第四章 土的压缩与固结
- 格式:ppt
- 大小:3.13 MB
- 文档页数:82
第四章:土的压缩及沉降计算名词解释1、压缩系数:土体在侧限条件下孔隙比减少量与竖向压应力增量的比值。
2、压缩指数:在压力较大部分,e-lgp关系接近直线,其斜率称为土的压缩指数。
3、压缩模量:土在侧限条件下竖向压应力与竖向总应变的比值,或称为侧限模量。
4、变形模量:土在无侧限条件下竖向压应力与竖向总应变的比值。
5、体积压缩系数:在单位压应力作用下单位体积的变化量。
6、超固结比:先期固结压力pc与现时的土压力p0的比值。
7、前期固结压力:指土层在历史上曾经受过的最大有效固结压力。
8、最终沉降量:地基变形稳定后基础底面的沉降量。
9、固结:土体在压力作用下,压缩量随时间增长的过程。
10、固结度:在某一固结压力作用下,经过一定时间土体发生固结的程度。
简答1、为什么可以用孔隙比的变化来表示土的压缩性?答:土体压缩的实质是孔隙体积减小的结果,土粒体积保持不变;而孔隙比反映了孔隙的体积和土粒的体积比,因此可以用孔隙比的变化来表示土的压缩性。
2、地基土变形的两个最显著的特征是什么?答:体积变形是由于正应力引起的,只能使土体产生压密,孔隙体积减小,但不会使土体产生破坏;形状变形是由剪应力引起的,在剪应力作用下土颗粒间产生移动,使土体产生剪切破坏。
3、工程中常用的压缩系数和模量是什么?如何判定土的压缩性?答:压缩系数和压缩模量都是变量,为比较土的压缩性高低,工程中常用的压缩系数和压缩模量是压力在100-200kPa下的值。
a v<0.1MPa-1低压缩性土,0.1MPa-1≤a v<0.5MPa-1中压缩性土,a v≥0.5MPa-1高压缩性土;Es<4MPa高压缩性土,4MPa≤Es<15MPa中压缩性土,Es≥15MPa低压缩性土;4、自重应力在任何情况下都不会引起地基沉降吗?为什么?答:对于正常固结土和超固结土来说,自重应力不会引起地基沉降了,但对于欠固结土(新沉积的土或刚填筑的土)来说,由于现有的固结应力大于先期固结应力,自重应力也会引起地基沉降。
4. 土的压缩与固结4—1 概述⏹沉降:在附加应力作用下,地基土产生体积缩小,从而引起建筑物基础的竖直方向的位移(或下沉)称为沉降⏹某些特殊性土由于含水量的变化也会引起体积变形,如湿陷性黄土地基,由于含水量增高会引起建筑物的附加下沉,称湿陷沉降。
相反在膨胀土地区,由于含水量的增高会引起地基的膨胀,甚至把建筑物顶裂。
除此之外某些大城市,如墨西哥、上海等由于大量开采地下水使地下水位普遍下队从而引起整个城市的普遍下沉。
这可以用地下水位下降后地层的自重应力增大来解释。
当然,实际问题也是很复杂的,还涉及工程地质、水文地质方面的问题。
⏹如果地基土各部分的竖向变形不相同,则在基础的不同部位会产生沉降差,使建筑物基础发生不均匀沉降。
⏹基础的沉降量或沉降差(或不均匀沉降)过大不但会降低建筑物的使用价值,而且往往会造成建筑物的毁坏。
为了保证建筑物的安全和正常使用,我们必须预先对建筑物基础可能产生的最大沉降量和沉降差进行估算。
如果建筑物基础可能产生的最大沉降量和沉降差,在规定的允许范围之内,那么该建筑物的安全和正常使用一般是有保证的;否则,是没有保证的。
对后一种情况,我们必须采取相应的工程措施以确保建筑物的安全和正常使用。
⏹基础沉降量或沉降差的大小首先与土的压缩性有关,易于压缩的土,基础的沉降大,而不易压缩的土,则基础的沉降小。
⏹基础的沉降量与作用在基础上的荷载性质和大小有关。
一般而言,荷载愈大,相应的基础沉降也愈大;而偏心或倾斜荷载所产生的沉降差要比中心荷载为大。
⏹在这一章里,我们首先讨论土的压缩性;然后介绍目前工程中常用的沉降讨算方法;最后介绍沉降与时间的关系。
4-2 土的压缩特性⏹压缩:土在压力作用下,体积将缩小。
这种现象称为压缩。
⏹固结:土的压缩随时间增长的过程称为固结目前我们在研究土的压缩性,均认为土的压缩完至是由于孔隙中水和气体向外排出而引起的⏹瞬时沉降指在加荷后立即发生的沉降⏹饱和粘土在很短的时间内,孔隙中的水来不及排出,加之土体中的土粒和水是不可压缩的,因而瞬时沉降是在没有体积变形的条件下发生的,它主要是由于土体的侧向变形引起的⏹瞬时沉降一般不予考虑⏹对于控制要求较高的建筑物,瞬时沉降可用弹性理论估算。
第4章土的压缩、固结与沉降土的压缩固结与沉降四川大学水电学院省岩土工程重点实验室作业:4-10;14-12; 4-13; 4134-15; 415; 416. 4-16.第四章土的压缩、固结与沉降:内容§4.1 概述§4.1概述§4.2 土的压缩性§4.3 土的侧压力系数与变形模量§43土的侧压力系数与变形模量§4.4 地基沉降量计算§4.5 饱和土的单向固结理论墨西哥某宫殿工程实例左部:1709年右部:1622年地基:20多米厚粘土问题:沉降2.2米,且左右两部分存在明显的沉降差。
工程实例由于沉降相互影响,两栋相邻的建筑物上部接触工程实例高层建筑物由于不均匀沉降而被爆破拆除工程实例基坑开挖,引起阳台裂缝工程实例建筑物立面高差过大工程实例47m3915017587194199沉降曲线(mm)长高比过大的建筑物因不均匀沉降墙体产生裂缝中部沉降大——“八”字形裂缝本章研究内容和思路土具有变形特性荷载作用土的特点(碎散、三相)地基发生沉降致沉降差异沉降(碎散)一致沉降(沉降量)(沉降差)沉降具有时间效应-沉降速率建筑物上部结构产生附加应力土的压缩和变形特性建筑物部结构产生附加应力地基沉降计算固结沉降与时间本章内容影响结构物的安全和正常使用固结-沉降与时间关系§4.1 概述§4.2 土的压缩性§4.3 土的侧压力系数与变形模量§4.4 地基沉降量计算§4.4地基沉降量计算§4.5 饱和土的单向固结理论1.基本概念本概念土的压缩性:土体在压力作用下体积缩小的特性;压缩量的组成固体颗粒的压缩 占总压缩量的1/400不到,忽土中水的压缩 空气的排出略不计压缩量主要组成部分水的排出说明:土的压缩被认为只是由于孔隙体积减小的结果透水性好,水易于排出无粘性土粘性土压缩稳定很快完成透水性差,水不易排出压缩稳定需要很长一段时间压缩稳定需要很长段时间土的固结:土体在压力作用下,随着时间的变化,土中孔隙水不断排出孔隙体积不断减小的过程不断排出、孔隙体积不断减小的过程。
解:由题意知,33d s w 1d 18.2 1.857===1.857g cm ===1.346g cm g 9.81+1+0.38G 2.75e =11 1.041.346,侧限压缩稳定后,孔隙比e 2211e =e 1+e Hs压力 a kP总变形量s= i mm H压缩稳定后的孔隙比e 20 0 1.040 50 0.926 0.946 100 1.308 0.907 200 1.886 0.848 300 2.310 0.804 4002.5640.778根据试验结果,绘制e-p 曲线如下图。
取1p =100kPa ,2p =200kPa-1-1121-221e e 0.9070.848a =0.59MPa 0.5MPa p p 200100> 故,该土样为高压缩性。
0.70.80.911.1050100150200250300350400ep解:0点取在基底中心处,由题意知,cz0cz1cz01cz2cz12cz3cz23=d=18.01=18kPa=+h =18+180.5=27kPa=+h =27+20.3-9.8 3.0=58.5kPa =+h =58.5+19.09.8 3.0=86.1kPa基础为条形基础,属平面问题,b=1.6m 基底压力:200p===125kPa b 1.6P 基底附加压力:n 0p =p d=125181=107kPa根据公式: zz s 22221p 1=arctan arctan =K p 1n m m m mn n n n m n m 各分层面的竖向附加应力如下表所示: 位置 x zi m x b i n z z s KkPa z z s K p0 0.8 0 0.5 0 1.0 107 1 0.8 0.5 0.5 0.3125 0.9305 99.56 2 0.8 3.5 0.5 2.1875 0.2813 30.10 30.86.50.54.06250.15516.59从计算结果可知,在第3点处有0.2zcz,故取压缩层厚度为6.5m 。