第二章221对数与对数运算第二课时随堂即时巩固
- 格式:doc
- 大小:81.00 KB
- 文档页数:1
第二课时对数的运算对数的运算性质[提出问题]问题1:我们知道a m+n=a m·a n,那么log a(M·N)=log a M·log a N正确吗?举例说明.提示:不正确.例如log24=log2(2×2)=log22·log22=1×1=1,而log24=2. 问题2:你能推出log a(MN)(M>0,N>0)的表达式吗?提示:能.令a m=M,a n=N,∴MN=a m+n.由对数的定义知log a M=m,log a N=n,log a(MN)=m+n,∴log a(MN)=log a M+log a N.[导入新知]对数的运算性质若a>0,且a≠1,M〉0,N>0,那么:(1)log a(M·N)=log a M+log a N,(2)log a错误!=log a M-log a N,(3)log a M n=n log a M(n∈R).[化解疑难]巧记对数的运算性质(1)两个正数的积的对数等于这两个正数的对数的和.(2)两个正数的商的对数等于这两个正数的对数的差.(3)正数幂的对数等于幂指数乘同一底数幂的底数的对数.换底公式[提出问题]问题1:(1)log28;(2)log232;(3)log832各为何值?提示:(1)log28=3;(2)log232=5;(3)log832=log8853=错误!。
问题2:log832=错误!成立吗? 提示:成立.[导入新知]换底公式若c〉0且c≠1,则log a b=错误!(a>0,且a≠1,b〉0).[化解疑难]1.换底公式的推导设x=log a b,化为指数式为a x=b,两边取以c为底的对数,得log c a x=log c b,即x log c a =log c b,所以x=错误!,即log a b=错误!。
2.换底公式常用推论log an b n=log a b(a〉0,a≠1,b>0,n≠0);log am b n=错误!log a b(a〉0,a≠1,b>0,m≠0,n∈R);log a b·log b a=1(a〉0,b〉0,a≠1,b≠1);log a b·log b c·log c d=log a d(a〉0,a≠1,b>0,b≠1,c〉0,c≠1,d>0).对数运算性质的应用[例1](1*①log a x·log a y=log a(x+y);②log a x-log a y=log a(x-y);③log a(xy)=log a x·log a y;④错误!=log a错误!;⑤(log a x)n=log a x n;⑥log a x=-log a错误!;⑦错误!=log a错误!;⑧log a错误!=-log a错误!.其中式子成立的个数为( )A.3 B.4C.5 D.6(2)计算下列各式的值:①4lg 2+3lg 5-lg错误!;②错误!;log3;③2log32-log3错误!+log38-55④log2错误!+log2错误!.[解] (1)选A 对于①,取x=4,y=2,a=2,则log24·log22=2×1=2,而log2(4+2)=log26≠2,∴log a x·log a y=log a(x+y)不成立;对于②,取x=8,y=4,a=2,则log28-log24=1≠log2(8-4)=2,∴log a x-log a y=log a(x-y)不成立;对于③,取x =4,y =2,a =2,则log 2(4×2)=log 28=3,而log 24·log 22=2×1=2≠3, ∴log a (xy )=log a x ·log a y 不成立;对于④,取x =4,y =2,a =2,则错误!=2≠log 2错误!=1, ∴错误!=log a 错误!不成立;对于⑤,取x =4,a =2,n =3,则(log 24)3=8≠log 243=6,∴(log a x )n =log a x n不成立; ⑥成立,由于-log a 错误!=-log a x -1=log a (x -1)-1=log a x ; ⑦成立,由于log a 错误!=log a x 1n=错误!log a x ; ⑧成立,由于log a 错误!=log a 错误!-1=-log a 错误!。