果。
PET-CT联合成像技术可以提高肿瘤诊断的准确性,指导个体化治疗。
2. 心血管疾病核医学显像技术可以用于心肌灌注显像、心脏功能评估、心肌代谢评估等方面,对心血管疾病的诊断和治疗具有重要的临床意义。
3. 神经系统疾病核医学显像技术在神经系统疾病的诊断、鉴别诊断、病情评估和治疗监测中有着独特的价值。
核医学仪器是用于诊断、治疗和研究核医学领域的设备。
它们基于放射性同位素的放射性衰变和放射性粒子的相互作用,通过测量和检测放射性信号来获取有关组织、器官或生物过程的信息。
以下是几种常见核医学仪器的基本原理:
伽马摄像机(Gamma Camera):伽马摄像机是一种用于核医学显像的仪器。
它利用放射性同位素释放的伽马射线与探测器(如闪烁晶体)发生相互作用。
当伽马射线通过闪烁晶体时,晶体会发出闪烁光,探测器接收并转换为电信号。
通过分析和处理这些电信号,可以重建出图像,显示出放射性同位素在体内的分布情况。
单光子发射计算机断层摄影(SPECT):SPECT是一种核医学显像技术,通过使用一台旋转的伽马摄像机来获取多个角度的图像数据。
通过伽马射线与探测器的相互作用,获得关于放射性同位素在体内分布的信息。
然后,通过计算和重建处理,生成三维的断层图像,用于诊断和研究。
正电子发射计算机断层摄影(PET):PET是一种核医学显像技术,利用正电子放射性同位素与电子相遇时产生的正电子湮灭事件。
正电子与电子相遇后,会发生湮灭,释放出两个伽马射线。
通过在患者体内放置一组环形探测器,可以检测到伽马射线的事件并记录下来。
通过计算和重建处理,生成高分辨率的三维图像,用于诊断和研究。
这些仪器的基本原理是利用放射性同位素的放射性衰变和放射性粒子与物质的相互作用。
通过测量和记录放射性信号,并进行计算和重建处理,可以获得有关组织、器官或生物过程的定量和定位信息,对疾病诊断、治疗和研究提供支持。
核医学(基础+临床)题库含参考答案一、单选题(共60题,每题1分,共60分)1、患者男性,70岁。
自诉右上肢震颤、无力、僵硬3年,逐渐加重,口服多巴丝肼片症状缓解,大小便正常,血压正常,记忆力正常。
脑部MRI提示多发腔梗灶。
大脑多巴胺转蛋白显像提示左侧壳核后部放射性分布减低。
此患者对可能的诊断是( )A、继发性帕金森综合征B、阿尔茨海默病C、多系统萎缩D、帕金森病E、皮质基底节变性正确答案:D2、检查心脑脏器的储备功能应行以下那项检查()A、动态显像B、静态显像C、阳性显像D、负荷影像E、静息显像正确答案:D3、目前临床应用最广泛的正电子核素是A、32PB、99MoC、131ID、99mTcE、18F正确答案:E4、光电峰的FWHM与射线能量之比的百分数表示( )。
A、闪烁探测器的能量线性B、闪烁探测器的空间分辨率C、闪烁探测器的计数率特性D、闪烁探测器的探测效率E、闪烁探测器的能量分辨率正确答案:E5、过氯酸钾释放试验对哪一种疾病的诊断有较高的临床价值( )A、甲状腺髓样癌B、Graves甲亢C、亚急性甲状腺炎D、与甲状腺内的有机化障碍有关的疾病E、功能自主性甲状腺瘤正确答案:D6、在心血池显像中,下列对“传导异常”具有独特价值的是( )A、时相分析B、相位图C、相位直方图D、振幅图E、心动电影正确答案:A7、当患者血清降钙素浓度明显升高时,有助于早期诊断哪种疾病A、恶性嗜铭细胞瘤B、甲状腺激素不应综合征C、甲状腺癌D、甲状腺髓样癌E、甲状旁腺癌正确答案:D8、甲状腺静态显像提示“冷结节”,甲状腺动态显像示结节血运丰富,则结节很可能是( )A、甲状腺囊腺瘤B、甲状腺内出血C、甲状腺癌D、甲状腺囊肿E、甲状旁腺癌正确答案:C9、暂时性心肌缺血时,心肌灌注SPECT显像表现为( )A、固定性放射性缺损B、放射性持续缺损C、放射性分布增强D、放射性分布无变化E、可逆放射性缺损正确答案:E10、心肌摄取99mTc-MIBI的量,主要与下列哪项因素有关( )A、心肌厚度B、缺血灶大小C、冠脉血流量D、心肌弥散性清除率E、心肌细胞缺血时间正确答案:C11、下列哪种方法最适宜淋巴瘤诊断( )A、18F-FDG PET/CTB、67Ga SPECTC、99mTc-MIBI SPECTD、99mTc-MDP SPECTE、11C-MET PET/CT正确答案:A12、亚临床型甲状腺功能低下时,血清T3、T4浓度常为正常,但TSH浓度常为( )A、降低B、升高C、正常D、TRH兴奋后增高E、明显降低正确答案:B13、男性患者,以发现右面颊部肿胀1个月为主诉就诊;体检,右面部肿块,为明确肿块性质,首选那项检查( )A、CT引导下穿刺活检B、MRIC、PET/CTD、切除活检E、B超引导下活检正确答案:E14、一种物质机体排泄50%需要6H,由99mTc标记的这种物质制成的放射性药物的有效半衰期为A、18 hB、3 hC、1.5 hD、12 hE、6 h正确答案:B15、为了获得高质量的断层图像,作SPECT采集时要采用( )。
核医学试题及答案一、单选题(共72题,每题1分,共72分)1.急性心肌梗死灶显像是一种A、全身显像B、阳性显像C、正电子显像D、阴性显像E、负荷显像正确答案:B2.发射B-射线时伴有γ射线的核素为A、99mTcB、18FC、131ID、32PE、99Mo正确答案:C3.放射免疫分析质量控制,反应误差关系(?)应为A、<0.04B、<40C、<0.4D、<0.004E、<0.4(%)正确答案:A4.临床核医学的组成不包括A、体外分析B、显像技术C、诊断和治疗D、核素治疗E、脏器功能测定正确答案:C5.质子和中子统称为A、核子B、质量C、正电子D、带电粒子E、原子核正确答案:A6.放射性核素衰变的指数规律描述哪种关系A、电离能力随着速度的变化B、能量随着时间的变化C、活度随着时间的变化D、射程随着密度的变化E、活度随着能量的变化正确答案:C7.以下关于放射源的运输,说法正确的是。
A、必须采用适当工具运输放射性物质B、需要办理相应的交接手续C、必须注明放射源的名称及比活度D、需要安全监测与适当的防护E、以上均正确正确答案:E8.个人剂量限值,主要针对的人员是A、医学实践志愿者B、申请核医学检查的医生C、受检病人D、核医学技术人员E、病人家属正确答案:D9.决定放射性核素有效半衰期的因素是A、断层重建方式B、淋洗时间间隔C、物理半衰期和生物半衰期D、测量系统的分辨时间E、粒子的射程正确答案:C10.申请核医学检查与治疗时应遵循的原则是。
A、核医学工作人员必须掌握核医学防护知识B、申请医生必须掌握各种医学诊断治疗技术的特点及适应证C、对儿童、哺乳妇女、妊娠妇女及育龄妇女在选择核医学诊疗时要谨慎D、核医学医生在保证诊疗目的前提下应尽可能降低医疗照射剂量E、以上均正确正确答案:E11.在体外放射分析的质量控制中,精密度图主要用于评价A、特异性结合率B、特异性C、试剂盒的稳定性D、是衡量一批测定中不同浓度标准品的测定精密度指标E、方法的灵敏度正确答案:D12.吸收剂量是如何得到的A、通过放射性探测器测出的B、通过γ计数器测出的C、通过活度计测出的D、通过剂量笔测出的E、通过照射量和反映物质性质的参数计算出的正确答案:E13.β-衰变发生于A、质子数大于82的原子核B、超重原子核C、激发态原子核D、贫中子原子核E、富中子原子核正确答案:E14.RIA中如果标记抗原的比活度降低可引起A、抗原-抗体复合物的放射性测量计数增高B、测量灵敏度提高C、测量灵敏度降低D、所用抗原蛋白量减少E、标记物化学量减少正确答案:C15.湮灭辐射是指A、射线与物质相互作用能量耗尽后停留在物质中B、光子与物质原子的轨道电子碰撞,其能量全部交给轨道电子,使之脱离原子轨道,光子本身消失C、静止的正电子与物质中的负电子结合,正负电子消失,两个电子的静止质量转化为两个方向相反、能量各为511 keV的γ光子D、能量大于1022 keV时的γ光子在物质原子核电场作用下,能量为1022 keV的部分转化为一个正电子和一个负电子E、射线使原子的轨道电子从能量较低的轨道跃迁到能量较高的轨道正确答案:C16.其元素符号为X,则有6个中子、7个质子的原子核,可表示为A、136XB、613XC、67XD、76XE、713X正确答案:E17.个人剂量笔探测射线的依据是( )。
核医学常用的显像及其应用核医学是一门结合放射性同位素技术、显像技术和医学影像诊断技术的学科,主要应用于体内病理生理过程的研究以及用于临床诊断和治疗的医学领域。
核医学显像技术通过注射放射性同位素追踪剂来标记特定分子或改变生物体内组织结构的物质,再通过高灵敏度的电子探测器或摄像机系统记录并分析放射性同位素的信号。
这里将详细介绍核医学常用的显像及其应用。
一、正电子发射断层扫描(PET)PET是一种非侵入性、功能性核医学影像学方法,它通过注射具有较短半衰期的放射性标记的生物活性物质(如葡萄糖标记氟-18)到体内,通过探测系统记录体内释放的正电子与负电子湮灭反应的产生的γ射线,并以此数据初步推测标记物在人体内的浓度、分布及代谢情况,从而获得体内器官、组织及细胞层次的纳米级分辨率图像。
PET显像广泛应用于肿瘤学、神经科学、心血管疾病、免疫学等领域。
例如,PET 可以检测肿瘤的发生、分化和转移,评估肿瘤治疗效果,筛查疾病早期信号;在神经科学中,PET可以用于研究神经系统的功能和代谢活动,研究脑发育和老化等问题;在心血管疾病中,PET可以评估冠状动脉供血,研究心脏功能和代谢改变等。
二、单光子发射计算机断层扫描(SPECT)SPECT是一种基于单光子发射的核医学显像方法,通过注射放射性同位素追踪剂到体内,再以摄像机记录体内同位素的γ射线发射情况,通过旋转摄像记录各个方位的γ射线刺激密度数据,并利用计算机重建成三维断层图像,从而获得患者体内器官、组织的功能、代谢、结构等信息。
SPECT显像被广泛应用于心脏病、神经疾病、肝疾病等领域。
例如,在心脏病领域,SPECT可以评估冠状动脉疾病、心肌供血状况,帮助研究冠状动脉搭桥手术效果等;在神经疾病领域,SPECT可以用于诊断脑卒中、癫痫、脑肿瘤等疾病,评估神经疾病的治疗效果;在肝疾病领域,SPECT可以评估肝功能、肝纤维化等。
三、放射性核素骨密度测定(DEXA)DEXA是一种特殊的X射线技术,主要用于测量人体或动物骨骼的密度,通过特定的设备利用不同能量的X射线照射患者体部,进而通过计算机图像处理系统测定不同部位骨骼的X线吸收程度,从而反映骨骼的密度和钙盐的含量。
核医学的影像技术和诊疗方法核医学,是一门以核能为基础,应用核技术手段来研究人体结构、功能和代谢的专业学科。
核医学的应用范围非常广泛,不仅可以用于疾病的诊断和治疗,同时也可以用于疾病的预防和研究及药物开发等领域。
本文将就核医学的影像技术和诊疗方法进行探讨。
一、核医学影像技术核医学影像技术是指基于核素的特点,采用不同的物理探测技术,利用放射性核素与人体内的生物分子的相互作用,来获得人体内部生物分子的信息。
根据探测器的种类和探测技术的不同,常见的核医学影像技术主要有以下几种:1、正电子发射断层显像(PET)PET是一种以正电子放射性核素为探针,探测人体内的生物分子信号的核医学影像技术。
在PET成像过程中,病人被静脉注射含有放射性核素的药物,然后通过特殊的PET仪器,测量体内放射性核素的分布情况。
PET仪器通过探测放射性核素所衰变出的正电子,测量正电子的出现和消失,从而获得病人体内生物分子的定量信息。
由于PET成像具有无创性、定量性、高灵敏度和高特异性等优点,因此广泛应用于肿瘤、神经学、心血管以及其他内科领域。
2、单光子发射计算机断层扫描(SPECT)SPECT是一种以单光子放射性核素为探测器,探测人体内生物分子的核医学影像技术。
在SPECT成像过程中,病人被静脉注射含有单光子放射性核素的药物,然后通过特殊的SPECT仪器,测量体内放射性核素的分布情况。
SPECT仪器通过探测放射性核素所衰变出的γ射线,测量γ射线的出现和消失,从而获得病人体内生物分子的图像信息。
由于SPECT成像具有非侵入性、高灵敏度和多样化的探测剂等优点,广泛应用于心血管、神经学、肝脏、骨骼及甲状腺等疾病的诊断。
3、放射性核素扫描(RS)RS是将含放射性核素的药物注射到病人体内,通过特殊的核医学成像仪器进行扫描成像的一种核医学影像技术。
由于不同组织对放射性核素的摄取和代谢不同,因此扫描成像时不同组织的辐射强度也不同,从而产生不同的图像。
pet的显像原理PET(正电子发射断层显像)是一种常用的核医学影像技术,通过测量放射性同位素的分布来观察人体内部器官和组织的代谢活动。
PET 显像原理基于正电子湮没效应和正电子与电子湮没效应的相对性。
在PET显像中,首先需要给患者注射一种放射性同位素,通常是氟-18。
这种同位素具有短半衰期,能够在体内迅速发生衰变。
氟-18放射性同位素与正电子发生衰变,产生一个正电子和一个中性中子。
这个正电子会迅速与周围的电子相遇,发生湮没效应。
当正电子与电子相遇时,它们会发生湮没,产生两个光子。
这两个光子的能量相等,方向相反。
这种湮没效应是PET显像原理的核心。
光子的能量是511千电子伏特,因此PET显像仅能探测到具有这个能量的光子。
PET显像设备由环状的探测器组成,每个探测器包含一个探测晶体和一个光电倍增管。
当光子进入探测器时,它会与晶体相互作用,产生一系列的光子。
这些光子被光电倍增管接受并放大,然后被转换成电信号。
PET显像设备同时具有多个探测器,形成一个环形结构。
当正电子发生湮没,产生两个光子时,这两个光子会沿着相反的方向运动。
PET设备可以检测到这两个光子,并根据光子击中不同探测器的时间差和能量差来确定光子的来源位置。
通过测量大量的光子击中不同探测器的时间和能量信息,PET设备可以重建出正电子的分布图像。
这个图像代表了人体内部器官和组织的代谢活动。
正常组织和异常组织的代谢活动有所不同,因此PET显像可以用于检测和诊断各种疾病,如肿瘤、心血管疾病和神经系统疾病。
PET显像具有很高的灵敏度和空间分辨率,能够提供关于组织代谢的定量信息。
它还可以与其他影像技术,如CT和MRI相结合,提供更全面的诊断结果。
然而,PET显像也存在一些限制,包括辐射暴露和成本高昂等问题。
PET显像原理基于正电子湮没效应和正电子与电子湮没效应的相对性。
通过测量正电子湮没产生的光子能量和时间信息,PET设备可以重建出人体内部器官和组织的代谢活动图像。
全称为:正电子发射型计算机断层显像(Positron Emission Computed Tomography),是核医学领域比较先进的临床检查影像技术。
其大致方法是,将某种物质,一般是生物生命代谢中必须的物质,如:葡萄糖、蛋白质、核酸、脂肪酸,标记上短寿命的放射性核素(如F18,碳11等),注入人体后,通过对于该物质在代谢中的聚集,来反映生命代谢活动的情况,从而达到诊断的目的。
最近各医院主要使用的物质是氟代脱氧葡萄糖,简称FDG。
其机制是,人体不同组织的代谢状态不同,在高代谢的恶性肿瘤组织中葡萄糖代谢旺盛,聚集较多,这些特点能通过图像反映出来,从而可对病变进行诊断和分析。
编辑本段2.1 PET检查仪的原理一些短寿命的物质,在衰变过程中释放出正电子,一个正电子在行进十分之几毫米到几毫米后遇到一个电子后发生湮灭,从而产生方向相反(180度)的一对能量为511KeV的光子(based on pair production)。
这对光子,通过高度灵敏的照相机捕捉,并经计算机进行散射和随机信息的校正。
经过对不同的正电子进行相同的分析处理,我们可以得到在生物体内聚集情况的三维图像。
编辑本段2.2 PET检查的优点PET是目前惟一可在活体上显示生物分子代谢、受体及神经介质活动的新型影像技术,现已广泛用于多种疾病的诊断与鉴别诊断、病情判断、疗效评价、脏器功能研究和新药开发等方面。
(1)灵敏度高。
PET是一种反映分子代谢的显像,当疾病早期处于分子水平变化阶段,病变区的形态结构尚未呈现异常,MRI、CT检查还不能明确诊断时,PET检查即可发现病灶所在,并可获得三维影像,还能进行定量分析,达到早期诊断,这是目前其它影像检查所无法比拟的。
(2)特异性高。
MRI、CT检查发现脏器有肿瘤时,是良性还是恶性很难做出判断,但PET检查可以根据恶性肿瘤高代谢的特点而做出诊断。
(3)全身显像。
PET一次性全身显像检查便可获得全身各个区域的图像。